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Abstract 

Cancer is a complex disease involving disrupted cellular metabolism, basic biochemical 

processes, and the microenvironment. However, despite some generally agreed upon 

unifying principles (Hanahan and Weinberg 2000, 2011), molecular signatures remain 

largely indistinguishable from tissue-of-origin, presenting a major barrier for precision 

health and individualized medicine. To address this challenge, we reduce mutation data 

to disruptions in a select set of pathways relevant to basic cell biology, from DNA 

replication to cellular communication. Using dimensionality reduction techniques, we 

assign tumor samples into ten clusters distinct from tissue-of-origin and largely free of 

bias from mutational burden or clinical stage. We show that the clusters vary in 

prognosis by modeling relative risk of death by cancer type and cluster. We identify 

cluster-specific mutations in different tissues, demonstrating that tissue-specific 

signatures contribute to common cellular phenotypes. Moreover, germline risk genes 

involved in replication fidelity and genome stability are equally distributed among 

clusters, contrary to the expectation that such genes are avatars of molecular subtype. 

We investigate metastatic and non-metastatic pathways, and show that most 
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differences are cluster-specific. Some metastatic pathways from one cluster are cluster-

specific pathways from non-metastatic tumors of another cluster, suggesting phenotypic 

convergence. Taken as a whole, our observations suggest that common driver genes 

combine with tissue-specific disruptions in tumor-promoting pathways to produce a 

limited number of distinct molecular phenotypes. Thus, we present a coherent view of 

global tumor biology, and explain how common cellular dysfunction might arise from 

tissue-specific mutations. 

Introduction 

Recent advances in technology have greatly expanded our view into the mechanisms of 

cancer at the systems biology level. Array and next-generation sequencing technologies 

have made it possible to assay germline and somatic mutations, expression profiles, 

DNA methylation, and copy number variations from the same tissue samples. To take 

advantage of these tools, several large consortia, including the cancer genome atlas 

(TCGA) and pan-cancer analysis of whole genomes (PCAWG) sequenced large 

numbers of tumors and collected data from multiple assays that could be analyzed 

together, with the goal of integration and increased understanding of the mechanisms of 

cancer. 

Considerable progress has been made analyzing these data. Statistical analyses 

identify hundreds of global and tissue-specific cancer driver genes (Dees et al. 2012; 

Tamborero, Gonzalez-Perez, and Lopez-Bigas 2013; Lawrence et al. 2014; Kumar et al. 

2015; Tokheim et al. 2016; Jiang et al. 2019; Zhao et al. 2019) using approaches aimed 

at detecting when genes are mutated at a greater rate than expected due to chance. It 
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has been estimated that fewer than five mutations in key oncogenes and/or tumor 

suppressors would be sufficient to transform a normal cell to a cancerous state 

(Vogelstein and Kinzler 2015; Iranzo, Martincorena, and Koonin 2018). Somewhat 

paradoxically, mutations in cancer driver genes are commonplace in healthy tissue and 

correlate with age and environmental exposures (Martincorena 2019). 

Other studies provide a comprehensive view of mutations, gene expression and 

genomic signatures, with the express goal of understanding the common themes of all 

cancer independent of tissue of origin. Understanding cancer as a disease of the cell 

has long been a goal of the field as characterized in essays by Hanahan and Weinberg 

(2000); Hanahan and Weinberg (2011). The first of these studies in the genomic era 

identified 11 subtypes from 12 cancer types, using integrative analysis with co-equal 

weighting of gene expression, methylation, copy number and proteomics data (Hoadley 

et al. 2014). The principal finding was that tissue-of-origin is the predominant driving 

factor, though a significant proportion of tumors (~10%) could be reclassified 

independent of tissue-of-origin. In a second study involving 33 cancer types and a much 

greater number of tumors, the authors identify 28 clusters that could be further 

subdivided into organ specific groups, including pan-gastrointestinal, pan-gynecological, 

pan-squamous, pan-gynecological/squamous and pan-kidney (Hoadley et al. 2018). 

More recently, attempts have been made to consider pan-cancer mutations and other 

data as disruptions of normal pathway activity. Sanchez-Vega et al. (2018) carried out 

near-exhaustive analysis of pathway enrichment using whole genome data. Network 

approaches address the sparseness of mutations, allowing genes to be influenced by 

mutations in the nearest network neighbors (Horn et al. 2018; Iranzo, Martincorena, and 
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Koonin 2018). These methods are powerful especially when applied to a small number 

(on the order of hundreds) of tumors. One of the challenges in the field remains that 

beyond a couple hundred common driver genes and mutations, there may be 

thousands of moderate effect genes that occur at such low frequency–given tissue 

diversity–and low sample numbers that they are impossible to detect using positive 

selection theory. Some groups have attempted to address this challenge by applying 

machine learning to cancer data sets to discover groups of functionally related genes as 

they interact with larger pathways and networks (Kim and Kim 2018; Mourikis et al. 

2019; Colaprico et al. 2020). These studies have proven very effective at highlighting 

fundamental disease phenotypes at the pathway level across cancers with different 

origins at the cellular and tissue level. 

In this study, we attempt to understand how tissue-specific gene disruptions create 

common cancer phenotypes by focusing on discrete molecular pathways as the unit of 

disruption. Our approach strips all cell-type-specific information from the mutation data 

and equates gene-level mutations to cell-biological pathway disruptions. We use this 

heuristic to evaluate all cancers and show that, surprisingly, tumors that exhibit tissue-

specific gene mutation patterns nonetheless fall into common categories of pathway 

disruption having unique prognoses in each cancer type. 

Results 

A taxonomy of tumors based on disrupted molecular pathways 

To study cancer pathways we obtained a set of 7,607 solid tumor samples from The 

Cancer Genome Atlas (TCGA) through the Genomic Data Commons (GDC) portal. 
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TCGA data were most appropriate for our study given the relative completeness of the 

patient metadata, particularly for survival and staging. We chose to analyze somatic 

mutations in exome sequencing data because the affected target gene is known 

unambiguously. Therefore, we selected all missense, nonsense, frameshift, stop-loss, 

untranslated region, and splicing mutations. In order to minimize bias from well-studied 

diseases and processes, we selected 377 Reactome pathways (see supplemental table 

ST1) of interest corresponding to basic cellular processes and biochemical pathways, 

excluding gene sets that correspond to miscellaneous categories (e.g. “transcription 

factors”) or disease associations (e.g. “mutated in colon cancer”) and filtered our gene 

list on membership in these pathways (total of 8,940 genes; see methods for details). 

To avoid bias toward larger pathways (i.e. pathways with more member genes), we 

counted pathways as disrupted if one or more member genes were mutated. We do not 

attempt to calculate enrichment for mutations within a pathway. Data binarized by 

pathway are likely to be noisy for several reasons. First, point mutations can be 

deleterious (attenuating, hypomorphic or antimorphic) or activating (neomorphic or 

hypermorphic) in genes, and these can in turn act functionally as either oncogenes or 

tumor suppressors. For this study we assume a significant fraction of these mutations 

are generically disruptive to normal pathway activity since it is impossible to know the 

tumor promoting effects of all mutations, including rarely studied genes. Second, we 

know that low-expressed genes and non-expressed genes accumulate mutations at a 

higher rate due to transcription coupled repair (Kandoth et al. 2013; Kim and Kim 2018; 

Aitken et al. 2020; Cummings et al. 2020). To address this issue, we identified genes 

with low expression in each type of cancer and eliminated them for that cancer type only 
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(see methods for details). Highly expressed genes could also have high mutation rates 

owing to transcription induced mutagenesis (Park, Qian, and Zhang 2012). We felt that 

such mechanisms result in cell-type-specific biases that might be biologically 

meaningful for predisposition to different classes of cancer however, and therefore 

chose not to exclude these genes from our analysis. After selecting our pathways and 

genes, we then compiled a matrix of the pathways, assigning a Boolean value of 1 to 

each pathway with one or more genes mutated and 0 for all others (figure 1). 
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Figure 1 

 

Figure 1: Molecular pathway profiles of tumor samples with one or more 

mutations. Each of 377 selected Reactome pathways (rows) is classified as disrupted if 

one or more genes is mutated in the tumor sample (columns) where red and grey 

represents the pathway is mutated and not, respectively. Tumors are grouped by tissue 

of origin using standardized abbreviations from the TCGA project. 
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We investigated this dataset further using multiple correspondence analysis (MCA) (Lê, 

Josse, and Husson 2008), and visually summarized the analysis with UMAP (figure 2 

and see interactive media from supplemental file 1) (McInnes, Healy, and Melville 

2018). We used the resulting UMAP graph coordinates to perform density based 

clustering with HDBSCAN (McInnes and Healy 2017), which resulted in identification of 

10 well-defined clusters capturing about 80% of the tumor samples. To capture the 

remaining samples into one of these 10 clusters we used kNN (see Supplementary 

Methods for details on clustering methods). 
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Figure 2 

 

Figure 2: Clustering of tumor samples Different rotational perspectives of the same 

MCA-based UMAP projection in three-dimensional space. Each dot corresponds to a 

tumor sample. The same colors indicate the tumor’s cluster identity throughout this 

manuscript. 
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Independence from tissue-of-origin. 

Having defined tumors in terms of their pathway disruption profile, we sought to 

understand whether different cancer types segregated into one or more predominant 

classes. To our surprise, most cancer types were not heavily biased in one class, and 

all well-represented cancer types had tumors in every class (see figure 3A and full 

tumor profiles in supplementary figure S1, see also interactive media from 

supplementary file 1), suggesting that, in principle at least, our pathway-disruptions 

identify clusters of molecular pathology largely independent of tissue-of-origin. As an 

example of one type of cancer that does have a biased pathway profile, pancreatic 

adenocarcinoma (PAAD) was predominantly found in class 8 (figure 3A and 

supplementary figure S1 and supplementary file 1). But even PAAD comprises 

tumors from the nine remaining classes, meaning that patients suffering these tumors 

have potentially different underlying molecular pathologies. 
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Figure 3 

 

Figure 3: Pathway-based clustering independent of tissue-of-origin A) Sankey plot 

showing correspondence between cancer type and cluster identity. B) Projection of 

breast cancer subtypes onto the UMAP. C) Projection of BRCA1/2 somatic mutation 

onto the UMAP. D) Projection of tumor stage onto the UMAP, regardless of cancer type. 
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E) Projection of metastatic status onto the UMAP. Abbrevs: M0 = non-metastatic 

tumors, M1 = metastatic tumors. 
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Independence from molecular and histological subtype. 

Many cancers have molecular or histological subtypes defined based on gene 

expression or other -omics profiles or pathology lab results. These subtypes often have 

different standards of care owing to different overall drug sensitivity (or other factors). If 

the histological subtypes represent true molecular phenotypes, one predicts that 

histological subtypes should segregate with our pathway-based clusters, therefore 

providing support for the clusters as proxies for molecular pathology sub-typing. To our 

surprise, we find a similar result to the previous analysis of cancer types projected onto 

the UMAP of pathway disruptions. To illustrate this, we projected annotations for each 

of the breast cancer subtypes, composed of Triple-negative/Basal-like, Her2 positive, 

normal-like, and luminal A and B subtypes onto the UMAP. These are among the most 

heavily studied molecular subtypes in cancer, which each have different prognoses and 

standards of care. We did not observe any exclusive segregation by pathway for these 

subtype annotations (Figure 3B). We also projected histological subtype data for the 

remaining cancers (see supplementary figure S2 for the full set of projections and see 

interactive media from supplemental file 1); we find that the subtypes, though often 

biased towards one or more classes, are almost never exclusive. We interpret these 

data in aggregate to mean that our pathway disruption classes do not correspond to 

previously identified molecular subtypes within the parent cancer type. 

Independence from drivers of genome instability. 

There are several well-known familial cancer-causing mutations that have been 

interrogated extensively for differences in basic biology, survival and treatment 
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outcomes. However, the functions of these genes are related to risk factors such as 

genome stability generally, proof-reading and DNA damage repair, and telomere length. 

BRCA1/2 genes for example are key for DNA double-stranded break repair (Moynihan 

et al. 1999; Davies et al. 2001) and germline mutations in these genes confer elevated 

risk for breast, prostate and ovarian cancers. The mechanism of risk is thought to 

involve loss of heterozygosity resulting in loss of the wildtype, functional allele 

(Gudmundsson et al. 1995), so we projected the somatic mutations for BRCA1 and 

BRCA2 genes onto the UMAP, but did not observe segregation of these mutations into 

specific clusters (figure 3C and see interactive media from supplemental file 1). We 

made similar projections for the mismatch repair (MMR) genes MSH2, MSH6, MLH1, 

MLH3, PMS1 and PMS2; BRIP1, RAD51, CHEK2 and APC. None of these genes 

except for APC exhibited any remarkable specificity with respect to cluster assignment 

(supplementary figure S3). To look at other risk factors such as maintenance of DNA 

methylation levels and telomere length, we projected somatic mutations of the TET2 

and TET3 genes, plus TERT, TEP1, and DKC1, and observed similar lack of 

segregation by cluster (supplementary figure S3). 

Independence of stage, mutation count and mutation profile. 

Tumor staging is based on physico-pathological criteria, including tumor diameter, 

which can vary greatly in importance between different tissues. Stage is used clinically 

as a proxy for advancement toward a more deadly state and metastasis. Given these 

assumptions, it is possible that more advanced tumors have common pathway 

disruption profiles. The UMAP, which features a series of lobe-like structures on a 

common backbone of tumor samples (figure 2) could in principle reflect progression 
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through a series of stages. The backbone starts with a cluster of tumors (class 1) that 

has the fewest point mutations and culminates in a cluster (class 10) which has nearly 

every pathway disrupted (figure 4). However, outside of class 10 we don’t observe an 

obvious trend in the overall mutation burden across the backbone of the UMAP. 

Nonetheless, to test the hypothesis that the molecular-pathway disruption clusters 

represent advancement through stages, we projected staging data onto the UMAP. 

Similar to tissue of origin and other categories of tumor, we did not observe any bias 

among the stages to specific pathway disruption clusters (figure 3D), suggesting that 

stage is not a contributing factor to cluster identity. 
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Figure 4 

 

Figure 4: Somatic mutation frequencies for tumors in each class Vertical axis 

shows log mutation count, horizontal axis is cluster identity. Each dot represents an 

individual tumor sample, ranked lowest to highest by mutation count. The median 

mutation count in each cluster is indicated by the horizontal line. 
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Finally, as a measure of tumor advancement, metastasis is the condition in which 

certain phenotypic criteria are met. These phenotypes include loss of differentiation, 

cell-cell contacts, epithelial to mesenchyme transition, immune system evasion and 

tissue invasiveness (Hanahan and Weinberg 2011). To determine whether any of our 

clusters correspond to an especially advanced stage of cancer across tissue types, we 

projected the metastasis data onto our UMAP, and surprisingly we observed an even 

distribution of metastases across classes (figure 3E). This final observation suggests 

that our pathway-disruption classification is dependent on particular combinations of 

gene mutations affecting different pathways that can each give rise to advanced stages 

of disease and metastasis, regardless and independent of overall mutational burden. 

Tissue specific genes define cluster membership 

In order to identify pathway disruption enrichment across all cancers (pan-cancer), we 

created a list of pathway disruptions with percent mutated samples and top genes 

(supplementary table ST1). As expected, these analyses reveal the broad importance 

of many well known pathways that are disrupted in cancer, including “PIP3 activates Akt 

signaling” (77% of samples), “MAP1K/MAP3K signaling” (70% of samples), “Mitotic G2-

G2/M phases” (67% of samples), “Cellular senescence” (64% of samples), “G2/M 

Checkpoints” (62% of samples), etc. 

To discover what pathways are most important for clustering, we calculated percent 

enrichment for each pathway within cluster relative to all other clusters combined (see 

methods) and ranked pathways for each cluster from highest to lowest enrichment. We 

visualized the enrichment as a heatmap (figure 5A). Using this approach, we identified 
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twenty-five pathways highly enriched (enrichment score ≥ 0.3, 95% confidence; see 

methods) in cluster 2, nine pathways enriched in cluster 3, twenty-four pathways in 

cluster 4, ten pathways in cluster 5, ten pathways in cluster 6, twenty-four pathways in 

cluster 7, twenty-four pathways in cluster 8, ten pathways in cluster 9, and no pathways 

for clusters 1 and 10 (supplementary table ST2). Clusters 7, 8, and 9 had several 

pathways in common. To explore the specific pathways marking each cluster, we 

projected disruptions for each of the 377 pathways onto the UMAP (supplementary 

figure S4 and see interactive media from supplemental file 1). Clusters 3 and 5 were 

distinguished by metabolic pathways including RNA and protein biosynthesis 

(supplementary figure S4). Similarly, cluster 4 was distinguished by mutations 

affecting regulation of DNA and histone methylation (“DNA methylation”, “PRC2 

methylates histones and DNA”, and “Nucleosome assembly”). Clusters 7-9 have in 

common mutations in extracellular, intracellular, and immune-related signaling 

pathways (see figure 5B and supplementary figure S4). Cluster 2 had the highest 

pathway enrichment levels of the three, having mutations in hedgehog signaling, “β-

catenin degradation”, “cellular response to hypoxia”, “regulation of cell cycle” and 

“apoptosis” among others. 
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Figure 5 

 

Figure 5: Pan-cancer enrichment of pathway disruptions. A) Heatmap shows the 

relative enrichment of each pathway (rows) within each numbered cluster (columns). 

Effect size is displayed as colors representing percent enrichment. B) Proportion of 
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mutated samples in the each significant pathway (columns; union set of pathways with 

effect size ≥ 0.30 in each cluster) within each numbered cluster (rows). 
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Prior efforts to extract common signatures from pan-cancer datasets met with difficulty 

in distinguishing tumor samples from their tissue-specific -omics data signatures. Given 

our pathway-disruption based clustering, this raises the question, are tumor phenotypes 

driven entirely by common driver genes, or by “silent” tissue-specific effectors (i.e. too 

few samples to detect above statistical significance thresholds), or a combination of 

both? To answer this question, we compared top pathway genes for each cluster 

relative to the TCGA background to find differentially mutated genes. We ranked odds 

ratios and selected the top ten enriched and depleted genes (pvalue < 0.01) for each 

cluster (Figure 6; odds ratios plot). Clusters 7 and 8, which shared multiple enrichment 

in signaling pathways, are largely driven by mutations in PI3K and its orthologs and Ras 

genes, respectively (compare PIK3CA and KRAS panels of Supplementary figure S5 

and see interactive media from supplemental file 1). Interestingly, cluster 9, which also 

shared multiple enrichment in signaling pathways with clusters 7 and 8, is enriched for 

both PIK3CA and KRAS. Clusters 3 and 5, defined by enrichment in metabolic 

pathways, had mutations in ribosomal proteins and nuclear pore complex, respectively. 

Cluster 4 had mutations in genes responsible for nucleosome structure. Cluster 2 had 

mutations in proteasomal subunit genes involved in protein degradation. We also 

observed that genes that were enriched for one cluster are depleted from others (i.e. is 

enriched in cluster 6, but depleted in cluster 7; PIK3CA is enriched in cluster 7, but 

depleted in clusters 3 and 8). Next, we investigated the proportion of samples per 

cancer type for the significant genes within a cluster (Figure 6; heatmap). Surprisingly, 

cluster-specific tumors were not predominated by one or more highly mutated genes 

across all cancers. Instead, when observing the mutation rate for these genes within 
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samples that belong to a cluster, the mutation rate is heterogeneous across tumors by 

tissue origin (e.g. In cluster 4, CESC was enriched for H2AFX, OV was enriched for 

HIST1H2BD, and UCEC was enriched for HIST1H2AC). Even among the top most 

mutationally enriched genes within clusters there is no global pattern, indicating that our 

clusters are not driven by individual genes, but rather networks as a whole. Taken 

together, our data identifies a framework of cancer type-specific mutations associated 

with specific clusters. 
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Figure 6 

 

Figure 6: Gene level analysis reveals tissue-specific class signatures. Odds ratio 

plot; Column uses a logarithmic axis to represent odds ratio with a 95% confidence 

interval. Row represents the significant genes from each cluster. Each cluster was 

compared against the background (all other clusters) to find differentially mutated 

genes. Significant genes (pvalue < 0.01) were selected and limited to the top ten results 

for each clusters. Heatmap; Column represents the cancer type. Row represents the 
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significant genes as described above. The heatmap shows the proportion of samples 

per cluster and cancer type that are mutated for each gene. Depleted significant genes 

(left). Enriched significant genes (right). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.26.268987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.26.268987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Enrichment of pathways in metastasis is cluster-specific 

Following the same logic we used to investigate cluster-specific enrichment of pathways 

we compared metastatic vs. non-metastatic tumors, as we find that metastatic tumors 

are distributed across all ten clusters (e.g. figure 3E). Using all non-metastatic tumors 

as background, we found very low levels of enrichment (< 10%) in a handful of 

pathways. We reasoned that the individual clusters might be too different to detect 

global metastasis enrichment signal given the small sample size (n = 215 metastatic 

tumor samples). 

Therefore, we calculated cluster-specific enrichment in metastatic tumors and found a 

total of 31 enriched pathways (significant with enrichment score ≥ 0.3) across all 

clusters (table 1). A number of enrichments were found in multiple clusters represented 

by pathways that were already shown to be enriched in a neighboring cluster. For 

example, “Signaling by PTK6” is enriched in non-metastatic samples of cluster 8 (see 

supplementary figure S4) but not in 7 and 9. This pathway is enriched in metastatic 

tumors of clusters 7 and 9 (𝑝 < 10−3, table 1). This is also true of “Erythropoietin 

activates RAS”, which is enriched in non-metastatic tumors of cluster 8 (supplementary 

figure S4) and also in metastatic tumors of clusters 7 and 9. Cluster 4 metastatic 

samples were enriched for “Fc epsilon receptor (FCERI) signaling”, a key neutrophil 

pathway, which is also specific to clusters 2, 7 and 8 non-metastatic tumors. Thus, 

metastatic-enriched pathways from one cluster are often enriched in non-metastatic 

tumors of other clusters. 
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Table 1 

Pathway Cluster 
Enrichment_
Score 

log10pvalue 

Signaling by NOTCH1 2 0.34 2.11 

Signaling by NOTCH2 2 0.40 2.82 

Plasma lipoprotein clearance 2 0.31 1.94 

Hedgehog 'off' state 3 0.31 2.07 

Nonhomologous End-Joining (NHEJ) 3 0.33 2.53 

Effects of PIP2 hydrolysis 4 0.49 2.04 

Signaling by SCF-KIT 4 0.54 2.55 

Respiratory electron transport, ATP synthesis by 
chemiosmotic coupling, and heat production by uncoupling 
proteins. 

4 0.60 2.41 

Fc epsilon receptor (FCERI) signaling 4 0.55 2.12 

Platelet calcium homeostasis 4 0.44 1.67 

Energy dependent regulation of mTOR by LKB1-AMPK 5 0.31 1.80 

GPCR ligand binding 5 0.35 1.93 

Nonhomologous End-Joining (NHEJ) 5 0.59 3.70 

DNA Double Strand Break Response 5 0.34 1.63 

RNA Polymerase II Transcription Pre-Initiation And Promoter 
Opening 5 0.35 2.36 

Response to elevated platelet cytosolic Ca2+ 5 0.34 1.61 

RNA Polymerase II Transcription Initiation And Promoter 
Clearance 5 0.35 2.38 

Protein ubiquitination 5 0.35 1.87 

Glycogen metabolism 5 0.36 2.52 

TCF dependent signaling in response to WNT 7 0.34 2.90 

Neurexins and neuroligins 7 0.30 2.71 

Signaling by PTK6 7 0.37 3.21 

Erythropoietin activates RAS 7 0.31 3.28 

Pre-NOTCH Expression and Processing 9 0.30 5.00 

Transcriptional activation of mitochondrial biogenesis 9 0.35 1.80 

Beta-catenin independent WNT signaling 9 0.33 5.00 

Hedgehog 'off' state 9 0.35 1.83 

G1/S DNA Damage Checkpoints 9 0.40 5.00 

Signaling by PTK6 9 0.30 5.00 

Erythropoietin activates RAS 9 0.38 2.37 

Butyrate Response Factor 1 (BRF1) binds and destabilizes 
mRNA 10 0.30 4.00 

Table 1: Cluster-specific enriched pathways (effect size ≥ 0.30) in metastasis. 
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Pathway disruption clusters vary in short-term prognosis of survival 

If our molecular pathway disruption clusters represent biological states distinct from 

tissue of origin, they may have different prognoses within cancer types or across all 

cancers. These analyses are limited by confounding factors of age and stage at 

diagnosis, sex, ethnicity, and tissue-specific disease progression. To explore these 

ideas, we used Bayesian inference to test models (see Methods and Supplemental 

Methods for greater detail) of survival using public longevity data from the CDC, 

accounting for age, gender and ethnicity. Our model estimates the effect of cancer type 

and cluster-specific cancer effects independently, resulting in a cancer and cluster-

specific estimate of the aging rate multiplier, 𝑘. 

To understand the model, we show in Figure 7A simulated survival time curves for four 

related groups. We start with a cohort of women aged 30 and show their expected 

survival (light blue). By setting their cancer rate multiplier to 𝑘 = 2 we can simulate the 

effect of a moderately deadly cancer (yellow). Compare this to a randomly selected 

group of women ranging in age from 30 to 70 years old (dark blue). Immediately the 

survival curve changes due to the mixture of ages, without any malignancy. Adding a 

𝑘 = 2 malignancy further reduces expected lifespan (red). We can see that for different 

tissues, simply due to the change in distribution of age-at-diagnosis, we should expect 

equally deadly cancers to have different survival curves. The model takes this into 

account and the aggressiveness of the cancer can be estimated accurately without the 

confounding effect of age. 
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Figure 7 

 

Figure 7: Comparison of different cancers, simulated and actual results results. 

To illustrate the risk model, we compare survival of four simulated cohorts. A) A group 

consisting of randomly selected 30 year old women (light blue) vs. an equal sized group 

of 30 year old women with cancer, k = 2 (light orange). To illustrate how the mix of ages 
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alters the survival curve, we compare a randomly selected group of people with ages 

uniformly distributed from 30 to 70 (dark blue) and a randomly selected group with 

uniformly distributed ages and cancer k = 2 (dark orange). B,C,D,E) We compare a 

randomly selected group with correct age distribution for the given cancer (turqoise) to 

the model predicted survival for the given average k (blue) and the actual survival for 

the patients in our dataset (orange). As can be seen, Stomach Cancer (STAD), 

Glioblastoma (GBM), and Pancreatic Cancer (PAAD) are all very deadly. The modeled 

results fit the general trend for the actual patients. Thyroid Cancer (THCA) on the other 

hand has very little if any effect on our estimates of life expectancy, in fact there may be 

a slight benefit which may be associated with a bias in diagnosis towards patients who 

are more health conscious, or higher socioeconomic status, with more access to care 

compared to random population members. 
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We found that cancer types, as expected, have a range of prognoses relative to the 

general population. For example in Figure 7B-E we see three particularly deadly 

cancers (Stomach:STAD, Glioblastoma:GBM, and Pancreatic:PAAD), and one cancer 

where diagnosis apparently decreases risk relative to background (Thyroid: THCA). 

Cancers with posterior probability for relative risk of less than 1 such as THCA should 

be interpreted carefully. This Bayesian model is a model for a state of information. The 

information that a person is diagnosed with cancer may lead us to expect that they will 

live a shorter time than the general population of matched age (k > 1), or a longer time 

than the general population of matched age (k < 1). One mechanism for a shorter result 

is that the cancer is aggressive and we can expect it to rapidly injure the body, causing 

death. One explanation for longer results may be that the cancer is relatively mild, and 

therefore diagnosis is potentially an informational signal that the patient is health 

conscious, with the comparison group having more people whose cancers go 

undiagnosed. It’s important to note that the diagnosis can increase our expectation of 

life relative to the comparison group, even if it decreases the expectation of life of the 

individual relative to the counterfactual where they did not have cancer. 

The degree to which a given cancer accelerates aging can be determined by the 𝑘𝑡𝑖𝑠 

multiplier (Figure 8) multiplied by the cluster modifier 𝑘𝑐𝑙 (Figure 9). Looking at the 

tissue specific multiplier, the least deadly was prostate cancer (PRAD), and the most 

deadly was glioblastoma (GBM) which has a risk multiplier of between 15 and 22 

relative to the background risk of death in the population. This undoubtedly is influenced 

by the fact that relatively young patients are affected by GBM and that it is extremely 

deadly. Among the deadliest cancers outside of GBM were stomach (STAD), melanoma 
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(SKCM) and pancreatic (PAAD) cancers. Apart from these top 4 cancers which ranged 

from 6-22 in relative risk of age-adjusted death, the remaining cancer types ranged from 

about 1 to 5 in magnitude. 
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Figure 8 

 

Figure 8 Tissue specific effects Effects are compared between cancer type by 

showing the probability density for the posterior value of the 𝑘𝑡𝑖𝑠 multiplier. Larger 

values correspond to decreased age-independent life expectancy. 
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Figure 9 

 

Figure 9 Cluster specific 𝑘𝑐𝑙 values for each cancer type. The overall 𝑘 value is the 

product of 𝑘𝑡𝑖𝑠 × 𝑘𝑐𝑙. The cluster-specific value represents the relative aggressiveness of 

each cluster within the cancer type. For example clusters 1, 2, and 6 Glioblastoma 

(GBM) are apparently much less deadly than other types of GBM. A similar situation 
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can be seen with Pancreatic Cancer (PAAD) where 1, 6, and 8 are less deadly 

compared to clusters 7, 9, 10. For some cancer types there are few data points and little 

ability to estimate values with precision (DLBC and KICH for example). 
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Our estimates of tissue-specific cluster effects, in contrast, ranged from less than 1 up 

to about 3 or 4, reflecting that some clusters are either less deadly or more deadly than 

other clusters within each cancer type (Figure 9). A cluster-specific rate of 1 represents 

the typical rate for this tissue type. For several cancers (e.g. PRAD, kidney 

chromophobe (KICH), diffuse large B-cell lymphoma (DBLC), thyroid cancer (THCA)) 

the posterior estimates are largely indistinguishable from the prior, reflecting that either 

there were too few mortalities in the data to make an estimate (as expected for PRAD 

and THCA) or two few samples, period. We did not observe cluster-specific trends that 

held true across cancer types, which could result from different cancers having different 

standards of care for example. In support of this interpretation, we also tested a factored 

model which considered both cancer type and each cluster independent of cancer type 

(not shown). Though we were able to successfully fit this model, it is a special case of 

the more general model where cluster and tissue independently affect longevity, and 

there is no reason to believe that cluster specific effects would necessarily remain 

constant across tissue types given how widely the patients vary across tissue types, 

drug and surgical treatments. 

Discussion 

Classification of tumors independent of tissue-of-origin 

One of the biggest hurdles in cancer research is the sparsity of data; ~20,000 protein-

coding genes is comparable with the number of tumor samples, even with multiple 

mutations per sample. This also does not account for the fact that ~30,000 non-coding 

genes and hundreds of thousands of non-coding regulatory elements exist with 
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oncogenic or tumor suppressor activity (Dees et al. 2012; Tamborero, Gonzalez-Perez, 

and Lopez-Bigas 2013; Lawrence et al. 2014; Kumar et al. 2015; Jiang et al. 2019; 

Zhao et al. 2019; Zhang et al. 2020). Hence, we sought to simplify the problem by 

employing a “knowledge-base driven analysis” (Khatri, Sirota, and Butte 2012), 

investigating cancer as a disease of basic cellular and biochemical pathways, which we 

accomplished by translating gene-level mutations into pathway level disruptions. Our 

approach differs from previously described methods (Creixell et al. 2015) in that we 

chose to focus on the pathway (defined in the methods) as the unit of disruption instead 

of the gene, where individual mutations may be sufficient to disrupt or misdirect pathway 

activity. Rather than evaluating the burden of mutations on each pathway within or 

across tumors, which can be biased by the number of genes or the coverage of 

pathway-linked genes in the genome, we scored each pathway in binary fashion, 

allowing one mutation or multiple mutations to count equally for each sample. 

To our knowledge, this approach has not previously been attempted in spite of its 

relative simplicity. We limited our analysis to mutations with likely deleterious effects, 

including missense, nonsense, frame-shift, stop-loss, untranslated region and splice site 

mutations in genes that are actively expressed in each cancer type, thus avoiding bias 

from transcription coupled repair. Our method of filtration differs from the “rank-and-cut” 

method of (PCAWG Consortium 2020) but represents a reasonable attempt to account 

for the same biases. We also filtered genes on the basis of pathway membership in 

biochemical pathways, excluding curated gene sets related to diseases, syndromes, or 

classes of proteins with shared catalytic activity or conserved domains which are 

potentially problematic (Khatri, Sirota, and Butte 2012). We chose this approach to limit 
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redundancy and exclude biologically unrelated collections of genes. Our pathway-

centric analysis allows us to circumvent the problem that some cancer-promoting 

mutations likely occur at such low frequencies as to be indistinguishable from 

background. 

The hypothesis that cancer is the result of dysfunction from a limited number of basic 

cellular processes common to all living human cells was introduced and later expanded 

on in a pair of essays by Hanahan and Weinberg (Hanahan and Weinberg 2000, 2011). 

In this view, all tumors regardless of tissue of origin acquire six essential phenotypes; 

sustaining proliferative signaling, evading growth suppressors, replicative immortality, 

evading apoptosis, supportive angiogenesis, tissue invasion and metastasis (Hanahan 

and Weinberg 2000). Advancements in the field over the ensuing decade led to the 

inclusion of new tumor promoting processes, namely deregulation of cellular energy 

cycle, tumor promoting inflammation, evasion of the immune system, genome instability, 

and on top of these acquired traits a new appreciation for the concept of the tumor 

microenvironment and its contribution to the evolution and promotion of metastatic 

disease (Hanahan and Weinberg 2011). 

An alternative hypothesis is that every tumor belongs to one of a large number of 

syndromes which are unique to each tissue-of-origin, that share some mechanisms and 

treatment strategies. Recent publication of TCGA consortium papers present a view 

largely, and surprisingly, consistent with this hypothesis (Hoadley et al. 2014, 2018). 

Perhaps owing to the intractable complexity of genomics, proteomics, and patient 

metadata in all its forms, the inescapable conclusion thus far is that tissue-of-origin 

remains the most important driver of tumor characteristics at every scale and by every 
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measure. Our observations contrast with this view, and instead support an interpretation 

of publicly available data in which all tumors manifest one of a limited number of 

metastable phenotypes resulting from disruptions in basic pathways as represented by 

our clusters. 

We attempted to account for our clusters in terms of more trivial explanations. For 

example, it could be that the clusters we identified are consistent with a signature of 

overall disease progression, such that successive, adjacent clusters on the UMAP 

projection exhibit increasing specificity. We identified no such trend in the number of 

mutations, the relative staging or metastasis; and each cluster instead was associated 

with unique combinations of pathways. 

We find that most tumors segregate into one of ten biologically distinct clusters, 

regardless of the cancer type. Some cancer types are unevenly distributed, though we 

could not identify any cancers that were exclusive to a single tumor cluster. Only cancer 

types with the fewest samples were found to be absent from one or more clusters at all. 

Somewhat surprisingly to us, this finding extends to histological subtypes of breast, 

head and neck cancers, leukemias, etc. This result implies that many, if not most, 

histological subtypes could reflect differences in cell-of-origin, rather than fundamental 

differences in proximal cause. The four major subtypes of breast cancer correspond to 

histological and molecular expression profiles that define them and how they respond to 

experimental stimuli (Prat and Perou 2010). It has been hypothesized that differences in 

the molecular regulators of development in the precursor cell types present in the breast 

epithelium drive the various histological phenotypes (Skibinski and Kuperwasser 2015; 

Zhang, Lee, and Rosen 2017). Consistent with this view we found that breast tumor 
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samples of the Luminal A subtype were heavily biased toward membership in clusters 1 

and 7, and basal tumor samples were biased toward cluster 6. However, both subtypes 

also contained samples in every other cluster (without exception), and Luminal B and 

Her2 positive samples are distributed across clusters. We interpret these data to mean 

that inherited cell-of-origin molecular profiles may predispose certain precursor cell 

types within the breast epithelium to forming tumors of one cluster or another but are 

not determinative; this view is compatible with the previously stated hypothesis but 

opens the way for a more granular view of individual tumors. It would be surprising if we 

did not observe bias for some cancers and subtypes amongst our classes, since some 

treatment regimens have greater efficacy for patients of a given cancer or histological 

subtype (Prat and Perou 2010). Nonetheless, the basis for some tumors being 

treatment-refractory in spite of receiving the standard of clinical care for diagnostic 

markers remains elusive. Doubtless some of this is due to chance events, as tumors 

can metastasize and remain dormant years before they are detected at distal sites, or 

resistant clones may have already arisen at undetectable levels (Hanahan and 

Weinberg 2011), but our analysis suggests the possibility of identifying more informative 

molecular, histological or cellular subtypes that could form a basis for future stratification 

of patients into different precision treatment regimens. 

Tissue specific manifestation of pathway-centric disruptions 

Our results illustrate how unique combinations of mutations in pan-cancer driver genes 

with tissue-specific pathway disruptions result in common categories when viewed at 

the level of the pathway knowledge-base. Top cancer driver genes ( e.g. PIK3CA and 

TP53) are found in most of the clusters, in spite of the fact that they contribute to many 
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cluster-specific pathways. This can only be explained as a result of other less common 

driver genes complementing the pathway disruption of the unique combination of driver 

genes that are disrupted in each tumor, and we speculate that many of these are 

relatively tissue-specific in terms of their sensitivity to mutation. Consistent with our 

observations, Colaprico et al. (2020) showed how tissue- and cancer-specific driver 

genes and druggable targets of pathway moduli can be discovered by machine learning 

on integrated multi-omics datasets. Marrying these approaches in future work will 

greatly enhance our understanding of tumor biology. 

Incompleteness of the pathway disruption data 

Finally, we must remark on the limitations of our work exemplified in two of the clusters, 

1 and 10, for which we did not find many distinctive associations with pathways. Cluster 

1 had a relatively low proportion of mutated pathways across the board, although it is 

broadly enriched in many of the same tumor-promoting pathways common to the other 

groups. This likely does not reflect a true difference in stages of tumor evolution, as our 

data show clearly that this cluster is as likely to contain stage IV metastatic tumors as it 

is to contain those of stage I. This cluster likely represents a group of tumors with 

aberrations in methylation, key deletions, or other structural variants. Consistent with 

this, kidney chromophobe and thyroid cancers have high proportions of structural 

variations vs. other variant types (PCAWG Consortium 2020) and are heavily skewed to 

cluster 1 membership. Likewise, cluster 10 represents a group of hyper-mutated tumors 

that harbor so many mutations that virtually no pathway is unaffected. It seems likely 

that a significant fraction of the “mutant” samples for each pathway are burdened with 

excess passenger mutations. This could be addressed with application of ever-
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increasingly sophisticated filtering of likely passenger mutations (e.g. Jaganathan et al. 

2019; Sundaram et al. 2018). In the future, we hope to incorporate these other data into 

a comprehensive pathway-centric analysis as we have done here for point mutations 

and indels. 

Estimates of survival reveal pathway-dependent differences 

By modeling CDC longevity data as a baseline risk function we showed that each of our 

pathway disruption clusters exhibit cancer-type specific effects on expected survival. 

Contrary to our initial expectation, we found that models assuming different survival 

based on cluster × cancer type fit better than models in which they are independent 

factors. However, considering that within each cancer type there are different clinical 

standards of care, and even within classes of drugs the preferred treatment can very 

between cancers, it makes sense that we observe tissue-specific cluster effects. 

Contrast the situation with ovarian vs. breast cancer, which are both hormonally driven 

cancers, for example. Ovarian cancer has but one main treatment axis, platinum, 

whereas breast cancer patients have a variety of treatment regimens based on 

molecular subtype and other factors. Standard of care for one cancer and cluster could 

produce different outcomes than the same cluster of a different cancer type. 

Unfortunately, given the diversity of drug classes and treatments (including non-

chemical treatments such as surgery and palliative care), we lack sufficient power to 

explore these variables in the TCGA data. It is our hope that future studies will help to 

distinguish between treatment-specific effects on survival given different pathway 

disruption clusters. 
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Implications for the evolution of cancer 

Our findings imply that there are separate processes in the etiology of cancer that can 

be broadly thought of as general cancer promoting, cluster-specific mutations and 

metastasis. General cancer promoting processes must include factors that relate to 

genome stability and immortality, as “enabling characteristics” of the cancer phenotype 

(Hanahan and Weinberg 2011). Such pathways are disrupted in all or most of the 

defined clusters and are frequently the result of aberrations involving common driver 

genes such as BRCA1/2, MMR genes, mitotic checkpoints, cohesion complexes, etc. 

Cluster-specific evolution must involve the acquisition of disruptions to pathways that 

may individually be harmful ( e.g. highly proliferative cells are more likely to senesce) 

but together produce more specialized cancer phenotype and increased fitness. 

Importantly, our observations do not imply the order in which these mutations should 

accumulate. This could be addressed in a future study by integrating our analysis with 

evolutionary analysis of clonality, drawing inferences from variant allele frequencies as 

in Gerstung et al. (2020). However, since many of the genes in the non-cluster-specific 

pathways involve the known driver genes, it is reasonable to hypothesize that these 

mutations promote or enable the subsequent acquisition of cluster-specific defects via 

random mutation and natural selection, thus producing the clusters we observed. In 

support of this, the pan-cancer analysis of whole genomes consortium (PCAWG) found 

that oncogenic driver mutations are highly enriched in early arising clones, whereas 

later arising clones have much greater diversity in driver mutations (Gerstung et al. 

2020). Moreover, driver genes that are known to be responsible for discrete mutation 

signatures such as APOBEC, BRCA1 and BRCA2 produce mutational hotspots 
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reflecting the varying selective pressures in different tissues (PCAWG Consortium 

2020). 

One of the drawbacks of bulk tumor whole genome sequencing data is the problem of 

tumor heterogeneity. Consortium samples are likely to contain contamination from 

support tissue, stroma, inflammatory cells, immune cells of the innate and adaptive 

immune systems, all potentially harboring cancer supporting mutations (Tripathi, Billet, 

and Bhowmick 2012). We think it will be instructive to explore these ideas in the context 

of single cell experiments. 

On metastasis as a convergence of phenotypes 

We report that pathway enrichment in metastatic tumors across all clusters (pooled) 

yielded generally lower effect sizes and larger p-values than the cluster specific 

analysis, suggesting that signal is diluted when the samples are analyzed together, and 

supporting the view that metastasis has cluster-specific requirements. Since the number 

of metastatic samples is relatively low, this part of our analysis is likely underpowered 

and subject to expanded analysis with larger cohorts. The fact that most metastatic 

enrichment is cluster-specific and has a tendency to overlap with cluster-specific 

pathways from non-metastatic tumors of neighboring clusters suggests a mechanism of 

complementarity, in which newly acquired mutations result in similar clusters converging 

on one or more deadly phenotypes that capture most of the critical features of end-

stage cancer. Thus, even at relatively low power, our analysis of metastasis further 

supports the pathway-centric approach as a fruitful way to uncover biologically 

meaningful differences between tumors against the noisy backdrop of tissue specific 
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profiles. As a major caveat to this, we acknowledge that many therapies do target 

highly-specific driver genes, markers, and signaling pathways ( e.g. TP53, EGFR or 

HER2), but understanding the broader context of the genetic background and pathway 

vulnerability of tumors containing such markers may aid in creating smarter combination 

therapies. We submit that when we discover the requirements of each cluster with 

respect to pathway disruptions and metastasis we may be able to target them 

therapeutically and prevent further adaptation. 

Materials & Methods 

All code for producing the analyses and figures herein are included in this fully 

reproducible manuscript in R markdown format. R markdown files and all other models 

are available from our repositories on the distributed version control site, GitHub. 

Selection of pathways 

To understand the molecular mechanism of cancer at a pathway level, we used 

Reactome (https://reactome.org/), a knowledge-based pathway database. The mapping 

files of ENSEMBL genes to pathways, pathway hierarchy relationships, and complexes 

to top pathways were downloaded from https://reactome.org/download-data. Using 

these data, we imposed pathway criteria to define basic cellular processes and 

biochemical pathways: (1) human-derived pathways (e.g. ‘Beta-catenin independent 

WNT signaling’ in ‘Signal Transduction’) (3) exclusion of pathways in the parent 

pathway: “Disease”, “Muscle contraction”, and “Reproduction” or pathway names that 

include any of the following keywords: “disease”, “defect”, “cancer”, “oncogenic”, 

“disorder”, “mutant”, “loss”, “infection”, “bacteria”, or “listeria”. While some of the 
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excluded pathways have been shown to play an important role in cancer, they are 

highly specialized (e.g. “PI3K/AKT Signaling in Cancer”). Additionally, for most of the 

excluded pathways, a neutral version pathway of the pathway exists (e.g. “PIP3 

activates Akt signaling”). Finally, we mapped the 18,577 Ensembl IDs from the TCGA 

dataset to the highly selected Reactome pathways. This operation produced a lookup 

table that consisted of 377 pathways mapped to 8,940 genes. 

Filtering genes 

We filtered likely erroneous mutations due to transcription coupled repair. Our approach 

was to determine the status of each gene (i.e. expressed or not expressed) in each 

tissue type in order to exclude gene mutations low expressed enes. To do this, we 

obtained the TCGA RNA sequencing data adjusted for batch effect dataset 

(https://pancanatlas.xenahubs.net). Using the data, we removed the genes and tumor 

samples that were not included in our analysis, grouped the tumor samples by tissue 

type and computed the mean expression value for each gene. A minimum threshold of 

10 transcripts per million was set for expressed genes based on an inflection point 

observed when plotting the mean expression values of genes ranked by expression in 

each tissue type. Genes that did not meet this threshold were considered not 

expressed. This operation produced a lookup table for gene expression status in each 

tumor sample for 18,127 genes. 

Class and stage-specific Enrichment Calculations 

We calculated the enrichment of pathways in one set of tumors as the relative fraction 

of tumors (with estimated uncertainty) with a mutated gene in the pathway to all tumors, 
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inclusive of the category of interest. To do this operation, we use the beta distribution to 

permute a posterior distribution on the fraction of tumors with a pathway mutated for 

each category based on the observed set, and compared this to the posterior obtained 

from the full set of tumors (all tumors) as the distribution of differences between all 

permuted samples. We considered a pathway enriched if the 95% range of credible 

differences thus obtained excludes 0 and the mean credible difference was greater than 

or equal to 30% enrichment, which excludes a large number of small differences that 

are not likely to be biologically relevant. 

Models of survival based on population-specific longevity data 

We used Bayesian inference to explore the relative impact of cancer diagnosis on 

survival at the time of diagnosis. Our model assumes that at birth each person has a 

small initial probability per unit time to die, and that this probability grows exponentially 

in time at some baseline rate that matches the observed CDC data. The rate of growth 

in risk is assumed to jump to a higher level at diagnosis, which we take as a proxy for 

onset. This represents an accelerated aging type model. To fit the model, we constrain 

the baseline risks using the available CDC life tables 

(ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/NVSR/68_07/). We also 

constrain the cancer specific multiplier using the longevity data within the cancer tumor 

dataset. Our model estimates the effect of cancer type and class-specific cancer effects 

independently, resulting in a cancer and class specific estimate of the aging rate 

multiplier. A detailed description of the CDC longevity model and likelihood is provided 

in the Supplementary methods. 
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