

1

SUPPLEMENTARY MATERIALS

PREPARATION OF SYNTHETIC TEST DATA SETS

In order to evaluate the ability of HaROLD to reconstruct haplotypes and the relative haplotype
frequencies, we created synthetic data sets consisting of mixtures of whole genome norovirus
sequences from GenBank (Benson, et al. 2013), with multiple mixtures representing longitudinal
sampling. The various synthetic sets are summarised in Table 1, involving various combinations of
KC175323, KC631827, KJ196279, KJ196283 and MH218631.

SimSeq (Benidt and Nettleton 2015) was used to create 1,000,000 paired end reads of length 250 for
each GenBank sequence listed in Table 1 and Table 2. The output SAM files from SimSeq were then
converted into Fastq files using Picard version 2.21.1 ‘SamToFastq’ (Institute 2019). In order to
construct the data sets, Seqtk (Shen, et al. 2016) was used to subsample and mix the reads from each
ensemble according to the relative fractions listed in Tables 1 and 2. Reads were then trimmed for
adapters using Trim galore version 0.6.0 (Bioinformatics 2019). Duplicate reads were removed using
Picard version 2.21.1 ‘MarkDuplicates’ (Institute 2019). Reads were mapped to a norovirus GII.Pe-GII.4
Sydney 2012 reference strain JX459907 using BWA version 0.7.17 (Li and Durbin 2009). The
Makereadcount.jar (https://github.com/ucl-pathgenomics/HaROLD/tree/master/jar) was used to
obtain the strand specific nucleotide counts from BAM files. These strand count files were used as the
input for HaROLD.

We also created synthetic data sets consisting of mixtures of whole genome human cytomegalovirus
(HCMV) sequences from GenBank, with the same method and in the same format as the norovirus
data sets. The various data sets are summarised in Table 2, involving various combinations of
KP745652.1, KP745644.1, KU221098.1, KP745670.1, KJ361953.1 and KT726952.2. We simulated
100,000 paired end reads with the same approach used for norovirus and mapped to reference strain
Merlin (NC_006273.2), resulting in 80-90x average coverage and >99% of the genome covered.

DETAILS OF THE METHOD

The haplotype analysis looks at matching a statistical model to longitudinal data of the form !𝑛!,#,$,%#
representing the number of reads with base 𝑏 on strand 𝑠 at position 𝑙 derived from the sample
acquired at timepoint 𝑡. We consider that the reads come from a set of haplotypes where
!𝑥&,', 𝑥&,(, 𝑥&,)…𝑥&,*# is the sequence of length 𝑀 of haplotype 𝑗. At time point 𝑡, we represent the
frequencies of the 𝑘 different haplotypes by !Π',% , Π(,% , Π),% …Π+,%# which obey ∑ Π&,%& = 1. Multiple
haplotypes might share the same base at a given location; the frequencies of base 𝑏 at site 𝑙 at
timepoint 𝑡 is equal to the sum of the frequencies of all haplotypes that have that base at that site
and is equal for the two strands: 𝜋!,#,$,% = ∑ Π&,%&	∀	.!,#/! .

Computing likelihoods
We consider that, for a site with an error rate of 𝜖 there is a probability 1 − 3𝜖 of observing the true
base and a probability 𝜖 of observing one of the three other bases. If we know 𝜋!,#,$,%, then the
probability 𝑃#,$,%(𝑏0) of a read at that time, strand and position being observed as a base 𝑏0 is given by

𝑃#,$,%(𝑏0) = 𝜋!$,#,$,%(1 − 3	𝜖) + 𝜖 ; 𝜋!!,#,$,%

!!1!$

= 𝜋!$,#,$,% + <1 − 4	𝜋!$,#,$,%>	𝜖 (1)

2

where we have used the fact that ∑ 𝜋!,#,$,%! = 1. The probability of observing !𝑛!,#,$,%##,$,% , the reads
for a specified strand, site, and time, is then given by the multinomial distribution

𝑃 ?!𝑛!,#,$,%##,$,%|!𝜋!,$,%#, 𝜖A =

𝑛#,$,%!
∏ 𝑛!$,#,$,%!!$

	D<𝜋!$,#,$,% + <1 − 4	𝜋!$,#,$,%>	𝜖	>
2%$,&,#,'

!$

 (2)

We do not know the values of 𝜖, and cannot assume that these probabilities are the same for all
strands, bases, and time points or bases. Rather, we describe a distribution of probabilities of the
bases where Equation (2) is satisfied on average. We do this by constructing a Dirichlet distribution
Dir34%,&,#,'5<!𝑃#,$,%(𝑏0)#> where 𝛼!$,#,$,% = 𝛼6	𝜋!$,$,% + 𝛼7. For such a Dirichlet distribution, the average
probability of observing a given base 〈𝑃#,$,%(𝑏0)〉 is given by

〈𝑃#,$,%(𝑏0)〉 =

𝛼6	𝜋!$,$,% + 𝛼7
𝛼6 + 4𝛼7

= 𝜋!$,$,% + <1 − 4	𝜋!$,$,%> K
𝛼7

𝛼6 + 4𝛼7
L (3)

which mirrors Equation Error! Reference source not found. when 𝜖 = 4(

4)894(
.

The advantage of this approach is that we are not specifying an error rate but allowing the error rate
to vary by an amount determined by the parameters in the Dirichlet distribution, 𝛼6 and 𝛼7. We are
assuming that the distribution is symmetric with respect to the various bases, but the rates for specific
errors need not be the same. We now have a distribution of !𝑃#,$,%(𝑏0)# rather than specific values, so
in order to calculate the likelihood of the observed data on that strand at that position and time, we
need to integrate over this distribution

 Λ?!𝑛!,#,$,%##,$,%|!𝑥:NNN⃗ #$, !Π&,%#, 𝛼6, 𝛼7A

=
𝑛𝑠,𝑙,𝑡!

∏ 𝑛𝑏𝑖,𝑠,𝑙,𝑡!𝑏𝑖
	#$%𝑃𝑠,𝑙,𝑡(𝑏𝑖)(

𝑛𝑏𝑖,𝑠,𝑙,𝑡

𝑏𝑖

Dir!𝛼𝑏,𝑠,𝑙,𝑡")*𝑃𝑠,𝑙,𝑡(𝑏𝑖)+, 	𝑑)*𝑃𝑠,𝑙,𝑡(𝑏𝑖)+,
(4)

where the integral is over the entire range of the Dirichlet distribution, which is all values of !𝑃#,$,%(𝑏0)#
such that ∑ 𝑃#,$,%(𝑏0)0 = 1, and we have explicitly considered that the calculations of 𝜋!$,$,%, and thus
𝑃#,$,%(𝑏0), rely on !𝑥:NNN⃗ #$, the haplotype sequences !𝑥:NNN⃗ #$at position 𝑙 , as well as the haplotype
frequencies and the parameters 𝛼6 and 𝛼7. Taking advantage of the properties of the Dirichlet
distribution, this integral is quite easy, resulting in

Λ ?!𝑛!,#,$,%##,$,%|!𝑥:NNN⃗ #$, !𝛱&,%#, 𝛼6, 𝛼7A =

𝑛#,$,%!
∏ 𝑛!$,#,$,%!!$

	
B<!𝛼6	𝜋!$,$,% + 𝛼7 + 𝑛!$,#,$,%#>

B<!𝛼6	𝜋!$,$,% + 𝛼7#>
 (5)

where B({𝜃0}) is the multivariate beta function defined as B({𝜃0}) ≡

B(D/)B(D0)…B(D1)
B(D/8D08⋯8D1)

.

Distributing bases amongst haplotypes

The calculation of 𝜋!,#,$,% = ∑ Π&,%&	∀	.!,#/! relies on knowing the haplotype sequences
!𝑥&,', 𝑥&,(, 𝑥&,)…𝑥&,*#. As this information is unavailable a priori, we calculate the likelihood for all 𝑘*

3

possible ways of assigning 𝑘 bases to 𝑀 haplotypes, where 𝑘 is the number of unique bases observed
at that position. The haplotype sequence is assumed to be the same for both strands and all time
points; therefore, the sum over possible haplotype sequences is outside the sum over strands and
time points, but we can consider each site separately.

Λ	<!𝑛!,#,$,%#> =D;

1
4*

3.2HHHH⃗ 5#
$

DΛ?!𝑛!,#,$,%##,$,%|!𝑥:NNN⃗ #$, !Π&,%#, 𝛼6, 𝛼7A
#,%

 (6)

where the sum is over all possible distributions of bases amongst haplotypes at position 𝑙.

We first maximise this expression by adjusting the values of !Π&,%#, 𝛼6, and 𝛼7, noting that !Π&,%# is the
same for all locations at each time point. By considering which assignments of bases to haplotypes
contribute the most to the likelihood, we are able to calculate posterior probabilities of the
arrangement of bases at each position in the sequence, allowing us to calculate the posterior
probability of each base at each position on each haplotype.

Refining the haplotypes

The method described above takes advantage of the presence of the same haplotype in multiple
samples at various frequencies. It assumes that these haplotypes are identical in the various samples,
neglecting processes such as mutations and recombination events. It also ignores the information that
forms the basis of most haplotype reconstruction methods, the presence of multiple variants on the
same read. The next step is to relax these assumptions and use the co-variation to refine the
haplotypes.

For this next stage, each sample is analysed individually. A flowchart of the refinement process is
shown in Supplementary Figure 1. We start with the estimated frequencies of each haplotype 𝑗 in this
sample, !Π&#, and a posteriori probability of each base 𝑏0 at each site l in each haplotype, 𝜋&,$(𝑏0), as
output from the previous program. The haplotypes are then optimised by assigning the reads,
probabilistically, to the various haplotypes. The number of reads assigned to each haplotype is used
to adjust the frequencies of each haplotype. The reads are then re-assigned until the haplotype
frequencies have converged. The resulting assigned reads are then used to update 𝜋&,$(𝑏0) based on
the bases found in each site in all of the reads assigned to each haplotype. This process of updating
!Π&# and 𝜋&,$(𝑏0) is performed until convergence.

The next step, if requested by the user, is to consider an adjustable number of possible recombination
of the haplotypes. These recombination events involve a) picking two haplotypes at random, b) picking
a region of the alignment, of length chosen from a Normal distribution with standard deviation of 10
sites, and then c) either swapping the values of 𝜋&,$(𝑏0) in this region between the two haplotypes
(50% probability) or over-writing the values in one haplotype with the values from the other (25%
probability for each direction.) Following such a step, the haplotype frequencies and base probabilities
are then re-optimised as described above, and the recombination event is either accepted or rejected
based on whether the penalised log likelihood, that is, the log likelihood minus the number of
adjustable parameters defining the haplotypes, is increased or decreased.

If requested by the user, the program then implements an iterative process of refinement. At the start
of each iteration, if requested, pairs of haplotypes are chosen and merged, with the frequencies of
the resulting haplotype equal to the sum of that of the parents, and the base frequencies equal to the
average of the two parents. This results in a reduction in the number of haplotypes by one. The

4

haplotypes are then re-optimised. This process is repeated for every pair of haplotypes. The merge
that most increases the penalised log likelihood is recorded.
Next, if requested, a haplotype is chosen and split into two haplotypes, increasing the total number
of haplotypes by one. The resulting set of haplotypes is then re-optimised. This is repeated for every
original haplotype. The split that results in the largest increase in penalised log likelihood is recorded.
Finally, if requested, the recombination process described above is performed. Again, the
recombination event that results in the largest increase in penalised log likelihood is recorded.
Following these attempted modifications of the haplotypes, the modification – merge, split, or
recombination – that most increases the penalised log likelihood is compared with the penalised log
likelihood at the beginning of the iteration. If this results in a net increase in the penalised log
likelihood, this modification is accepted, and becomes the starting position for the next iteration. This
iterative process is then repeated until convergence.

Supplementary Figure 1. Flowchart of refinement process. (A) Overall process. (B) Subprocess for
haplotype optimisation. (C) Subprocess for considering recombination, merging and splitting; merging
decreases the number of haplotypes by one, whilst splitting increases this number by one. Support for
these three operations is evaluated by considering the Akaike Information Criterion (AIC). Following
optimisation; the number of adjustable parameters is estimated by the number of haplotypes times the
number of different bases found at each site minus one, summed over all sites.

Most improved set

equal to current set

Replace most improved

with new optimised set

Penalised log

likelihood new

maximum?

Recombine: Sufficient

attempts made?

Merge: All pairs

considered?

Split: All haplotypes

considered?

Optimise new

haplotype set (B)

N Y

Recombine,

Merge, or

Split?
Recombine

Merge

Merge pair of

haplotypes

(#haplotypes--)

Split haplotype in two

(# haplotypes++)

Recombine pair of

haplotypes

Split

Return most

improved set

N

Y

(Probabilistically)

assign reads to

haplotypes and

update haplotype

frequencies

Converged?

Update P(base)

Converged?

Hopeless?

Start with current

haplotype frequencies

and P(base) for each

site in each haplotype

Return optimised

haplotypes

N

Y

N

Y

Start with haplotypes

generated by HaROLD

Optimise

haplotypes (B)

Consider splits?

Consider

merges?

Consider

recombinations?

Improve haplotypes

with recombination (C)

Improve haplotypes

with merging (C)

Improve haplotypes

with splitting (C)

Iterate?

Converged?

Consider

recombinations?

Improve haplotypes

with recombination (C)

Return Refined

haplotypes

N

Y

N

Y N

Y

N Y

N

Y

N Y

A B C

5

REFERENCES
Benidt S, Nettleton D. 2015. SimSeq: a nonparametric approach to simulation of RNA-
sequence datasets. Bioinformatics 31:2131-2140.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013.
GenBank. Nucleic Acids Res 41:D36-42.
TrimGalore [Internet]. GitHub Respository
https://github.com/FelixKrueger/TrimGalore2019. Available from:
https://github.com/FelixKrueger/TrimGalore
Picard ToolKit [Internet]. GitHub Repository http://broadinstitute.github.io/picard/2019.
Available from: http://broadinstitute.github.io/picard/
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25:1754-1760.
Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q
File Manipulation. PLoS One 11:e0163962.

