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Abstract: 
Alternative RNA splicing varies across brain regions, but the single-cell resolution of such regional variation 
is unknown. Here we present the first single-cell investigation of differential isoform expression (DIE) 
between brain regions, by performing single cell long-read transcriptome sequencing in the mouse 
hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 (www.isoformAtlas.com). Using 
isoform tests for brain-region specific DIE, which outperform exon-based tests, we detect hundreds of 
brain-region specific DIE events traceable to specific cell-types. Many DIE events correspond to 
functionally distinct protein isoforms, some with just a 6-nucleotide exon variant. In most instances, one 
cell type is responsible for brain-region specific DIE. Cell types indigenous to only one anatomic structure 
display distinctive DIE, where for example, the choroid plexus epithelium manifest unique transcription 
start sites. However, for some genes, multiple cell-types are responsible for DIE in bulk data, indicating 
that regional identity can, although less frequently, override cell-type specificity. We validated our 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.27.268730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.268730
http://creativecommons.org/licenses/by/4.0/


findings with spatial transcriptomics and long-read sequencing, yielding the first spatially resolved splicing 
map in the postnatal mouse brain (www.isoformAtlas.com). Our methods are highly generalizable. They 
provide a robust means of quantifying isoform expression with cell-type and spatial resolution, and reveal 
how the brain integrates molecular and cellular complexity to serve function.  
 
Introduction: 
Alternative splicing (AS) affects almost all spliced genes in mammals1,2, vastly expands the proteome3 and 
increases functional diversity of cell types4. Alternative transcription start sites (TSS) and poly-adenylation 
(polyA) sites further expand the alternative isoform landscape, regulating development, differentiation, 
and disease5–9. These RNA variables often depend on each other10–13, and how their combined status 
impacts individual molecules can only be assessed using long-read sequencing11,12,14–17, which sequences 
transcripts in single reads with no assembly required, thereby reducing alternative transcript assembly 
errors and enabling accurate isoform quantification.  
 
Brain AS is especially diverse18 and brain-region specific expression patterns of splicing factors19 and other 
RNA-binding proteins20 drive brain-region specific splicing. Examples include diseases implicated genes 
such as MAPT, Bin1, and neurexins16,17,21. Brain-region specific isoform expression can either originate 
from molecular regulation in one or multiple cell types, or can arise purely from gene-expression or cell-
type abundance differences without splicing regulation. These distinct models are especially important 
during postnatal development. For instance, in hippocampus (HIPP) and prefrontal cortex (PFC), multiple 
cell types undergo differentiation, which is influenced by development-specific splicing1,22–25 distinct from 
that of mature cell types. However, no cell-type specific isoform investigation across brain regions exists 
to-date, owing to limitations in technology, throughput, and testing methods. HIPP and PFC are highly 
specialized regions of the telencephalon, and their circuitry is heavily implicated in movement control, 
cognition, learning, and memory formation. Disorders involving HIPP and PFC manifest in cognitive 
deficits, and understanding changes occurring at crucial developmental timepoints of these structures is 
important for case-control studies. Here, we employ single-cell isoform RNA sequencing (ScISOrSeq)26  
with increased throughput in HIPP and PFC at mouse postnatal day 7 (P7) to test and define cell-type 
specific contributions to brain-region specific splicing. Furthermore, we devised a spatial isoform 
expression method, which provides a spatial exon expression map (see www.isoformAtlas.com) in 
addition to the existing spatial gene-expression map of the Allen developing brain atlas. 
 
Results: 
Short read clustering of P7 hippocampus and prefrontal cortex tissue assigns precursors to known adult 
cell-types  
Our ScISOrSeq approach used barcoded single cells followed by both short and long-read analyses to 
reveal splice variants specific to cell types (Fig 1a). We identified cell types first using single-cell 3’seq 
sequencing. Short-read clustering across two hippocampal replicates revealed no need for integration 
anchors27 to correct for batch effects (Fig S1a). Characteristic markers28,29 for 24 clusters in HIPP (Fig S1b) 
identified eight glial types, including two astrocyte, three oligodendrocyte, a radial glia like (RGLs), ciliated 
ependymal, and secretory choroid plexus epithelial (CPE) cell clusters. Furthermore, we observed six non-
glial, non-neuronal populations including vascular endothelial and microglia and macrophage myeloid 
cells (Fig 1b). RNA velocity analysis revealed neuronal lineages in various differentiation stages (Fig S1c-
d): a neuronal intermediate progenitor cell (NIPC) population; three dentate gyrus granule neuroblast 
clusters (DG-GranuleNB); and three clusters each of excitatory (EN) and inhibitory neurons (IN). Alignment 
of our P7 data with published P30 hippocampal data30 revealed subtype identities (CA3, CA1, Subiculum) 
for three excitatory neuron clusters and medial ganglionic eminence (MGE) and non-MGE derived 
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interneurons31–33 (PV+, Sst+, Lamp5+, Vip+) in one cluster (IN1), distinct from Cajal-Retzius (IN3) cells (Figs 
1b, S1e-g).  
 
Similar analysis in PFC revealed seven glial clusters including astrocytes, oligodendrocytes, six populations 
of non-glial cells including vascular endothelial cells, myeloid cells, and seven neuronal types34,35 with 
confirmation of intermediate states from RNA velocity (Fig 1c, Fig S2a-d). Alignment with public P30 cortex 
data30 further subdivided neuronal clusters into known cortical excitatory and interneuron classes (Fig 
S2e-g). In contrast to HIPP, the MGE (PV+, Sst+) and non-MGE interneurons (Vip+, Lamp5+) in the PFC 
were better separated into two clusters (IN1, IN2), while Cajal-Retzius cells again clustered separately 
(IN3). We identified excitatory neurons corresponding to different cortical layers which are not well-
differentiated at P7. P4 ISH images (Image credit: Allen Institute) alongside gene expression projected 
onto the UMAP plots further validated our cell-type identification for both regions (Fig 1d).  
 
A gene-wise test to determine differential isoform expression (DIE) 
We next conducted long-read sequencing on our single-cell full-length HIPP and PFC cDNA 
(Supplementary Table 1), and deconvolved reads for each cell type using single-cell barcodes (Fig 1a) for 
two independent replicates (Figs S3, S4). Differential exon usage between two conditions has been 
successfully assessed using a 2x2 contingency table per exon2. Using this method on our long-read data 
from HIPP and PFC yielded 31 genes (1.45%, n=2132) exhibiting differential exon usage after Benjamini-
Yekutieli (BY) correction36 for dependent tests (Fig S5a). Given this harsh correction, we devised a more 
sensitive gene-level test that considers TSS and polyA-sites in addition to exon connectivity. In this test, 
we count isoforms per gene in both conditions, leading to a nx2 table. This yields fewer and 
independent tests, allowing for the Benjamini-Hochberg (BH) correction36 and reducing false negatives. 
In each sample, we define “percent isoform” (P) as an isoform’s relative abundance among its gene’s 
transcripts. Similarly to requiring a DY>=0.1 for short reads2, we require FDR<=0.05 and DP ³ 0.1, 
contributed collectively by at most two isoforms to consider a gene exhibiting differential isoform 
expression (DIE, Fig 2a).  
 
In contrast to the 31 significant genes derived by the exon-based test, 395 genes (FDR <= 0.05, DP >= 0.1; 
9.06%; n=3958) exhibited DIE when comparing HIPP and PFC isoforms using the gene-level test (Fig 2b). 
The multiple testing correction factor influenced the significant gene number. For example, the H13 gene 
(Fig S5b) had a p-value of 1.7x10-4 (uncorrected) and 2.7x10-3 (corrected) by isoform tests, with a 
Benjamini-Hochberg correction factor of 15.6. The same gene’s alternative exon had an p-value of 1.3x10-

4 (uncorrected) and 0.057 (corrected, non-significant) by exon tests with a Bejamini-Yekutieli correction 
factor of 431.3. Thus, gene-wise isoform testing is more sensitive (Fig 2c-d). Concordantly, the maximum 
DY for genes with DIE is higher than genes without DIE (p£ 0.015, Wilcoxon-rank-sum test) (Fig 2e). 
 
Since our gene-level test considers exon connectivity, we can identify the exact isoforms contributing to 
DIE. Among the top two contributing isoforms for the 395 genes exhibiting regional DIE, we identified 76 
high-confidence novel isoforms (Methods). Manual validation using GENCODE criteria confirmed all 76. 
Functionally, 40 (52.6%) are coding transcripts, 24 (31.6%) show nonsense mediated decay (NMD), 11 
(14.5%) show intron retention, and one isoform is of a long noncoding gene (Meg3) (Fig 2f). Such non-
coding and NMD transcripts indicate region specific regulation1. To pinpoint the source of isoform 
differences in the 395 genes, we tested TSS and polyA-site abundance per gene across brain regions, which 
follow the same statistical framework as the isoform tests. 141 (of 395) genes exhibited differential TSS 
or polyA-site usage (Fig 2g). By extension, the remaining 254 genes are explained by splice-site usage 
differences.  
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Many genes with DIE have DP£ 0.5; however we also identified drastic switches (DP³0.5): Nsfl1c encodes 
the Nsfl1 cofactor p47, which regulates tubular ER formation, influences neuronal dendritic spine 
formation and dendritic arborization37,38. A 6nt microexon is preferentially included in HIPP across 
neuronal and glial cell types but is absent in the same PFC cell types (Fig 2h). The synaptic gene Nsmf, 
encoding the NMDA receptor activated protein Jacob, is involved in the cAMP pathway39,40 and through 
nuclear translocation of Jacob in memory formation39,40. In our data, the major HIPP isoform is completely 
absent in PFC, while the second HIPP isoform represents the majority of that gene’s PFC expression. The 
isoforms differ by a 69nt exon with a nuclear localization signal and one of two synaptic targeting 
elements. Hence, this exon may affect the synapse to nucleus signaling that the protein is involved in. A 
third Nsmf isoform with the 69nt exon but lacking a 6nt micro-exon is favored in PFC over HIPP but 
completely missing from neuronal cells, highlighting the regulatory role of micro-exons in neuronal 
function1,41 (Fig 2i). 
 
Differential isoform expression across brain regions is governed predominantly by one specific cell type 
Gene expression transcript similarities among clusters defined a cell-type hierarchy, first separated by 
neurons and non-neurons, and then by other cell types (Fig S6). Since inhibitory neuron types are 
transcriptionally more similar to each other than to excitatory types34,35, we grouped finer inhibitory 
neuron subtypes (IN1, IN2, IN3) into a composite inhibitory neuron (IN) category, and excitatory neuron 
subtypes into an excitatory neuron (EN) category. We hypothesized three alternative models that could 
underlie differential isoform expression between brain regions: Brain-region DIE could be contributed by 
1) multiple or all cell types that change splice variants (‘Both-Cell-Types-Model’); 2) a single cell type that 
changes splice variants (‘Single-Cell-Type-Model’); or 3) by changes in expression or cell-type abundance 
without any change in splice variants  (‘No-Cell-Type-Model’) (Fig 3a).  
 
We analyzed neuronal and non-neuronal reads separately and cross-referenced the results of the 395 
genes with DIE. 26 genes (6.6%, FDR <= 0.05) had DIE in neurons and non-neurons under the Both-Cell-
Types-Model, 151 (38.2%) in neurons only and 81 (20.5%) in non-neurons only under a Single-Cell-Type-
Model, and 137 (34.7%) that were either too low in expression for testing (Methods) in both neuronal and 
non-neuronal cells or followed the No-Cell-Type-Model (Fig 3b). To distinguish these two explanations for 
the 137 genes, we considered genes with DP³0.1 irrespective of p-values for the 395 genes. Specifically, 
we calculated the ratio of DP in a finer subtype to the DP in the composite cell type. After dividing all 
cells (composite) into neurons and non-neurons (finer level), 75% (± 2.3, SEp) of bulk DIE events were 
traced to only neurons or only non-neurons (Single-Cell-Type-Model, green) and 24.4% to both (Both-Cell-
Types-Model, light purple, Fig 3ci). A single gene followed the No-Cell-Type-Model (0.3%, dark purple). 
Similarly, when dividing neurons into excitatory and inhibitory subtypes, we found 78.8% (±2.97) for the 
Single-Cell-Type-Model, 19.58% for Both-Cell-Types-Model and 1% for No-Cell-Type-Model (Fig 3cii). 
When separating composite non-neuronal cells into glia and non-glia, and again when separating glia into 
astrocytes and oligodendrocytes, and then non-glia into vascular and myeloid cells, we observe similar 
trends. The Single-Cell-Type-Model was more prevalent than the Both-Cell-Types and No-Cell-Type 
Models (Fig 3c). These observations were replicated in replicate 2, despite differences in cell-type 
proportions between replicates (Fig S7a-c). In summary, the No-Cell-Type-Model is rare, representing 0.3-
3.28% for the different cell group divisions. Extending this observation to the 137 genes above (Fig 3b), 
one gene (0.3% of 395) likely represents the No-Cell-Type-Model whereas the other 136 can be attributed 
to low read depth.  
 
An example of the dominant Single-Cell-Type-Model is Hexosaminidase A (Hexa), which encodes a 
lysosomal enzyme subunit and is implicated in Tay-Sach’s disease, a neurodegenerative disorder lethal in 
infancy42. Previously, only one annotated isoform existed for this gene. However, PFC excitatory neurons 
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show significantly diminished inclusion of an internal exon (from 81% inclusion to 22%), thus expressing a 
novel isoform, while other cell types show no difference between HIPP and PFC. Manual validation 
classified this novel isoform as NMD, indicating brain-region and cell-type specific NMD (Fig 3d).  
 
Brain regions can override cell-type specificity for a subset of genes, possibly through 
microenvironmental influence  
Despite the prevalence of the Single-Cell-Type-Model, the Both-Cell-Types-Model is still common. To 
avoid circular reasoning, we considered all genes sufficiently expressed (Methods) in neurons and non-
neurons in both brain regions. Concurrent regional DIE differences (DP³0.1) in both neurons and non-
neurons occur more often than expected by chance (!"#$%&$'

$()$*+$'
= -..0%

23.4%
= 1.5, 𝑝 ≤ 2.2𝑒<24, Fisher’s two-

sided exact test). This trend is also conserved in excitatory and inhibitory neurons (𝑝 ≤ 2.2𝑒<24) as well 
as in non-neuronal glia and non-neuronal non-glia (Fig 3e). Two non-mutually exclusive models may 
underlie this observation – microenvironment and cell origin. Firstly, HIPP and PFC interneurons originate 
in the ganglionic eminences31,33, while excitatory neurons do not. Thus, splicing similarities between HIPP 
EN and IN that are different from PFC EN and IN might be imposed by the regional microenvironment. 
Secondly, considering neurons and glial non-neurons, their common descendance from radial glial stem 
cells may underlie cases of brain-region specific regulation that overrides cell-type specificity. 
 
Cell types endogenous to one brain region have distinct splicing signatures 
We traced the contribution of individual cell types to bulk DIE. Region-specific DIE was clearly traceable 
(
∆>?@AABCDE@
∆>FGAH

≥ 0.9) in 73.4% (n=395) of the cases, while 10.4% had 
∆>?@AABCDE@
∆>FGAH

≤ 0.9 in all cell types (Fig S7d-

e). The remaining 16.2% had low read counts in all cell types. Some genes truly have a regional component 
i.e. concurrent changes across multiple cell types (Fig S7e). The low depth and DP ratio could arise from 
cell types only present in HIPP but not PFC. Indeed, reads originating from granuleNB, RGL, ependymal, 
and CPE clusters have a higher ratio in the 26.4% of genes for which DIE was not explained (grey) than in 
the genes where DIE was explained (yellow) (Fig S7f). For example, for the Fxyd1 gene, CPE cells in HIPP 
had a different splicing signature from astrocytes in HIPP and PFC, leading to regional DIE (Fig S7g). These 
observations warrant further exploration of each cell type’s splicing signatures. 
 
Choroid plexus epithelial cells (CPEs) generate distinct isoforms predominantly through alternative TSS 
We performed DIE tests in pairwise comparisons of HIPP cell types. DIE was most frequent for neuron vs. 
non-neuron comparisons in HIPP (Fig 4a), and this was confirmed in PFC (Fig S8). High percentages were 
also seen in some comparisons between non-neuronal cell types. Interestingly, comparisons between 
non-neuronal cell types showed higher DIE than those observed within neurons (Fig 4b). Importantly, non-
neuronal comparisons involving CPEs clearly had the highest DIE fractions. CPEs are cerebrospinal fluid 
secreting ependymal cells in cerebral ventricles, and alternative splicing in CPEs relates to disease9,43 (Fig 
4c). Surprisingly, TSS choice (compared to exons and polyA-sites) largely explained the isoform regulation 
of CPE cells (Fig 4d). Furthermore, CPE-associated transcripts strongly favored an upstream TSS compared 
to the non-CPE transcripts (70/93 genes, Bernoulli p=3x10-7). This can allow for CPE-specific post-
transcriptional modifications44, translation initiation, and transcription factor control of gene expression 
(Fig 4e). 
 
Clustering on long-read data recapitulates short read cell-type assignments 
We clustered hippocampal cells using their isoform expression similarities. Compared to 3’seq clustering, 
glial, myeloid and vascular clusters were similarly defined (Fig S9a-b, 4a). Jaccard similarity index analysis 
between short-read and long-read clusters showed high concordance for broad-level classification (Fig 
S9c). Additionally, isoforms of some genes are better resolved with long reads than with than 3’-
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expression short reads, including for distinguishing neurons and non-neurons (e.g. Pkm, Clta, H3f3b), or 
mature and immature neurons (e.g. Cdc42, Srsf3, Thra, Fig S9d). However, despite striking differences in 
isoform expression within neuronal subtypes, differences between isoform-derived clusters and short-
read derived clusters remained. Long-read clustering successfully separated CA1 from CA3 neurons (i.e. 
short-read EN1 vs EN2) but did not separate all cells of the more immature IN2 cluster from mature 
granule neuroblasts i.e. GranuleNB-2 (Fig S9e-f). Such differences could be explained by cell subtype 
specificity in isoforms only, or reduced sequencing depth of isoforms.  
 
Relative isoform expression differences during development reflect dynamic changes in function 
Using Slingshot45 on a subset of hippocampal cells, we recovered the radial-glia-like (RGL) to excitatory-
neuron developmental lineage. From RGLs to NIPCs only 5.1% of tested genes showed DIE (n=73; 95% 
CI=[4.03,6.34]). However, threefold more did so from NIPCs to GranuleNB (n=359, 95% CI=[15.81,19.10]) 
and then from GranuleNB to excitatory neurons (n=423, 95% CI=[14.72,17.54]) (Fig 5a).  Gene ontology 
(GO) analysis46,47 revealed isoform changes in the splicing machinery itself in earlier steps, i.e. from RGL 
to NIPCs (for Luc7l2, Hnrnpa2b1, Snrnp70, Srsf2, Srsf5, Srsf6, Srsf7, Rbm3; Figs 5b, S10-11). However, as 
granule neuroblasts matured to excitatory neurons, DIE was additionally associated with synapse 
formation and axon elongation (Snap25, Snca, Syp, Dbn1, Cdc42, Nptn, Gap43) among others (Figs 5c-d, 
S10-11).  
 
Importantly, many exon inclusion levels are altered in the transition from dentate gyrus (DG) granuleNB 
to more mature EN in CA1 and CA3. The synaptic Calcium/Calmodulin-dependent protein kinase II Beta 
(Camk2b) has enzymatic and structural roles in neuronal plasticity48. Embryonic Camk2b exploits a 3nt 
addition to exon 11 and exon-12 exclusion, translating an Alanine instead of Valine49. The embryonic form 
(red exon-11 extension, exon-12 exclusion, Fig 5e) dominates in more immature granuleNB2 compared 
to granuleNB1. However, this isoform persists infrequently in mature neuronal types (EN1, EN2, and IN1) 
indicating cell-type specificity during developmental regulation. Moreover, the additional 3 nucleotides 
(red in exon 11) co-occur with exon 12, which has not been reported. Also, the first alternative exon (exon 
9) increases inclusion as cells differentiate. Furthermore, exon 9 coordination with exon 12 defines cell-
subtype differences between EN and IN. All three splicing events occur in the actin binding domain of the 
CaMKIIb structure and encode several confirmed phosphorylation sites50. Thus, exon coordination among 
distinct cell types could indicate cell-type specific morphological changes in the actin cytoskeleton, for 
instance in spine dynamics51 (Fig 5e).  
 
Discs Large Homolog Associated Protein (Dlgap4) encodes the post-synaptic protein SAPAP4, which is 
critical for functional neuronal network development, and Dlgap4 mutations are linked to 
neuropsychiatric disorders52. We find that neuronal cells employ two exons, whereas non-neuronal cells 
predominantly express only one exon. As cellular identity changes from DG cell types (GranuleNB, IN3) to 
mature neuronal cell-types in the CA region (EN1, EN2, EN3, IN1, IN2), exon inclusion switches from a 
single exon to both (Fig S12a-b). Similarly, in another synaptic gene, Neuroplastin (Nptn), involved in long-
term potentiation, neuroglia, vascular, myeloid, and immature DG cell types predominantly express a 
single 9nt micro-exon. Mature excitatory neurons and interneurons (EN1, EN2, EN3, IN1, IN2) conversely 
employ an upstream acceptor, adding four amino acids that code for the cytoplasmic domain, likely 
relevant for protein-protein interactions53,54 (Fig S12b). 
 
Hippocampus enriched developmental gene Fibroblast growth factor 13 (Fgf13) shows neuronal 
subtype specific TSS 
Fgf13 exhibited high DIE (DP > 0.5) across multiple neuronal cell-type and subtype comparisons. Fgf13 
reaches peak expression, specifically in HIPP, at our investigated time point (P7)55. Fgf13 is a neuronal 
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developmentally regulated gene and lethal when knocked-out56,57. It has multiple intracellular roles 
including regulation of voltage-gated sodium channels58–60, rRNA transcription61, and microtubule 
stabilization55. Of the various Fgf13 isoforms62, two isoforms with distinct TSS dominate during brain 
development55,63. We find that Fgf13 is particularly alternatively spliced between excitatory and inhibitory 
neurons (Fig 5f). The downstream-TSS isoform, Fgf13-S, is the major HIPP isoform across all excitatory 
types, and immature inhibitory types. Conversely, the upstream-TSS isoform, Fgf13-VY, is partially seen in 
DG neuroblasts and dominates in inhibitory interneuron classes. This was confirmed using Basescope 
analysis with Neurod6 staining for excitatory neurons and Gad2 staining for inhibitory neurons (Fig 5g, 
Methods). The isoforms also differ in subcellular localization: Reflecting its role in regulating protein 
synthesis61, Fgf13-S is primarily localized to the nucleolus, whereas Fgf13-VY is present throughout the 
cytoplasm, consistent with its known role in regulating voltage-gated sodium channels59 (Fig 5h).  
 
Synaptic genes associated with vesicle transport show splicing differences in developing hippocampal 
neurons 
Many synaptic genes have low expression in developing HIPP. However, when sufficiently expressed (>50 
reads), we observe splicing differences between neuronal subtypes. For example, Synaptosome 
associated protein-25 (Snap25) bridges synaptic vesicles to the plasma membrane during exocytosis64. 
Two mutually exclusive exons defined two developmentally regulated protein isoforms (Snap25-a and 
Snap25-b). Concordant with the literature64–66, we find expression of  Snap25-b at P7 and find that CA3 
excitatory neurons (EN3) have a higher proportion of Snap25-b transcripts than EN1 and EN2, which are 
localized in CA1 and subiculum. However, we see added cell-type specificity in exon inclusion as cells 
mature from granuleNBs to EN. GranuleNBs have higher abundance of Snap25-a whereas more mature 
excitatory neurons switched to Snap25-b. Interestingly, interneuron precursors and Cajal-Retzius cells 
(IN1,IN3) rely more on Snap25b than their excitatory counterparts, and thereby seem to rely more heavily 
on larger primed vesicle pools67 (Fig S13b). Alternatively, interneurons could switch from Snap25-a to 
Snap25-b before excitatory neuron development.  
 
We also observe synaptic genes with key splicing differences between neurons and non-neurons. Clathrin 
light chain A and B (Clta, Cltb) encode synaptic proteins involved in clathrin-coated vesicle endocytosis, 
and work alongside Epsin1 in cargo selection in endocytosis68. For all three genes, exon inclusion 
distinguishes neurons from non-neurons and granuleNB from more mature EN. For Clta, an additional 
exon distinguishes neuronal subtypes (Fig S14a-b). While the role of these Clta exons is unknown, the 
neuronal specific insertions in the clathrin light chain may play a role in the association with the slow 
axonal transport of clathrin69.  
 
Slide isoform sequencing (sliso-Seq) to delineate spatial localization of splicing changes 
To ground our observations in a spatial sense, we generated 10X Genomics Visium spatial transcriptomics 
data from a P8 sagittal section. Alignment with single-cell short-read HIPP data confirmed the spatial 
localization of excitatory neurons in the CA regions and subiculum (Fig 6a), and alignment with the PFC 
data confirmed the excitatory precursors in distinct cortical layers (Fig 6b). We then devised a long-read 
sequencing approach for spatial transcriptomics (Methods). To validate regional specificity of isoform 
expression using orthogonal techniques, we correlated DY values between composite HIPP and 
composite PFC single-cell data with DY values of hippocampus vs. cortex using long-read sequencing. 
Based on single-cell data, we focused on 40 exons with region-specific splicing patterns and without 
alternative acceptors/donors (Methods). Overall, we found strong concordance: for 85%, both single-cell 
and spatial HIPP vs PFC splicing differences point in the same direction (Bernoulli probability <= 3.5e-06) 
(Fig 6c). Additionally, we confirmed neurodevelopmental exon inclusion switches in Pkm and Clta, where 
the non-neuronal and developmental exons from the single-cell data were enriched in the DG and in the 
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choroid plexus of the spatial data (Fig S14, Fig 6c). For Snap25, the neurodevelopmental switch from 
Snap25-a to Snap25-b in single-cell data (compare Fig S13b), occurs in a posterior-to-anterior gradient in 
spatially mapped exons (Fig 6d). This supports the idea that the microenvironment can dictate brain-
region specific splicing for some genes. Also, the hypothesis that interneurons selectively switch isoforms 
before excitatory neurons seems unlikely. 
 
Discussion: 
Temporal and anatomic differences in alternative splicing are implicated in developmental changes in 
molecular function70. Our single-cell isoform data enable, for the first time, the illumination of alternative 
splicing regulation across cell types. We endeavored to generate cell-type, brain-region, and age-specific 
maps of AS to understand functional consequences of differential isoform expression (DIE). Our analysis 
hinges on a single-per-gene isoform test that considers a gene’s entire isoform repertoire and 
outperforms exon-based tests. Region-specific isoform testing revealed 395 genes with DIE between 
hippocampus and PFC, partially caused by isoforms novel to GENCODE. Manual validation by the 
GENCODE team using rigorous metrics lends credibility to this novel isoform detection. Thus, filtering 
these isoforms using bulk short reads, CAGE and polyA-site data provides a mechanism to automate 
genome annotation for isoforms.  
 
We defined cell types underlying DIE between brain regions. In most cases and levels of granularity, we 
identified a finer cell type explanation of DIE, including the altered part of the transcripts. Despite 
inhibitory interneurons in HIPP and PFC migrating in from a common origin31, we observe a signature of 
coordinated DIE in excitatory and inhibitory neurons for a gene subset. Such gene subsets with 
coordination across cell types were observed at all investigated levels. Microexons are linked to neuronal 
cell types for their regulatory function1,41, however, in the case of Nsfl1c we find that their expression is 
not limited to neurons but instead exhibits regional regulation by being expressed only in HIPP.  Thus, 
brain region can override cell-type specificity for a subset of genes, which may explain region-specific 
sQTLs21. The theoretical possibility that brain-region DIE in bulk arises purely from cell-type abundance or 
transcriptional activity differences is rarely observed. However, to which extent these observations persist 
in case-control studies of disease, across adult brain regions, and across species requires further studies. 
 
Our results indicate that understanding the cell-type basis of sample-specific DIE requires a thorough 
understanding of cell-type specific DIE within each sample. This further warrants a brain-wide map of 
isoform expression at a single-cell level. Within the brain, isoform diversity in non-neuronal cell types has 
attracted less attention than in their neuronal counterparts. However, we find that non-neuronal cell 
types exhibit high pairwise DIE. Choroid plexus epithelial cells show particularly high differences from 
other non-neuronal (but also neuronal) cell types. Surprisingly this observation is largely caused by CPE-
specific choices of predominantly upstream TSSs. This raises the question whether other highly specialized 
cell types in other brain areas exhibit similar complex alternative transcriptome mechanisms.  
 
We notice the sheer functional diversity that AS lends to the splicing machinery, synaptic plasticity and 
vesicle mediated endocytosis. This motivates further investigation linking a spliceosomal-gene isoform to 
the splicing of its target gene, as well as the isoform state of synaptic genes in neuronal subtypes. The 
evidence for isoforms adding to cellular diversity is further bolstered by long-read clustering, which yields 
coherent cell-types albeit with discrepancies, which could be partially due to the sparsity of the isoform 
matrix due to lower long-read throughput. Alternatively, cell states could be defined by an isoform 
expression program that doesn’t correspond to 3’seq-based cell-type definition, highlighting the need for 
factoring in isoform expression to re-define traditional transcriptional cell-types.  
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Finally, we have devised the new method of Slide-isoform sequencing (sliso-Seq), which employs spatial 
transcriptomics and long-read sequencing. This allows anchoring the above results in a spatial view of the 
brain and reveals important biology such as the brain-wide coordination of the Snap25 isoform switch. 
Looking forward, the integration of long-read single-cell and spatial technologies allows for the possibility 
of constructing 3-dimensional maps of isoform expression at single-cell resolution.  
 
In summary, these results present an unprecedented view of cell-type specific full-length isoforms across 
brain regions, bringing us closer to a comprehensive isoform map of the brain. The software generated 
here is employable in a much larger setting and available as an R-package. It extends to case-control 
studies, broad sample comparisons, and spatially anchored comparisons beyond mouse or brain. 
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Methods: 
Ethics statement 
All experiments were conducted in accordance with relevant NIH guidelines and regulations, related to 
the Care and Use of Laboratory Animals tissue. Animal procedures were performed according to protocols 
approved by the Research Animal Resource Center at Weill Cornell College of Medicine. 
 
Animals and tissue isolation 
C57BL/6NTac (n=6) female pups were quickly decapitated. For the single-cell experiments (P7; Rep1 n=1, 
Rep2 n=2), the brains were removed and placed on a stainless-steel brain matrix for mouse (coronal 
repeatable sections, 1mm spacing), and the prefrontal cortex and hippocampus were dissected71 in cold 
PBS solution (Fig S15a-f). Brain tissues from both hemispheres were pooled in one sample. After 
dissection, tissues were snap frozen in dry ice until processing. For the 10X Visium spatial experiment (P8; 
n=1) brains were fresh-frozen and embedded in OCT. For the Basescope (P7; n=2) experiments, the brains 
were transcardially perfused, immersion fixated and cryo-protected (15% and 30% Sucrose in phosphate-
buffered saline) each over night before being embedded in OCT 
 
Tissue disassociation 
Following recommendations from 10x Genomics (Cat#CG00055 Rev C) dissected hippocampus and 
prefrontal cortex tissue was placed into 2.5 ml Hibernate E/B27/GlutaMax medium (BrainBits cat#HEB) at 
Room Temp until all samples were dissected. HEB medium was removed and replaced with 2ml of 2 mg/ml 
activated papain (BrainBits cat#PAP) then incubated for 25 min at 37°C with gentle mixing. After allowing 
tissue to settle, papain was removed and replaced with 2mL fresh HEB medium and tissue was gently 
triturated 15–20 times using a wide-bore pipette tip and tissue left to settle. Supernatant was taken and 
filtered using a 30μm cell strainer (Miltenyi Biotec cat#130-041-407) into a collection tube. To the 
remaining tissue, another 2ml of fresh HEB medium was added and then triturated with a regular 1ml 
pipette tip an additional 10 – 15 times until tissue was completely disassociated. Supernatant was taken 
and filtered through a 30um cell strainer and added to the collection tube. Supernatant was then 
centrifuged at 400rcf for 2 min. The cell pellet was re-suspended in 1 – 3ml of neuronal culture medium 
NbActiv1 (BrainBits cat#Nbactiv1) depending on cell pellet size, filtered through a 30μm cell strainer 
(Miltenyi Biotec cat#130-041-407) and was subsequently diluted to 1,500 cells/μl in NbActiv1 for capture 
on the 10x Genomics Chromium controller. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.08.27.268730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.27.268730
http://creativecommons.org/licenses/by/4.0/


10x Genomics single-cell capture 
The disassociated cells were captured on the 10x Genomics Chromium controller according to the 
Chromium Single Cell 3ʹ Reagent Kits V2 User Guide (10x Genomics CG00052 Rev F) with the following 
modification. PCR cycles were increased, from the recommended ten cycles for recovery of 8,000 cells, to 
16 cycles to target a yield of cDNA enabling simultaneous Illumina and PacBio library preparation. 
 
Illumina and Pacific Biosystems library preparation 
Illumina library preparation was performed using 100 ng of amplified cDNA following the Chromium Single 
Cell 3ʹ Reagent Kits V2 User Guide (10x Genomics CG00052 Rev F) reducing final indexing PCR cycles to 
ten cycles from the recommended 14 cycles to increase library complexity. Sequencing for Replicate 1 
was performed on HiSeq4000 according to 10x Genomics run mode, for Replicate 2, sequencing was 
performed on a NovaSeq S1 flowcell also following 10x Genomics run mode and Bulk RNA-Seq was 
performed on the Illumina NextSeq 500 with a 150 PE run mode. PacBio library preparation was 
performed with 500 ng of amplified cDNA using SMRTbell Express Template Prep Kit V2.0 (PacBio cat#PN: 
100-938-900) to obtain Sequel II compatible library complex and was sequenced on a total 24 Sequel I 
SMRTcells with a run time of 10 hours and 20 Sequel II SMRTcells with a run time of 30 hours across 
samples and replicates.  
 
Modification of 10x Visium Illumina library preparation 
Illumina compatible libraries were made from Visium derived cDNA using a modified protocol derived 
from NEB Ultra II DNA FS kit (NEB #E6177). Visium derived spatial cDNA was diluted to 100ng in 26μl and 
combined with 7μl NEBNext Ultra II FS Reaction Buffer and 2μl NEBNext Ultra II FS Enzyme Mix and 
incubated at 37oC for 15min, 65oC for 30min to obtain fragmented, end-repaired and A-Tailed cDNA. 
Samples was then subjected to double-sided size selection by following the Beckman Coulter SpriSelect 
(Cat# B23318) protocol with an initial ratio of 0.6x SpriBeads. Supernatant was then taken and additional 
SpriBeads added for a final ratio of 0.8x eluting to 35μl EB Buffer. Adaptor ligation using 10x Genomics 
protocol was performed by combining 2.5μl 10x Adaptor Mix with 30μl NEBNext Ultra II Ligation Master 
Mix and 1μl of NEBNext Ligation Enhancer with the previously end-repaired cDNA and incubated at 20oC 
for 15min. Single sided SpriBead cleanup was performed using a 0.8x ratio and eluted in 15μl EB Buffer. 
Finally cDNA library was amplified by combining adaptor ligated cDNA with 5μl 10x Genomics i7 Barcoded 
primer and 5μl of 1:5 diluted 10x Genomics SI Primer and 25μl NEBNext Ultra II Q5 Master Mix and cycled 
with the following thermocyler profile: 98oC 30sec, 12 cycles of 98oC 20sec, 54oC 30sec, 72oC 30sec, then 
final extension of 65oC for 5min, 10oC hold. Amplified library was again subjected to a double-sided size 
selection using an initial ratio of 0.6x SpriBeads, supernatant was then taken and additional SpriBeads 
added for a final ratio of 0.8x eluting to 35μl EB Buffer. Illumina Libraries were then checked for quality 
and sequenced on an Illumina NextSeq500 instrument according to guidelines.  
 
Size selection of Visium cDNA using blue pippin for Oxford Nanopore 
Visium derived cDNA was size-selected using Sage Sciences Blue Pipin instrument to obtain cDNA 
fragments 800bp to 6000bp for efficient sequencing on Oxford Nanopore PromethIon Instrument. 
Samples were diluted to 1000ng in 30μl of TE buffer and combined with 10μl of Sage Loading Solution 
before loading into one lane of a 0.75% Agarose Blue Pippin Cassette (Cat# BLF7510). Samples were then 
separated according to protocol for a target range of 800bp to 6000bp, and target elution retrieved after 
12 hours. Samples were then cleaned by Beckman Coulter SpriSelect Beads (Cat# B23318) using a 0.8x 
ratio and eluted 50μl Nuclease Free Water. Size-distribution was checked using Agilent Fragment Analyzer 
Large Fragment Kit (Cat# DNF-464-0500).  
 
PromethION library preparation and sequencing of Visium cDNA 
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Oxford Nanopore compatible library was produced using 350ng of either Sage Blue Pippin size-selected 
cDNA or non-selected cDNA derived from 10x Genomics Visium following the Genomic DNA by Ligation 
protocol (SQK-LSK109) from Oxford Nanopore with the following modifications. End-Repair was carried 
out omitting NEBNext FFPE DNA Repair and incubations extended to 10min at 20oC and 10min at 65oC. 
Loading inputs on the PromethION was increased to 150fmol and sequenced for 20 hours.  
 
Total hippocampus and PFC short-read Illumina library preparation  
Illumina compatible libraries were produced from 1250ng total RNA using NEBNext Ultra II RNA Library 
Prep Kit (NEB Cat#E7770S) following manufactures protocol with the following modifications. Target 
insert size was 450 bp for compatibility with paired end 150bp sequencing mode. Number of PCR cycles 
was reduced to 6 to limit the effect of PCR aberrations on the final library. Sequencing was performed on 
the Illumina NextSeq 500 instrument. 
 
Generation of circular consensus reads 
Using the default SMRT-Link parameters, we performed circular consensus sequencing (CCS) as follows 
with the following modified parameters: maximum subread length 14,000bp, minimum subread length 
10bp and minimum number of passes 3. 
 
Primary Hippocampal Culture and Transfection 
Primary dissociated hippocampal cultures were prepared as previously described59, with minor 
modifications. Briefly, the hippocampus from P0 mouse pups was dissected on ice, digested with 0.25% 
trypsin for 30 min at 37°C with DMEM (Sigma), and dissociated into single cells by gentle trituration. The 
cells were seeded at a density of 2.5–3.0 × 105 cells per coverslip in Neurobasal-A (Sigma) supplemented 
with 10% (vol/vol) heat-inactivated FBS onto coverslips previously coated with 50 μg/mL poly-D-lysine 
(Sigma) overnight at 4°C and 25 μg/mL laminin (Sigma) for 2 h at 37°C. The cells were maintained in a 
humidified incubator in 5% CO2 at 37°C. After 24 h, the medium was replaced with Neurobasal-A 
supplemented with 2% B27 (Invitrogen), 1% FBS, 25 μM uridine, and 70 μM 5-fluorodeoxyuridine. After 6 
days of in vitro (DIV) culture, the neurons were transiently transfected with 0.2 μg of plasmid DNA per 
coverslip using calcium phosphate. One day after transfection cultured hippocampal cells were fixed for 
30 min with 4% paraformaldehyde, washed three times with PBS, and incubated for 5 min in DAPI solution. 
Imaging was performed with a Zeiss LSM 880 Laser Scanning Confocal Microscope using an oil immersion 
63× objective. All images were collected at a 2,048 × 2,048-pixel resolution. EGFP fusion constructs were 
generated as previously described59. 
 
Alignment of bulk short-read data for junction validation 
Illumina short reads for HIPP and PFC were aligned to the reference genome (mm10) using STAR using the 
following parameters: 
--outFilterMultimapNmax 1 --outFilterIntronMotifs RemoveNoncanonical --outFilterMismatchNmax 5 --
alignSJDBoverhangMin 6 --alignSJoverhangMin 6 --outFilterType BySJout --alignIntronMin 25 --
alignIntronMax 1000000 --outSAMstrandField intronMotif --outSAMunmapped Within --runThreadN 32 -
-outStd SAM --alignMatesGapMax 1000000 
 
Alignment of single-cell short read data and analysis 
The 10x cellranger pipeline (version 3.0.0) was run on the raw Illumina sequencing data to obtain single-
cell expression matrices. For replicate 1, the raw expression matrices obtained through cellranger were 
used along with the DropletUtils package72 to acquire ‘eligible’ barcoded single cells (FDR <= 0.001) with 
UMI counts that fell below cellranger’s filtering cutoff. These barcodes were incorporated into new 
matrices for importing into Seurat (v3.1). For both hippocampal replicates and the first PFC replicate, cells 
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that had unique gene counts over 5,000 or less than 700, and greater than 20% mitochondrial gene 
expression were removed from further analysis. To adjust for the lower mean reads/cell for the second 
PFC replicate, the cutoff for minimum number of genes per cell was lowered to 350. Filtering on these 
parameters yielded 14,433 single cells for the hippocampus across two replicates, and 10,944 single cells 
for the PFC. We then used Seurat’s “merge” feature73 to combine the replicates for each brain region. The 
number of UMIs, percentage of mitochondrial gene expression were regressed from each cell and then 
the gene expression matrix was log normalized and scaled to 10,000 reads per cell. Next, we clustered all 
the cells using 30 principal components (PCs) using the Louvain algorithm with a 0.6 resolution.  
 
Alignment of spatial short read data and analysis 
The 10X spaceranger pipeline was run on raw Illumina sequencing data to obtain spatial expression 
matrices. Seurat’s spatial analysis functions were used to obtain gene expression similarity clusters and 
identify barcodes corresponding to various brain regions.   
 
Integrated analysis with published data to identify cell-types 
Published RNASeq P30 mouse brain data from Allen Brain Atlas30 was used as a reference to identify cell 
identities of clusters based on shared gene expression patterns. Since the Allen institute data was 
generated using the SmartSeq2 protocol, Seurat’s integrated anchor feature27 was used to align the two 
datasets and transfer cell-type labels (Fig S1e-f, S2e-f).  
 
Integrated analysis with spatial transcriptomics data to identify cell-types 
P7 HIPP single-cell data was used as a reference to transfer labels onto P8 spatial transcriptomics data in 
the barcoded region corresponding to the hippocampus using Seurat’s integrated anchor feature27  using 
default parameters. 
 
Single-cell trajectory analysis  
The velocyto python package74 was used to obtain .loom files from both replicates of HIPP and PFC single-
cell data. After importing the UMAP co-ordinates of the datasets, the scVelo75 package and tutorial with 
default parameters were followed to acquire velocity plots (Fig S1c-d, S2c-d). The cells involved in 
neurogenesis and neuronal differentiation in the dentate gyrus and hippocampus were subsetted based 
on cell-type identity, and slingshot trajectory analysis76 was conducted on its first two principal 
components in an unsupervised manner (Fig 5a).  
 
Alignment of Pacific Biosciences long read data 
Long read CCS fastqs sequences with PacBio were mapped and aligned to the reference genome (mm10) 
using STARlong and the following parameters: 
--readFilesCommand zcat --runMode alignReads --outSAMattributes NH HI NM MD --readNameSeparator 
space --outFilterMultimapScoreRange 1 --outFilterMismatchNmax 2000 --scoreGapNoncan -20 --
scoreGapGCAG -4 --scoreGapATAC -8 --scoreDelOpen -1 --scoreDelBase -1 --scoreInsOpen -1 --
scoreInsBase -1 --alignEndsType Local --seedSearchStartLmax 50 --seedPerReadNmax 100000 --
seedPerWindowNmax 1000 --alignTranscriptsPerReadNmax 100000 --alignTranscriptsPerWindowNmax 
10000  
 
Alignment of spatial transcriptomics data sequenced using Oxford Nanopore 
Long reads sequenced on the ONT PromethION were mapped and aligned using minimap2 using the 
following parameters: -t 20 -ax splice --secondary=no 
 
Filtering of long reads for full-length, spliced, barcoded reads 
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This was done as described in our previous publication26 with added filtering in place for incomplete reads 
using published CAGE peaks and polyA site data77,78. 
 
Exon count assignment per cell-type 
High confidence mapped and aligned reads were processed sequentially and compared to the Gencode 
M21 gene annotation using an in-house script. A Gencode-annotated exon (Fig S16a) was considered as 
being included in the read if both splice junctions were detected by the alignment. Due to the high error 
rate of ONT sequencing data, a variation of 3 bp was allowed for each splice junction, whereas for PacBio 
variation allowed was 2 bp, and overlapping exons were flagged (Fig S16b). In cases where a read spanned 
an exon, but its splice junctions were not detected, the exon was considered excluded (Fig S16c). Although 
ONT reads are known to often represent truncated versions of transcripts, terminal exons were counted 
but were only considered included when covered completely. Partially covered terminal exons were 
considered neither included nor excluded, and were discarded from the analysis (Fig S16d). Further, exon 
counts were aggregated to produce exclusion and inclusion rates for each particular cell group. 
 
Differential isoform tests 
For isoform tests, a read was represented by a string denoting the TSS, introns, and polyA-site and each 
isoform was assigned an ID, with lower numbers corresponding to higher abundances. Next, counts for 
each isoform ID were assigned to individual cell-types. For each differential abundance test between two 
categories, genes were filtered out as ‘untestable’ if reads did not reach sufficient depth (25 reads/gene 
category). For genes with sufficient depth, a maximum of an 11 × 2 matrix of counts denoting 
𝑖𝑠𝑜𝑓𝑜𝑟𝑚 × 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	was constructed with the first ten rows corresponding up to the first ten isoforms, 
and the last row comprised of collapsed counts from all the other isoforms (if any). P-values from a c2 test 
were reported per gene, along with a DP value per gene. The DP was constructed as the sum of change 
in percent isoform (P) of the top two isoforms in either positive or negative direction. After these numbers 
were reported for all testable genes for a comparison, the Benjamini Hochberg (BH)79 correction for 
multiple testing with a false discovery rate of 5% was applied to return a corrected p-value. If this FDR p-
value was <= 0.05 and the DP was more than 0.1, i.e. the change in percent inclusion of one or two 
isoforms was more than 10% between the two categories, then the gene was considered to be 
significantly differentially spliced. 
 
Differential TSS tests 
For each read, we determined the TSS as described above. The counts of each TSS in two conditions (e.g. 
excitatory and inhibitory neurons) were then summarized in a 𝑛 × 2 table of counts. As with the isoform 
tests, this table was reduced to a 11 × 2 table where the first ten rows represented the most abundant 
TSS and the 11th represented all the other TSS. Testing was performed as described above for isoforms.  
 
Differential polyA-site test 
For each read, we determined the polyA-site as described above. The procedure for testing was the same 
as described above for differential TSS. 
 
Differential exon tests 
Testing for differential exon inclusion followed a separate framework. For testing differential inclusion 
between two categories, a 2 × 2 table of inclusion and exclusion counts per exon was constructed if it 
was not constitutively spliced (0.1 <= Y <= 0.9) without considering counts in individual categories. An 
exon was considered for testing if the expected counts followed the criteria80,81  
Z[\	(%!^_`a#)×Z[\	(*!c_`a#)

d!+ec
≥ 5 , and the p-value from a c2 test was reported, along with a DY value. The 
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DY was constructed as the difference in percent spliced in (PSI/Y) across the two categories. After these 
numbers were reported for all testable exons for a comparison, since these tests are dependent, the 
Benjamini Yekutieli (BY)36 correction for multiple testing with a false discovery rate of 5% was applied to 
return a corrected p-value. If this p-value was <= 0.05 and the DY  was more than 0.1 i.e. the change in Y 
was more than 10% between the two categories, then the exon is considered to be significantly 
differentially included. 
 
Isolating non-overlapping exons from single-cell data for correlation with spatial ONT data 
To confirm region-specific DIE in a technologically orthogonal fashion, we used spatial data sequenced 
with Oxford Nanopore as opposed to single-cell data sequenced with PacBio. Because of the relatively 
high error rate, truncated transcripts (~200 bp difference in average length of ONT vs PacBio), and mis-
mapping of overlapping splice sites, we chose to work with exons instead of full-length transcripts. We 
isolated exons from the single-cell PacBio data that showed region-specific DIE without p-value correction 
and extracted corresponding exons from the spatial data if they satisfied the following condition. If an 
exon was reported to have alternative donor and acceptor sites, it was only accepted if more than 90% of 
reads overlapping the exon mapped to that particular exon. We then used this list of exons to calculate 
region-specific DIE using spatial exon expression and correlated the DY values with the DY values from 
the single-cell data. Despite high technical variation, we got high concordance (85% change in the same 
direction, n=40) 
 
Building an enhanced annotation 
We isolated polyadenylated, barcoded and spliced long-reads, 

• whose TSS were within 50bps of a published CAGE-peak77 
• whose mapped read-end fell within 50bps of a published polyA-site78 
• whose intron-chains were inconsistent with any annotated transcript or any truncated version of 

an annotated transcript82,83  
• whose internal exons (meaning both splice sites) were each supported by two or more single short 

reads (with >=2 splicing events) or paired-end Illumina read pairs from a bulk-sequencing 
experiment 

• whose introns were each supported by two or more spliced Illumina reads from a bulk sequencing 
experiment 

• who could not be interpreted as a truncated version of another such novel isoform 
 
This resulted in an enhanced annotation, in which all added isoforms had a unique, previously absent 
intron-chain. 
 
These isoforms as well as already annotated isoforms received read counts in each cell types according to 
the single-cell long-read dataset in each brain region. Novel isoforms intron-chains are by construction 
(see above) unique; however, annotated isoforms can differ only in their TSS or polyA-site. A long-read 
was therefore assigned to a GENCODE transcript that minimized the sum of abs(readEndMapping – 
annotatedIsoformEnd) and abs(readStartMapping – annotatedIsoformStart). In the case of a tie, only the 
divergence at the TSS was considered.  
 
This annotation thus includes counts for thousands of isoforms in different cell types, such as 
“P7Hipp_OPCs” (representing oligodendrocyte precursor cells from a hippocampus at postnatal day 7) 
and “P7PFC_OPCs” (representing oligodendrocyte precursor cells from a pre-frontal cortex at postnatal 
day 7)     
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Manual validation from the GENCODE team 
Novel isoforms were manually verified and integrated into the GENCODE geneset84 in accordance with 
guidelines developed by the HAVANA group for the GENCODE / ENCODE projects85. Novel introns not 
previously identified within the GENCODE geneset were independently confirmed by intron predictions 
taken from the Ensembl RNAseq pipeline using ENCODE data86,87, whilst novel transcription start sites 
were validated based on the Cap Analysis of Gene Expression (CAGE) libraries generated by FANTOM5. 
Finally, each new transcript model was assigned a ‘biotype’ indicative of its presumed functional 
categorization, with the biotypes matching to those used in GENCODE as described by Frankish et al 
(2019)84. 
 
Validation of cell-type specific splicing using Basecope Duplex Detection Assay 
Target transcriptomic regions for individual isoforms were isolated from the DIE analysis and probes 
were designed by Advanced Cell Diagnostics (ACD). Postnatal day 7 mice were transcardially perfused, 
and 12µm brain sections were processed according to the manufacturers recommendation for 
BaseScope Duplex Detection Assay (Protocol number 323800-USM, Advanced Cell Diagnostics, ACD) 
with a pre-treatment according to the protocol for fixed, frozen tissue (Protocol number 320534, 
Advanced Cell Diagnostics, ACD) with only 15 min of Protease Plus incubation. Images were taken using 
a Leica DM5500 B with a Leica DFC295 camera. 
 
Data and code availability 
The source code for the methods and visualizations are available as functions in an R-package 
(https://github.com/noush-joglekar/scisorseqr) and processed single-cell and spatial data is available for 
download at www.isoformAtlas.com 
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Figure 1 - Short read clustering of P7 hippocampus and prefrontal cortex tissue recovers precursors to known 
adult cell-types
a. Schematic of the ScISOrSeq workflow (created with BioRender.com) b. UMAP of P7 hippocampus (HIPP) data. 
Cell-types identified by marker genes, RNA velocity analysis, and alignment to published data shown in S1 c. UMAP of 
P7 prefrontal cortex (PFC) data. Cell-types identified by marker genes, RNA velocity analysis, and alignment to pub-
lished data shown in S2 d. In situ hybridization (ISH) images from Allen developing mouse brain atlas for marker genes 
and corresponding projections on UMAP plots from HIPP and PFC.
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Figure 5 
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Figure 5 - Relative isoform expression differences during development reflect dynamic changes in 
function 
a. Splicing changes seen at every transition step of neuronal differentiation trajectory. Pie chart indicates the 
number of isoforms needed to be considered in order to reach the |∆π| ≥ 0.1 threshold for a gene to be consid-
ered significantly DIE b. Treemap of condensed gene ontology (GO) terms for the transition from RGL to 
NIPCs in the neuronal differentiation trajectory, with size of boxes corresponding to number of significant terms 
associated with the GO category c. Treemap of condensed GO terms for the transition from NIPCs to Granu-
leNB (GNB1, GNB2, GNB3) d. Treemap of condensed GO terms for the transition from NIPCs to Excitatory 
Neurons (EN1, EN2, EN3) e. Hippocampal cell-type specific isoform expression in Camk2b gene. Each hori-
zontal line in the plot represents a single transcript colored according to the cell-type it is represented in. 
Orange exons represent alternative inclusion, red extension of exon 11 represents a 3nt addition f. π value of 
the S and VY isoforms for Fgf13 gene across hippocampal neuronal cell types g. Basescope images of 
Fgf13-S and Fgf13-VY isoform expression in the hippocampus (pink stain), with simultaneous staining for 
excitatory neurons (Neurod6) and inhibitory neurons (Gad2). Zoomed in versions of the dentate gyrus for the 
S isoform, and CA1 region for the VY isoform. h. Subcellular localization of overexpressed Fgf13-S isoform in 
nucleolus and Fgf13-VY isoform in cytoplasm.
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