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Summary 26 

 27 

Instinctive defensive behaviours, consisting of stereotyped sequences of movements and 28 

postures, are an essential component of the mouse behavioural repertoire. Since defensive 29 

behaviours can be reliably triggered by threatening sensory stimuli, the selection of the most 30 

appropriate action depends on the stimulus property. However, since the mouse has a wide 31 

repertoire of motor actions, it is not clear which set of movements and postures represent 32 

the relevant action. So far this has been empirically identified as a change in locomotion state. 33 

However, the extent to which locomotion alone captures the diversity of defensive 34 

behaviours and their sensory specificity is unknown. 35 

To tackle this problem we developed a method to obtain a faithful 3D reconstruction of the 36 

mouse body that enabled to quantify a wide variety of motor actions. This higher dimensional 37 

description revealed that defensive behaviours are more stimulus-specific than indicated by 38 

locomotion data. Thus, responses to distinct stimuli that were equivalent in terms of 39 

locomotion (e.g. freezing induced by looming and sound) could be discriminated along other 40 

dimensions. The enhanced stimulus-specificity was explained by a surprising diversity. A 41 

clustering analysis revealed that distinct combinations of movements and postures, giving rise 42 

to at least 7 different behaviours, were required to account for stimulus-specificity. 43 

Moreover, each stimulus evoked more than one behaviour revealing a robust one-to-many 44 

mapping between sensations and behaviours that was not apparent from locomotion data. 45 

Our results indicate that diversity and sensory specificity of mouse defensive behaviours 46 

unfold in a higher dimensional space spanning multiple motor actions. 47 

 48 

Keywords: defensive behaviours, 3D reconstruction, Statistical Shape Models, 49 

computational ethology, behavioural clustering, stimulus decoding, information theory, 50 

Variable-order Markov Chains, freezing, looming  51 

 52 
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Introduction  54 

 55 

Mice are innately able to respond to changes in their sensory landscape by producing 56 

sequences of actions aimed at maximizing their welfare and chances for survival. Such 57 

spontaneous behaviors as exploration [1, 2], hunting [3, 4], and escape and freeze [5-8], while 58 

heterogeneous, share the key property that they can be reproducibly elicited in the lab by 59 

controlled sensory stimulation. The ability of sensory stimuli to evoke a reproducible 60 

behavioural response in these paradigms makes them an important experimental tool to 61 

understand how inputs are encoded and interpreted in the brain, and appropriate actions 62 

selected [5, 8-10].  63 

Realizing the full power of this approach, however, relies upon a description of evoked 64 

behaviors that is sufficiently complete to encompass the full complexity of the motor 65 

responses and to capture the relevant variations across different stimuli or repeated 66 

presentations of the same stimulus.  Instinctive defensive behaviours, such as escape or 67 

freeze have been defined on the basis of a clear phenotype – a sudden change in locomotion 68 

state. Thus in the last few years it has been shown that speed, size, luminance and contrast 69 

of a looming object have different and predictable effects on locomotion [5-8]. Nevertheless, 70 

mice do more than run, and a variety of other body movements as well as changes in body 71 

orientation and posture could, at least in principle, contribute to defensive behaviours. In line 72 

with this possibility a wider set of defensive behaviours including startle reactions and 73 

defensive postures in rearing positions have been qualitatively described in rats [11, 12]. 74 

However, until now, a lack of tools to objectively measure types of movement other than 75 

locomotion has left that possibility unexplored.  76 

We set out here to ask whether a richer quantification of mouse defensive behaviours was 77 

possible and, if so, whether this could provide additional information about the relationship 78 

between sensation and actions. To this end we developed a method that enables to obtain a 79 

3D reconstruction of mouse poses. We then used this method to generate a higher 80 

dimensional representation of mouse defensive behaviours which enabled to quantify a wide 81 

range of body movements and postures. 82 

We found that defensive responses to simple visual and auditory stimuli encompass 83 

numerous motor actions and accounting for all those actions provides a richer description of 84 

behaviour by increasing the dimensionality of behavioural representation. This increase 85 

provides an improved understanding of defensive behaviours in several respects. First, 86 

behavioural responses are more specific to distinct stimuli than is apparent simply by 87 

measuring locomotion. Second, higher specificity can be explained by the appearance of a 88 

richer repertoire of behaviours, with equivalent locomotor responses found to differ in other 89 

behavioural dimensions. Third, each class of sensory stimuli can evoke more than one type of 90 

behaviour, revealing a robust ‘one-to-many’ map between stimulus and response that is not 91 

apparent from locomotion measurements.   92 
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Results  93 

 94 

A method for quantifying multiple motor actions  95 

 96 

The first aim of this study was to develop a method that enables to obtain a 3D reconstruction 97 

of mouse poses. Five different landmarks on the mouse body (nose tip, left & right ears, neck 98 

base and tail base, Fig. 1A) were tracked using four cameras mounted at the top of an open 99 

field arena that we used throughput the study (Fig. S1A&B). The 3D pose of the animal was 100 

first reconstructed by triangulation of landmark coordinates across the four camera views 101 

(Fig. 1B, Raw; see STAR Methods section Reconstruction of 3D poses and Fig. S1C-F for 102 

details). This initial reconstruction was then refined by using a method we established for this 103 

study (Fig. 1B, Refined; see STAR Methods section Reconstruction of 3D poses, Fig. S2 and 104 

Supplementary Movie 1 for details). These pre-processing stages allowed us to describe, on 105 

a frame-by-frame basis, the mouse pose 𝑿 as 106 

 107 

𝑿(𝑡) = (�̅�  + ∑ 𝑷𝒊𝑏𝒊(𝑡)

𝑁𝑒𝑖𝑔𝑒𝑛𝑝𝑜𝑠𝑒𝑠

𝑖=1

) 𝑹(𝑡) + 𝑻(𝑡) 

        (1) 

 108 

Where: t represents the time of the current frame; 𝑿 the coordinates of the body landmarks; 109 

�̅� the body coordinates of the mean pose; 𝑷𝑖 the mouse eigenposes; 𝑏𝒊 the shape parameters 110 

allowing to keep track of the changes in the body shape (Fig. 1C, Body Shape); 𝑹 and 𝑻 the 111 

rigid transformations (rotation and translation) encoding the animal’s position in the 112 

behavioural arena (Fig. 1C, Body Position). Both �̅� and 𝑷𝑖 were obtained by training a 113 

Statistical Shape Model (SSM, equation 2 in STAR Methods section Reconstruction of 3D 114 

poses) on a separate dataset of mouse poses. Those poses were first aligned and a principal 115 

component analysis was performed to identify the eigenposes 𝑷𝑖, i.e. the directions of largest 116 

variance with respect to �̅�. Applying the SSM enabled to correct for outliers in the initial 3D 117 

reconstruction and to reduce high dimensional noise while preserving meaningful changes in 118 

body shape (see STAR Methods section Validation of the 3D reconstruction and Fig. S2 for 119 

details). The first two eigenposes captured respectively body elongation and bending (Fig. 1C, 120 

Body Shape), two important descriptors of the mouse posture that explained respectively 121 

43% and 31% of the variance associated with changes in body shape (see STAR Methods 122 

section Interpretation of the eigenposes, Fig. S3 and Supplementary Movie 2 for details).    123 

Based on this analytical description of the mouse pose we developed two sets of measures to 124 

quantify distinct postures and movements. The first set of measures, rearing, body elongation 125 

and body bending, allowed us to capture different aspects of the mouse posture (Fig. 1D, 126 

Postural Measures). The second set, constituted by locomotion, freezing, rigid body rotation 127 

and changes in rearing, body elongation and body bending allowed us to capture different 128 

types of body movements (Fig. 1D, Movement Measures). For all the analyses the measures 129 

in Fig. 1D were normalized and ranged in the interval [0,1] (see STAR Methods section 130 

Normalization of  the behavioural measures for details). These automatic measures were 131 

consistent with the human-based identification of walking, body turning, freezing and rearing 132 

obtained from manual annotation of the behavioural movies (see STAR Methods section 133 

Validation of postural and movement measures and Fig. S4 for details).  134 

  135 
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Measuring multiple motor actions provides a higher dimensional representation of 136 

behaviour  137 

 138 

We set out to investigate the extent to which our measures of postures and movements were 139 

involved in defensive behaviours. The animals were tested in an open field arena in which no 140 

shelter was provided. In order to capture a wide range of behavioural responses we used 141 

three different classes of sensory stimuli: two visual, one auditory. Among visual stimuli we 142 

selected a bright flash and a looming object. We have previously shown that these two stimuli 143 

evoke distinct and opposite behavioural responses, with the former inducing an increase in 144 

locomotor activity while the latter abolishes locomotion by inducing freezing behaviour [7]. 145 

The auditory stimulus was also previously shown to induce defensive responses such as freeze 146 

or startle [6, 13] (see STAR Methods sections Behavioural experiments, Visual and auditory 147 

stimuli and Experimental set-up for details on sensory stimuli and experiments). 148 

We separately averaged all trials according to stimulus class and we found that all our 149 

measures were involved in defensive behaviours (Fig. 2A). To estimate responses divergence 150 

(RD) across stimuli we calculated the pairwise Euclidean distance between average responses 151 

and we normalized this distance with that obtained by randomizing the association between 152 

stimuli and responses (Fig. 2A, insets; see STAR Methods section Response Divergence for 153 

details). Across most measures (except rearing for loom and body bend for sound, see Fig. 154 

2A, insets) the average response to the flash clearly diverged from those elicited by other 155 

stimuli (RD = 6.28±2.40SD, p<0.001 for n = 16 pairwise comparisons, shuffle test). Average 156 

responses to looming and sound were all significant but less divergent (Fig. 2A, insets; RD = 157 

2.52±1.21SD, p<0.001 for n = 9 pairwise comparisons, shuffle test).  158 

 159 

To determine whether the inclusion of all our measures of movements and postures, 160 

hereafter the ‘full set’, increased the dimensionality of our behavioural description, we 161 

performed a Principal Component Analysis (PCA) on the response matrix. For locomotion, 162 

each row of the response matrix represented a trial (n=516 trials) and each trial contained 30 163 

dimensions associated with the 0-2s epoch of the locomotion time series (sample rate = 15 164 

frames/s). For the full set, each trial contained 270 dimensions (30 time points x 9 measures). 165 

This analysis revealed that, for the full set, 34 principal components were required to explain 166 

>80% variance, while 5 dimensions were sufficient for locomotion alone (Fig. 2B). In principle 167 

the increase in dimensionality observed in the full set could be trivially explained by a 168 

disproportionate increase in measurement noise. To test for this possibility, we estimated the 169 

rank of the response matrix by applying the Bi-Cross Validation technique [14] (see STAR 170 

Methods section Rank estimation for details).  Consistent with the PCA analysis, we found 171 

that the rank of the full set was substantially larger, ~two-fold (Fig. 2C), indicating that the full 172 

set provided a genuine increase in dimensionality.    173 

 174 

Higher dimensionality reveals increased stimulus specificity in defensive behaviours 175 

 176 

We then asked whether this increased dimensionality could capture additional aspects of 177 

stimulus-response specificity that could not be observed in locomotion. To account for the 178 

fact that evoked responses developed over time we divided the responses into three 179 

consecutive epochs of 1s duration according to their latency from the stimulus onset (“early”: 180 

0-1s; “intermediate”: 1-2s; “late”: 2-3s). 181 
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We first looked for a specific condition in which the same level of locomotion was expressed 182 

in response to two distinct sensory stimuli. A simple illustrative example, where locomotion 183 

largely fails to capture stimulus-response specificity, is the case in which both looming and 184 

sound induce a common freezing pattern that could be observed in a subset of trials (Fig. 3A, 185 

top panels; see also Supplementary Movies 3, 4). In the intermediate response epoch, when 186 

freezing is strongest, locomotion “saturates” towards 0 in responses to both stimuli and thus 187 

provides no discrimination (p = 0.48, shuffle test for RD, n = 37 and 31 trials for loom and 188 

sound). However, stimulus-specificity is apparent in the animal’s posture as revealed by 189 

quantifying body elongation (Fig. 3A, bottom panels p = 0.001, shuffle test for RD, n = 37 and 190 

31). 191 

 192 

To systematically compare stimulus-response specificity across all trials (n=172 trials per 193 

stimulus) for the full set with the level of specificity revealed by locomotion alone we 194 

developed a simple Specificity Index (SI). On an individual trial basis, SI identified, within a 𝑑-195 

dimensional space, the 𝑘 most similar behavioural responses across our dataset and 196 

quantified the fraction of those responses that were associated with the same stimulus. A toy 197 

example in which SI is calculated for 𝑘 = 6 in a two dimensional dataset is depicted in Fig.3B.  198 

Thus, on a given trial, SI ranged from 0 to 1, in which 1 signifies all similar behavioural 199 

responses being elicited by the same stimulus, 0.5 similar responses being equally expressed 200 

for both stimuli, and 0 all similar responses being elicited by another stimulus (Fig. 3B). For 201 

the real data we used a weighted version of the SI index where the contribution of each 202 

neighbour response was inversely proportional to its distance from the target response (see 203 

STAR Methods section Stimulus-response specificity for a formal definition of the SI). The SI 204 

was applied to a Principal Component reduction of the response matrix (n = 15 and n = 15 x 9 205 

= 135 time points for locomotion and the full set respectively) and evaluated for pairwise 206 

comparisons between the 3 sensory stimuli. Since SI was dependent upon 𝑘 and 𝑑 we 207 

systematically varied those parameters and we recalculated SI for each parameter 208 

combination. Almost invariably SI was maximized for 𝑘 = 1 both for the full set and for 209 

locomotion only (Fig. S5A). At least 5 Principal Components were typically required to 210 

maximize SI and the best value for 𝑑 varied across different comparisons (Fig. S5B).  Therefore 211 

low dimensional responses (e.g. based on the first two components as in Fig. S5C) failed to 212 

capture the full specificity of behavioural responses. Responses from the same animals were 213 

no more similar than those obtained from different animals since, for any given trial in the 214 

dataset, the most similar response rarely belonged to the same animal  (n = 21, 10 trials out 215 

of 516 for full set and locomotion across all stimuli; p = 0.205, 0.957, shuffle test). Moreover 216 

the distance between each target trial and its nearest neighbour was on average the same 217 

irrespectively of whether they shared the same stimulus or not (Fig. S5D). 218 

 219 

We then compared SI between locomotion and the full set for 𝑘 = 1 and the parameter 𝑑 that 220 

returned the highest trial-averaged SI. We found no significant differences when comparing 221 

flash and loom (Fig. 3C, blue bars; p = 0.0674, 0.2416, 0.0701 for 0-1s, 1-2s, 2-3s epochs, sign-222 

test, n = 344 trials). However the full set provided an increase in specificity for early responses 223 

when comparing flash and sound (Fig. 3C, red bars; p = 0.0002, 0.4570, 0.1980 for 0-1s, 1-2s, 224 

2-3s epochs, sign-test, n = 344 trials) and for the early and intermediate responses when 225 

comparing loom and sound (Fig. 3C, red bars; p = 0.0254, 0, 0.5935 for 0-1s, 1-2s, 2-3s epochs, 226 

sign-test, n = 344 trials). For both the full set and locomotion the highest SI values were 227 

observed either in the early or intermediate epoch of the response. We then set out to 228 
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quantify the overall change in specificity. Compared with locomotion, the full set provided an 229 

overall ~40% increase in SI over chance levels (Fig. 3D; p = 0, sign-test, n = 516 trials).   230 

 231 

To further test our conclusion that a higher dimensional description of behaviour revealed 232 

increased stimulus-response specificity, we asked whether it improved our ability to predict 233 

the stimulus class based upon a mouse’s behaviour (i.e. whether higher dimensionality 234 

enables more accurate decoding of the stimulus). To this end, we applied a K-Nearest 235 

Neighbours (KNN) classifier since this algorithm utilizes that local information provided by the 236 

𝑘 neighbours and therefore represents a natural extension of the specificity analysis (see 237 

STAR Methods section Decoding analysis for details). Like the SI index, KNN decoding 238 

performances depended on the choice of 𝑘 and 𝑑. Differently to what we observed for SI, 239 

where the index was maximized for 𝑘 = 1, the best performances were obtained for larger 240 

values of k  indicating that multiple neighbours are required to reduce noise (Fig. S6A). 241 

Similarly to SI analyses, high dimensional responses substantially improved accuracy (Fig. 242 

S6B).  243 

Decoding performances were not significantly different for the full set and for locomotion 244 

when comparing flash vs loom (Fig. 4A, black dots, p = 0.1130, 0.1384, 0.6013 for 0-1s, 1-2s, 245 

2-3s epochs, binomial test, n = 344 trials). However the full set improved decoding of the early 246 

response for flash vs sound (Fig.4A, red dots, p = 0, 0.5356, 0.26 for 0-1s, 1-2s, 2-3s epochs, 247 

binomial test, n = 344 trials) and across all epochs for loom vs sound (Fig.4A, blue dots, p = 248 

0.0008, 0, 0.0028 for 0-1s, 1-2s, 2-3s epochs, binomial test, n = 344 trials). These results were 249 

not specific for the KNN classifier since matching outcomes were obtained by using Random 250 

Forest (Fig. S6C; flash vs loom: p = 0.4218, 0.2146, 0.3671; flash vs sound: 0, 0.7528, 0.5550; 251 

loom vs sound: 0, 0, 0.0057, binomial tests, n = 344 trials). Focussing on the most informative 252 

0-2s epoch enabled to decode flash vs loom and flash vs sound with over 90% accuracy 253 

(respectively 93% and 91.73%, Fig. 4B, black and red bars) and the full set did not provide 254 

significant improvements over locomotion (p = 0.4901, 0.1186, binomial test, n = 516 trials). 255 

However, when comparing loom vs sound, locomotion only allowed 66.78% accuracy while 256 

the full set provided 77.75%, accuracy, a 65% improvement over chance level (p = 0.00001, 257 

binomial test, n = 516 trials). The full set also provided a 20.57% improvement over chance 258 

level when decoding was performed across the three stimuli (Fig. 4C, purple bar, p = 0.0001, 259 

binomial test, n = 516 trials), which corresponded to an additional ~40 correctly decoded 260 

trials. Part of the increase in performance was granted by the information provided by 261 

changes in body shape (described in Fig. 1D as Body Elongation, Body Bend, ΔBody Elongation, 262 

ΔBody Bend) since removing those dimensions from the full set significantly degraded 263 

decoding performances (Fig. 4C, dark purple bar; p = 0.0125, binomial test, n = 516 trials).  264 

 265 

Higher dimensionality reveals a larger set of defensive behaviours   266 

Our results indicate that the mapping between stimulus and behavioural response is more 267 

specific in a higher dimensional space. We next sought to describe the structure of this 268 

mapping. Specifically, we asked how many distinct behaviours are expressed in response to 269 

each stimulus. First, we clustered responses from all trials based upon similarity in motor 270 

actions. An important consideration in such a process is how many clusters to allow. We 271 

approached that problem by investigating the relationship between the number of clusters 272 

and the degree to which each cluster was restricted to a single stimulus (quantified as Mutual 273 

Information between stimulus and behavioural response).  We focussed on the interval 0-2s 274 
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since this epoch provided the best decoding results. Then, for each number of clusters, we 275 

estimated the Mutual Information (MI) between stimulus and behavioural response (see 276 

STAR Methods section Clustering and Information Analysis for details). By observing the 277 

increase in MI as function of the number of clusters two distinct regions could be clearly 278 

delineated (Fig. 5A, black error bars). For a small number of clusters, approximately between 279 

2 and 7, we observed a “high gain” region where MI increases substantially for each additional 280 

cluster. Beyond this domain the “high gain” region was replaced by a “low gain” region where 281 

further increments in the number of clusters provided limited increments in MI. This analysis 282 

suggests 7 clusters as a reasonable trade-off between the need for a generalization of the 283 

behavioural responses and the granularity required to capture a large fraction of stimulus 284 

specific information. 285 

Our previous analyses suggested that the range of behaviours is larger when considering the 286 

full set vs. locomotion alone (see e.g. Fig. 3A). To confirm that this was true, we applied the 287 

same clustering method to the locomotion data alone. A similar repartition into high and low 288 

gain regions was observed (Fig. 5B, black error bars). However, the high gain region domain 289 

appeared to be reduced to approximately 2-3 clusters suggesting a reduction in the number 290 

of sensory specific behavioural clusters.  To more rigorously test whether this was the case 291 

we fitted the relation between MI and the number of clusters k using the function  292 

 293 

𝑀𝐼(𝑘) = 𝑎 (1 − 𝑒
−𝑘
𝜏  ) + 𝑏𝑘 

 

        (2) 

which incorporates a steep exponential component and a more gradual linear component 294 

(Fig. 5A&B, fitting lines; see STAR Methods section Clustering and Information Analysis for 295 

details). These terms account respectively for the high and the low domain regions. We then 296 

used the exponential rise constant 𝝉 as a measure of the size of the high domain region. We 297 

found that 𝝉 was indeed smaller for locomotion alone (Fig.  5C) indicating that the full set of 298 

measures of postures and movements captures a larger number of sensory specific 299 

behaviours.  300 

Among the 7 behaviours revealed by our clustering of the full set several motifs occurred (Fig. 301 

5D). Fast sustained locomotion (cluster #1) or rearing (cluster #2) both accompanied by body 302 

elongation; Body bending followed by delayed freeze (cluster #3); Sustained freeze (cluster 303 

#4); Transient freeze in rearing position (cluster #5); Body bending and other rotations of the 304 

body axis, including frequent changes in rearing position (cluster #6); Sustained freeze in body 305 

bent positions (cluster #7). The Flash stimulus evoked behaviours that were very specific for 306 

this stimulus (cluster #1 and #2; Fig. 5E, left panel). The Loom and Sound stimuli evoked 307 

approximately the same set of behaviours but, between the two stimulus classes, those 308 

behaviours were expressed in different proportions (Fig. 5E, middle and left panel).  309 

 310 

Distinct behaviours differ both in rate and latency of behavioural primitives   311 

 312 

Each of those 7 behaviours was composed of several basic motor actions and postures that 313 

we define as primitives. In principle, distinct behaviours could contain diverse sets of 314 

primitives and/or the same set of primitives but expressed at different latencies from the 315 

stimulus onset. To better understand the composition of each behaviour we increased the 316 

temporal resolution of our behavioural analysis by subdividing the 2 seconds window into 317 

consecutive sub-second epochs. We then performed a clustering analysis across those sub-318 
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second epochs to identify the primitives. In order to select the number of primitives and their 319 

duration we used a decoding approach.  Thus, for each parameter combination, we fitted 320 

three stimulus-specific Variable-order Markov Models (VMMs), one for each stimulus class 321 

(see STAR Methods section Analysis of Behavioural Primitives for details). Decoding 322 

performances were then evaluated on hold out data by assigning each trial to the stimulus-323 

specific VMMs associated with the highest likelihood. The VMMs cross-validated 324 

performances were optimal for primitive duration between 0.13 and 0.33 seconds (Fig. S7A). 325 

Within this range the best VMMs contained 6-8 primitives and exhibited maximum Markov 326 

order of 0-1 time steps (Fig. S7B).  We selected VMMs with 8 primitives of 0.13s duration (Fig. 327 

6A,B) and we used them to compare, across the 7 behaviours, the rate and the latency of the 328 

primitives. For each stimulus the distribution of primitives was significantly different from that 329 

observed during the spontaneous behaviour preceding the stimulus (Fig. S7C; p = 0, 0, 0, 330 

Pearson’s χ2 test for flash, loom and sound). For flash the two most frequently occurring 331 

primitives defined the responses to cluster #1 and #2 in Fig. 5D and represented respectively 332 

run and rear actions (Fig. 6B). For loom and sound the most frequent primitives were both 333 

expression of freezing but along different postures: with straight elongated body for loom 334 

(Fig.6B, freeze straight) and with hunched and left or right bent body for sound (Fig. 6B, 335 

freeze bent).  Both the latency and the rate of those primitives changed significantly across 336 

the 7 behaviours (Fig. 6C; rate: p = 0, 0, 0, 0; latency p = 0, 0, 0.0014, 0; Kruskal-Wallis One-337 

Way ANOVA for run, rear, freeze straight and freeze bent). These results indicate that both 338 

the composition and the timing of basic motor actions and postures varies in those 339 

behaviours.   340 

 341 

The mapping between stimulus and response is not uniquely defined by observable 342 

initial conditions   343 

 344 

From the results in Fig. 5 a clear “one-to-many” mapping emerges in which each stimulus can 345 

evoke multiple behavioural responses. Such multiplicity could be driven by several factors 346 

preceding the time of the stimulus onset and dynamically reconfiguring the mapping between 347 

stimulus and response: internal states of the animal that are independent from the stimuli 348 

and ongoing observable behaviours; variable postures and motor states that mechanically 349 

constrain the range of possible behavioural responses; variable position of eyes and ears 350 

within the behavioural arena that modify the way the same stimulus is perceived across trials.      351 

 352 

We first set out to explore the effect of ongoing posture and motor state (hereafter for 353 

simplicity referred to as ongoing activity). We tested the hypothesis that, given a particular 354 

stimulus, the ongoing activity uniquely defined the subsequent behavioural response.  To this 355 

end, we first performed a clustering analysis on the epochs immediately preceding stimulus 356 

onset (duration = 0.5s). Each cluster identified different ongoing activities and the number of 357 

clusters was predefined and equal to 7 in order to match the cardinality of the response 358 

clusters (Fig. 7A). If ongoing activities were to uniquely define the response we would expect 359 

a “one-to-one” mapping. We found this not to be the case. Consistently with the “one-to-360 

many” mapping previously described, each ongoing activity cluster led to multiple responses 361 

(Fig. 7B). To quantify the dependence of response from ongoing activity we used Mutual 362 

Information (MI). We found that ongoing activity could only account for a small fraction of 363 

the MI required to optimally predict the responses (14.92% flash, 7.2% loom, 4.77% sound).    364 

 365 
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A caveat of this analysis lies in the fact that the multiplicity of responses might trivially arise 366 

from the hard boundaries imposed by the clustering procedure. Thus high dimensional points, 367 

representing either ongoing activities or responses, located near the boundaries between two 368 

or more clusters would still be assigned to one cluster only. To address the possibility that a 369 

“one-to-many” mapping simply arises from trials whose cluster membership is weakly defined 370 

we developed a procedure to remove such trials (see STAR Methods section Clustering 371 

Refinement). By removing an increasing number of trials the overall goodness of clustering 372 

increased both for ongoing activities and responses (Fig. S7D,E). In this reduced dataset (293 373 

trials, out of 516), individual clusters of ongoing activities still led to multiple responses (Fig. 374 

S7F,G) and only accounted for a small fraction of the MI required for correct prediction of the 375 

response cluster (11.92% flash, 9.01% loom, 4.85% sound) indicating that the “one-to-many” 376 

mapping was robust to clustering errors.  377 

 378 

We then set out to investigate the effect of the position of eyes and ears at the time of 379 

stimulus onset (hereafter simply referred to as initial position). We quantified initial positions 380 

by measuring 5 dimensions: head orientation (elevation and azimuth, Fig.7C) and the head X-381 

Y-Z position. All these dimensions were calculated in allocentric coordinates in respect to the 382 

centre of the arena (see STAR Methods section Estimating the Effects of Initial Positions). 383 

Since all our measures of movements and postures are instead expressed in egocentric 384 

coordinates it is not clear how to connect these two coordinate systems. For example it is 385 

possible that initial positions distant from each other in X-Y coordinates but well matched 386 

after a rotation around the Z axis would provide more (or less) similar responses than initial 387 

positions closer to each other in X-Y coordinates but with poor rotational symmetry (Fig.7D). 388 

In order to avoid any assumption about the mapping between egocentric responses and 389 

allocentric coordinates we developed a systematic method to extrapolate the effect of initial 390 

conditions on behavioural responses. Our method relies on the fact that, in the limit of an 391 

infinite number of partitions in the space of initial conditions, a “one-to-one” mapping 392 

between initial conditions and behavioural responses, if present, will always enable a correct 393 

prediction of the response cluster from the initial condition. To test for this possibility we 394 

systematically increased the number of partitions (see example partitions in Fig.7E) and each 395 

time we calculated the MI between the initial conditions and the response clusters (see dots 396 

black, blue and red dots in Fig.7F). We then used linear extrapolation to estimate the MI in 397 

the limit of an infinite number of partitions clusters (see dots black, blue and red lines in 398 

Fig.7F; see STAR Methods section Estimating the Effects of Initial Positions). We found that 399 

initial positions only accounted for a minority of the MI required for correct prediction of the 400 

response cluster (18.76% flash, 10.06% loom, 5.46% sound). Similar results were obtained 401 

after removal of 50% of the trials for which the cluster membership for the responses was 402 

weakly defined (14.53% flash, 8.46% loom, 8.99% sound). In principle it possible that our 403 

linear extrapolation substantially underestimates the information conveyed by initial 404 

conditions. However, when the order of the trials for initial conditions and response clusters 405 

were separately re-organized to maximize their match, our extrapolation of the MI well 406 

captured the entropy of the response clusters (92.68%, 95%, 93.03% of entropy for flash, 407 

loom and sound; Fig.7F, grey dots and lines). This indicates that our extrapolation could 408 

capture a “one-to-one” mapping between initial conditions and behavioural responses but 409 

such mapping was not present in the data.  410 
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Discussion  411 

 412 

A fundamental goal of neuroscience is to link neural circuits to behaviours. Two unescapable 413 

tasks are essential prerequisites for approaching this problem: the generation of a detailed 414 

anatomical and physiological description of brain circuits – the neural repertoire – and the 415 

charting of all the relevant behaviours exhibited by the model organism of choice – the 416 

behavioural repertoire. Then, in order to uncover meaningful links, the resolutions of the 417 

neural and the behaviour repertoires have to match, since a high resolution on one side can’t 418 

compensate for low resolution on the other [15].   419 

In the last decade enormous advances have been made in understanding functional and 420 

anatomical connectivity of the CNS [16-18]. Thanks to these techniques a detailed sketching 421 

of the neural repertoire underlying sensory guided defensive behaviours in the mouse is in 422 

process and substantial advances have been made in the last few years [6, 9, 19-22].  423 

High dimensional reconstruction of rodent behaviour is now starting to catch up (see e.g. [23, 424 

24] for comprehensive reviews). Such reconstructions have been first developed for 425 

constrained situations (e.g. treadmill walk) and by applying physical markers to detect body 426 

landmarks [25]. More recently, machine learning [26-28] and deep-learning [29-31] have 427 

allowed to obviate for the need to use physical markers. Alternative approaches have also 428 

been taken by using depth cameras [32] or by combining traditional video with head mounted 429 

sensors to measure head movements [33] and even eye movements and pupil constriction 430 

[34]. In spite of these advancements, the behavioural repertoire for defensive behaviours has 431 

so far only been quantified by measuring changes in locomotion state. 432 

The first aim of this work was to provide a higher resolution map of sensory guided 433 

behaviours. To achieve this aim we used four cameras that allowed us to triangulate 2D body 434 

landmarks and obtain a 3D reconstruction of the mouse body. The accuracy of such a 435 

reconstruction was substantially improved by training 3D Statistical Shape Model that we 436 

used to correct the 3D coordinates (Fig. S2). Our approach is supervised in that it requires to 437 

pre-specify a set of body landmarks (nose, ears, neck base, body centre and tail base; see Fig. 438 

1A). Previous approaches to perform a mouse 3D reconstruction, realized by using a depth 439 

camera, took instead an unsupervised approach using all body points in the images followed 440 

by dimensionality reduction [32, 35]. The main advantage of our supervised approach relies 441 

in the fact that the poses are easier to interpret. For example, a mouse looking up can be 442 

easily described by a change in nose elevation in respect to the neck base. The main 443 

disadvantage is represented by the potential errors in 3D reconstruction arising from 444 

incorrect tracking of body landmarks. However, reconstruction errors can be minimized by 445 

using multiple camera views and Statistical Shape Models and this approach is easily scalable 446 

to any number of views.   447 

Our first main finding was that the level of stimulus-response specificity provided by a high 448 

dimensional description of mouse behaviour is higher than the specificity measured with 449 

locomotion alone (Fig.3,4). This increase in specificity was particularly remarkable when 450 

comparing behavioural responses to a loud sound and a visual looming. It has been previously 451 

shown that both stimuli induce escape to a shelter or freeze when the shelter is not present 452 

[7, 36]. As a result the responses to these stimuli have been considered equivalent and no 453 

attempts have been made to differentiate them. Here we show that looming and sound 454 

responses can be discriminated with ~78% accuracy (Fig. 4). This result can be explained by 455 

the fact that a higher dimensional behavioural quantification revealed a larger number of 456 

distinct behaviours that are stimulus-specific. Thus for both looming and sound the animals 457 
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typically froze but they did so according to two different postures: a straight, upward-looking 458 

pose for loom (Fig. 3A and cluster #4 in Fig. 5, 6) and a hunched pose for sound often preceded 459 

by a body spin (Fig. 3A and cluster #3 in Fig. 5, 6). Moreover, in several trials a looming 460 

stimulus was more likely than sound to elicit rearing or short lasting freeze in rearing position 461 

(clusters #2 and #5 in Fig. 5, 6).  462 

In locomotion data, where this diversity was lost (Fig. 5), specificity for looming and sound 463 

was substantially reduced (Fig. 4). Linking the neural repertoire to the behavioural repertoire 464 

based on locomotion alone would indicate almost perfect convergence – different sensory 465 

processes ultimately lead to only one single action. Instead, by increasing the resolution of 466 

the behavioural repertoire, we were able to reject the convergence hypothesis showing that 467 

behavioural outputs preserve a significant level of stimulus specificity.  468 

For other pairs of stimuli, such as flash vs loom, locomotion alone granted a good level of 469 

discrimination (≈90% accuracy, Fig. 4). A higher dimensional quantification of postures and 470 

movements did not provide substantial advantages in discriminating between such stimuli 471 

but enabled to better describe behavioural responses. Therefore, while locomotion data 472 

could well differentiate a response to a flash as opposed to a looming stimulus, a higher 473 

dimensional quantification could tell us whether the animal was rearing or running (clusters 474 

#1 and #2 in Fig. 5,6).   475 

Our second main finding was a “one-to-many” mapping between stimulus and response. Thus 476 

a high dimensional description revealed at least seven behavioural responses and each 477 

stimulus could evoke at least three (Fig. 5).  The same analysis on locomotion data identified 478 

only two behaviours across all stimuli (Fig. 5B&C). The reduced, essentially binary, mapping 479 

between stimulus and response is consistent with previous results that employed locomotion 480 

as unique behavioural descriptor. In absence of shelter a looming stimulation was shown to 481 

evoke either immediate freeze or escape followed by freeze [9]. When a shelter was present 482 

a dark sweeping object typically evoked a freeze but flight was also observed in a smaller 483 

number of trials [5]. Our higher dimensional descriptors provide a substantially enhanced 484 

picture of this phenomenon and indicate that the one-to-many mapping between stimulus 485 

and response occurs robustly across different sensory stimuli.  486 

The overall figure of seven distinct behaviours represents a conservative estimate and reflects 487 

the criterion we used to define the granularity of our behavioural classification. Previous 488 

studies, aimed at providing an exhaustive description of spontaneous behaviours, identified 489 

of ~60 distinct classes in the mouse [32] and ~100 in fruit-fly [28]. The smaller set of 490 

behaviours identified in this study, although more tractable and still sufficient for capturing 491 

stimulus-response specificity, likely underestimates the repertoire of mouse defensive 492 

actions. 493 

The “one-to-many” mapping we described could not be trivially explained by different initial 494 

conditions, i.e. by the variety of postures and motor states or by the position of eyes and ears 495 

at the time of stimulus presentation (Fig. 7). This is consistent with recent results in drosophila 496 

where ongoing behaviour had statistically significant but not deterministic effects on future 497 

behaviours [37] and on responses to optogenetic stimulation of descending neurons [38]. 498 

Therefore, at least to some extent, the “one-to-many” mapping reflects stimulus-499 

independent variability in the internal state of the animal that generates diversity in the 500 

behavioural output. Variability in the internal states could take many forms ranging from 501 

noise in the neuronal encoding of the stimuli along the visual and auditory pathways [39] to 502 

fluctuating levels of arousal [40, 41] or anxiety [42] and further studies will be required to 503 

discriminate among those contributions. The high level of functional degeneracy in neuronal 504 
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networks (see e.g. [43-45]) provides the suitable substrate for the observed behavioural 505 

diversity. The presence of functional degeneracy is consistent with recent studies reporting 506 

that the expression of defensive responses can be affected by activation of multiple neuronal 507 

pathways [9, 10, 46-50]. However our current understanding of the anatomical and functional 508 

substrates of this diversity is still insufficient and limited to the locomotion phenotype. We 509 

believe that further investigations of such substrates, matched with a more detailed 510 

description of defensive behaviours, represent an important avenue for future studies.     511 

512 
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Main Text Figures 528 

 529 
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 531 

Figure 1: Reconstruction of mouse poses and quantification of postures and movements. A) 532 

Body landmarks are separately tracked across each camera. B) A raw 3D reconstruction is 533 

obtained by triangulation of body landmark positions (left panel). The raw reconstruction is 534 

corrected by applying our algorithm based on the Statistical Shape Model as described in 535 

Methods. The refined 3D reconstruction (right panel) is then used for all the further analyses. 536 

C) The model expressed by equation 1 allows for quantifying a wide range of postures and 537 

movements of which red and green boxes report some examples. The “Body Shape” 538 

components enable to measure changes in body shape such as body elongation and body 539 

bending. The “Body Position” components enables to quantify translations and rotations in a 540 

3D space. D) The full set of behavioural measures, divided into 3 postural measures and 6 541 

movement measures is expressed as function of the terms in equation 1. 542 
 543 

  544 
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Figure 2:  Multiple motor actions are involved in sensory guided behaviours. A) Average 547 

response to the three classes of sensory stimuli (flash, loom, sound) according to the postural 548 

and movement measures defined in Fig. 1D. Error bars represent SEM (n=172 for each 549 

stimulus class). Response divergence (RD) between pairs of stimuli is reported in insets (*= 550 

p<0.001 with shuffle test for RD). B) Percentage of variance explained as function of principal 551 

components for the full set of motor actions (green) and for locomotion only (red). The grey 552 

line indicates 80% explained variance. C) The minimum Bi-Cross Validation Error is used to 553 

quantify the rank of the full set and of locomotion only (respectively rank = 19 and 39, marked 554 

by black dots).  555 
 556 

 557 
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 560 

Figure 3:  Higher dimensionality reveals increased-stimulus response specificity. A) Loom 561 

and sound could evoke an indistinguishable pattern of locomotion arrest shown in upper left 562 

panel (mean±SEM; data from n = 37 and 31 trials for loom and sound). However the pattern 563 

of body elongation was different across loom and sound (bottom left panel). A representative 564 

trial for loom (blue box) and for sound (red box) are reported in the right panels. Time 565 

progression is captured by the gray-to-black transition of the mouse body (poses sampled 566 

every 0.2s between 1 and 2 seconds latency from stimulus onset). Note that different levels 567 

of body elongation can be observed from a side view in the z-x planes. B) On each trial the 568 

specificity index (SI) was calculated as the number of neighbour responses to the same 569 

stimulus divided by the total number of neighbours. In this toy example, based on two-570 

dimensional responses (PC1 and PC2), we show a target trial for which the number of 571 

neighbouring responses for the same stimulus changes across panels to obtain SI values of 1, 572 

0.5 and 0.  C) Specificity Index for pairs of stimuli (mean±SD, n = 344 trials) measured with 573 

locomotion (grey bars) and for the full set (black, red, and blue). D) Same as C but for all stimuli 574 

(mean±SD, n = 516 trials). *p<0.05, ***** p < 0.0005, ****** p < 0.0001.  575 
 576 
  577 
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 578 

 579 

Figure 4:  Higher dimensionality improves stimulus decoding. A) Comparison between K-580 

Nearest Neighbour (KNN) decoding performances (mean±SD) based on the full set and on 581 

locomotion only. Pairwise comparisons are shown for flash vs loom (black-blue), sound vs 582 

flash (red-black) and loom vs sound (blue-red) across different response epochs (0-1s, 1-2s, 583 

2-3s). B) Decoding performances (mean±SD) of KNN decoding for 0-2s response epochs. C)  584 

Same as panel B but decoding is performed across all stimuli for the full set (bright purple) 585 

and for a reduced set in which we removed Body Elongation, Body Bending,  ΔBody Elongation 586 

and ΔBody Bending (dark purple). Locomotion is always displayed as grey bars. ***** p < 587 

0.0005, ****** p < 0.0001. 588 

 589 
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 592 
 593 

Figure 5:  Higher dimensionality reveals a larger set of sensory specific behaviours. A) 594 

Mutual information is estimated for the full set of motor actions as function of the number of 595 

clusters (mean±SD, 50 repeats per cluster; at each repeat the best of 100 runs was selected). 596 

Note an initial fast rise in MI ("high gain" region in the plot) followed by a more gradual linear 597 

increase ("low gain" region). B) Same as panel A but for locomotion only. C) Comparison 598 

between the exponential rise in MI for the full set of motor actions and for locomotion only. 599 

The exponential rise in MI, captured by the 𝜏 values, is slower for the full set indicating that 600 

the high gain domain encompasses a larger number of distinct clusters.  D) Left panel shows 601 

the response matrix of the full dataset (n=516 trials) partitioned into 7 clusters. The response 602 

matrix is obtained by concatenating all the postures and motor actions (Re = Rear; Be = Body 603 

elongation; Bb = Body bend; Lc = Locomotion; Fr = Freeze; ΔRe = ΔRear; Rt = Body rotation; 604 

ΔBe = ΔBody elongation; ΔBb = ΔBody bend). Right panels shows one representative trial for 605 

each cluster (10 poses sampled at 0.2s intervals between 0 and 2s latency from stimulus 606 

onset; time progression is captured by the gray-to-black transition). E) Conditional probability 607 

of stimulus class, given each of the clusters shown in panel D. Flash, Loom and Sound are 608 

reported respectively in left, middle and right panel.  609 

 610 
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Figure 6:  Distinct behaviours differ both in rate and latency of behavioural primitives. A) 616 

The primitives extracted from the response matrix are displayed for all trials (n = 8 primitives; 617 

duration = 0.133s). Trials are partitioned into the 7 clusters as in Fig.5d.  B) The mean±SD of 618 

all measures of postures and movements are shown for four primitives (run, rear, freeze 619 

straight, freeze bent).  Individual representative samples of each primitive are shown as 3D 620 

body reconstructions at the top of each bar graph. C) Frequency (mean±SD) of each primitive 621 

across the 7 behavioural clusters shown in Fig. 5D. D) Latency (mean±SD) of each primitive 622 

across the 7 behavioural clusters shown in Fig. 5D.          623 
 624 
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 627 

Figure 7:  The mapping between stimulus and response is not uniquely defined by initial 628 

conditions. A) Matrix representing the concatenation of all the measures of posture and 629 

movements for the 0.5s preceding the stimulus onset. Trials (n=516) have been partitioned in 630 

7 clusters to match the cardinality of response clustering shown in Fig. 5D. B) Joint probability 631 

of pre-stimulus (blue circles) and response clusters (red circles) for Flash, Loom and Sound 632 

stimuli. The probability value is proportional to the width of the lines connecting pre-stimulus 633 

and response as shown in legend. C) Head elevation is calculated as the vertical angle between 634 

nose and neck while head azimuth as the angle of the nose projection on the X-Y plane. D) 635 

Example of three initial positions. Position 2 is distant from position 1 along the X-Y 636 

coordinates but can be exactly superimposed to it by a single rotation along the Z axis. 637 

Position 3 is closer to position 1 along the X-Y coordinates but, in order to superimpose these 638 

two positions, a translation and two rotations are required. E) Example of three partitions of 639 

initial positions from the dataset, each pose represents an individual trial. E) Mutual 640 

Information is estimated as function of the inverse of the overall number of partitions (1/#IP) 641 

across 5 dimensions (head elevation and azimuth and head X,Y,Z coordinates). The dotted 642 

black lines indicate the entropy of the response clusters.    643 
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STAR Methods 644 

 645 

RESOURCE AVAIBILITY 646 

 647 

Lead Contact 648 

 649 

Further information and requests for resources, reagents or raw data should be directed to 650 

and will be fulfilled by the Lead Contact, Riccardo Storchi 651 

(riccardo.storchi@manchester.ac.uk)   652 

 653 

Materials Availability 654 

 655 

This study did not generate new unique reagents.   656 

 657 

Data and Code Availability 658 

 659 

Data and source codes are available at https://github.com/RStorchi/HighDimDefenseBehaviours  660 

 661 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 662 

 663 

Animals 664 

 665 

In this study we used C57Bl/6 mice (n = 29, all male) obtained from obtained from the 666 

Biological Services facility at University of Manchester. All mice were stored in cages of 3 667 

individuals and were provided with food and water ad libitum. Mice were kept on a 12:12 668 

light dark cycle.  669 

 670 

Ethical Statement 671 

 672 

Experiments were conducted in accordance with the Animals, Scientific Procedures Act of 673 

1986 (United Kingdom) and approved by the University of Manchester ethical review 674 

committee.  675 

 676 

METHOD DETAILS  677 

 678 

Behavioural Experiments   679 

 680 

The animals were recorded in a square open field arena (dimensions: 30cm x 30 cm; Fig. S1A 681 

and S1B). Experiments were conducted at Zeitgeber time 6 or 18 (respectively n = 14 and 15 682 

animals). During transfer between the cage and the behavioural arena we used the tube 683 

handling procedure instead of tail picking, as prescribed in [51], in order to minimise stress 684 

and reduce variability across animals. After transferring to the behavioural arena the animals 685 

were allowed 10 minutes to habituate to the environment before starting the experiment. 686 

Auditory white noise background at 64 dB(C) and background illumination   (4.08*1010, 687 

1.65*1013, 1.94*1013 and 2.96*1013 photon/cm2/s respectively S-cone opsin, Melanopsin, 688 

Rhodopsin and M-cone opsin) were delivered throughout habituation and testing. In each 689 
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experiment we delivered 6 blocks of stimuli where each block was constituted by a flash, a 690 

looming and a sound. The order of the stimuli was independently randomised within each 691 

block.  The inter-stimulus-interval was fixed at 70 seconds.  692 

 693 

Visual and Auditory Stimuli 694 

 695 

The flash stimulus provided diffuse excitation of all photoreceptors (S-cone opsin: 4.43*1012 696 

photon/cm2/s; Melanopsin: 2.49*1015 photon/cm2/s; Rhodopsin: 1.98*1015 photon/cm2/s; 697 

M-cone opsin: 7.09*1014 photon/cm2/s). As looming stimulus we used two variants: a 698 

“standard” black looming (87% Michelson Contrast; looming speed = 66deg/s) and a modified 699 

looming where the black disc was replaced by a disc with a grating pattern (Spatial Frequency 700 

= 0.068 cycles/degree; Michelson Contrast: 35% for white vs grey, 87% for grey vs black, 94% 701 

for white vs black; looming speed = 66deg/s). As auditory stimuli we used either a pure tone 702 

(C6 at 102 dB(C)) or a white noise (at 89 dB(C)) both presented for 1 second. The selection of 703 

looming and sound variants was randomly generated at each trial. 704 

 705 

Experimental Set-Up  706 

 707 

The animals were recorded with 4 programmable cameras (Chamaleon 3 from Point Grey; 708 

frame rate = 15Hz). The camera lenses were covered with infrared cut-on filters (Edmund 709 

Optics) and fed with constant infrared light. The experiments were controlled by using 710 

Psychopy (version 1.82.01) [52]. Frame acquisition was synchronized with the projected 711 

images and across cameras by a common electrical trigger delivered by an Arduino Uno board 712 

(arduino.cc) controlled by Psychopy through a serial interface (pyserial). Trigger control was 713 

enabled on Chamaleon 3 cameras through FlyCapture2 software (from Point Grey). All movies 714 

were encoded as M-JPEG from RGB 1280 (W) x 1040 (H) images. For tracking RGB images 715 

were converted to grayscale.  716 

In order to deliver the flash stimulation we used two LEDs mounted inside the arena (model 717 

LZ4-00B208, LED engin; controlled by T-Cube drivers, Thorlabs). The auditory stimuli were 718 

provided by two speakers positioned outside the arena. Background illumination and the 719 

looming stimuli were delivered by a projector onto a rear projection screen mounted at the 720 

top of the arena. Calculation of retinal irradiance for each photoreceptor was based on 721 

Govardovskii templates [53] and lens correction functions [54].  722 

 723 

QUANTIFICATION AND STATISTICAL ANALYSES 724 

 725 

Reconstruction of 3D poses: 726 

 727 

Three dimensional reconstruction of the mouse body was based on simultaneously tracked 728 

body landmarks from four the cameras (Fig. S1A&B). The four camera system was calibrated 729 

using the Direct Linear Transform algorithm [55] before data collection by using Lego® objects 730 

of known dimensions (Fig. S1C-F).  The reconstruction error after triangulation was 0.153 ± 731 

0.0884SD cm. For source codes and a detailed description of the calibration process see online 732 

material (https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/3Dcalibration). 733 

After data collection body landmarks were detected independently for each camera by using 734 

DeepLabCut software [29]. We used 𝑛 =  5 body landmarks: the nose-tip, the left and right 735 

ears, the neck base and the tail base (as shown Fig. 1A). When the likelihood of a landmark 736 
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was higher than 0.5 the landmark was considered valid. Valid landmarks were then used to 737 

estimate the 3D coordinates of the body points using least square triangulation.  The result 738 

of this initial 3D reconstruction was saved as raw reconstruction (Fig. 1B, Raw). 739 

The raw reconstruction contained outlier poses caused by incorrect or missing landmark 740 

detections (typically occurring when the relevant body parts were occluded). To correct those 741 

outliers we developed a method that automatically identifies correctly reconstructed body 742 

points and uses the knowledge of the geometrical relations between all points to re-estimate 743 

the incorrectly reconstructed (or missing) points.  Knowledge of these geometrical relations 744 

was provided by a Statistical Shape Model (SSM).   745 

We first estimated a statistical shape model (SSM) of the mouse body based on 𝑛 =  5 body 746 

points [56]. This was achieved by using a set of 400 poses, each represented by a 𝑛 × 3 matrix 747 

𝑿𝑡𝑟𝑎𝑖𝑛 whose correct 3D reconstruction was manually assessed. During manual assessment 748 

the coordinate of each body landmark across the four cameras was evaluated by a human 749 

observer. When all landmark location (n = 20, 5 landmarks for each of the 4 cameras) were 750 

approved the associated 3D pose was labelled as correct. Each training pose 𝑿𝑡𝑟𝑎𝑖𝑛 was then 751 

aligned to a reference pose using Partial Procrustes Superimposition (PPS) and the mean pose 752 

�̅� calculated. This algorithm estimates the 3 ×  3 rotation matrix 𝑹 and the 𝑛 × 3 translation 753 

𝑻 matrix that minimize the distance ‖𝑿 ̅– (𝑿𝑡𝑟𝑎𝑖𝑛𝑹 +  𝑻)‖𝐹 calculated by using the Frobenius 754 

norm. A principal component analysis was then performed on the aligned poses to obtain a 755 

set of eigenposes 𝐏 and eigenvalues 𝜆. The first 𝑝 =  3 eigenposes were sufficient to explain 756 

90.37% of the variance associated with shape changes in our training set (42.68%, 30.85% and 757 

16.84% respectively). Based on those eigenposes the SSM model enabled to express any 758 

aligned pose 𝑿 as 759 
 760 

𝑿 = �̅� +  ∑ 𝑏𝑖𝑷𝑖

𝑝

𝑖

 

 

 
(3) 

where 𝑏𝑖 represent the shape parameters. To identify outlier poses each pose 𝑿 was first 761 

aligned to the mean pose �̅� and shape parameters were estimated. A pose was labelled as 762 

incorrect when either the Euclidean distance between �̅� and 𝑿 or any of the shape 763 

parameters exceeded pre-set thresholds.   764 

Outlier poses could be corrected if only 1-2 body points were incorrectly reconstructed by 765 

using the remaining body points and the trained SSM. Correctly reconstructed body points, 766 

represented by the (𝑛 − 2) ×  3 matrix 𝐗𝑠𝑢𝑏𝑠𝑒𝑡 , were identified as the subset of points, out 767 

of all possible (𝑛 − 2) subsets, that minimized the distance ‖𝑿 ̅𝑠𝑢𝑏𝑠𝑒𝑡 𝑹𝑠𝑢𝑏𝑠𝑒𝑡 +768 

 𝑻𝑠𝑢𝑏𝑠𝑒𝑡 – 𝑿𝑠𝑢𝑏𝑠𝑒𝑡‖𝐹 . Here the matrices 𝑹𝑠𝑢𝑏𝑠𝑒𝑡 and 𝑻𝑠𝑢𝑏𝑠𝑒𝑡 were obtained by aligning the 769 

corresponding body points of the reference pose, 𝑿 ̅𝑠𝑢𝑏𝑠𝑒𝑡 ,  to the selected (𝑛 − 2)  ×  3 770 

matrix 𝑿𝑠𝑢𝑏𝑠𝑒𝑡. The shape parameters 𝑏𝑖 were treated and missing data and re-estimated by 771 

applying Piecewise Cubic Hermite Interpolation on the shape parameter time series. The 772 

corrected pose  𝑿  was then re-estimated as  𝑿 = ( �̅� +  ∑ 𝑏𝑖𝑷𝑖
𝑝
𝑖=1 ) 𝑹𝑠𝑢𝑏𝑠𝑒𝑡 +  𝑻𝑠𝑢𝑏𝑠𝑒𝑡 . 773 

These preliminary stages enabled to replace gross outliers in the raw 3D reconstruction. We 774 

then used all poses 𝑿 and associated shape parameters as input for an optimization 775 

procedure aimed at obtaining a refined 3D reconstruction by minimizing the following cost 776 

function: 777 
 778 
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𝐶(𝒃, 𝑹, 𝑻) = ‖�̅� − (𝑿 +  ∑ 𝑏𝑖𝑷𝑖

𝑝

𝑖=1

) 𝑹 + 𝑻‖

𝐹

+  𝛼 ∑
𝑏𝑖

2

𝜆𝑖

𝑁𝑝 

𝑖=1

 

 
(4) 

 779 

where the right-hand side of the equation 3 represents a regularization factor to penalize for 780 

excessive changes in body shape. The value for the regularization parameter 𝛼, set at 0.001, 781 

was determined by first applying this cost function to a simulated dataset. For all further 782 

analyses the time series of each element of 𝒃,  𝑹 and 𝑻 were smoothed using the kernel w = 783 

[0.2 0.6 0.2]. After smoothing each rotation matrix 𝑹(𝑡) was renormalized by using Singular 784 

Value Decomposition.  785 

Following this reconstruction procedure the mouse pose at any given frame 𝑡 was defined by 786 

shape parameters 𝒃(𝑡)  and rigid transformations 𝑹(𝑡) and 𝑻(𝑡) as reported in equation 1. 787 

The final 3D poses were defined as refined reconstruction (Fig. 1B, Refined). A dynamic 788 

visualization of the refined reconstruction can be found in Supplementary Movie 1. All 3D 789 

data and source codes for estimating SSM and the refined reconstruction can be found here:  790 
https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/3Dreconstruction  791 

 792 

Validation of the 3D reconstruction  793 

 794 

In order to compare raw and refined poses we first quantified the number of outliers. A pose 795 

was defined as outlier when, once aligned with the reference pose, its Euclidean distance 796 

from the reference in a 15 dimensional space (5 body points along the X,Y,Z axes) was larger 797 

than 5cm.  For the raw and refined poses we detected respectively %3.31 (1037/31320) and 798 

1.26% (395/31320) outliers (Fig. S2A&B). In the raw 3D reconstruction the outliers were 799 

widespread across 178 trials while in the refined 3D reconstruction the outliers were 800 

concentrated in 7 trials that were then removed for all the subsequent analyses. Among inlier 801 

poses the distance from reference pose was only slightly reduced (Fig. S2C, inset). However 802 

for the refined inlier poses the distance from the reference pose was fully explained by only 803 

3 components while 9 components were required for the raw inlier poses (Fig. S2D). The low 804 

dimensional variability associated with the refined inlier poses reflects the constraints 805 

imposed by the SSM (via the 3 eigenposes) while the high dimensional variability associated 806 

with the raw inlier poses reflects the effect of high dimensional noise. Such low and high 807 

dimensional variability can be clearly observed for the whole dataset of inlier poses in Fig. 808 

S2E.    809 

 810 

Interpretation of the eigenposes 811 

 812 

The SSM enabled to identify a set of eigenposes that captured coordinated changes in the 3D 813 

shape of the animal body encompassing all the five body landmarks (see eq.2).  To gain more 814 

intuitive insights about what type of shape changes were captured by each eigenpose it is 815 

useful to visualize those changes. We did so by creating a movie (Supplementary Movie 2) 816 

where we applied a sinusoidal change to individual shape parameters in equation 3. In this 817 

way, at any given time 𝑡 and for the 𝑖𝑡ℎ eigenpose, the mouse body could be described 818 

as 𝑿(𝒕) = �̅� + 𝜆𝑖√6sin(2𝜋𝑡) ∙ 𝑷𝑖. By looking at the movie it is apparent that each eigenpose 819 

captures coordinated changes in the distances between body landmarks and angles between 820 

head and body. To quantify those changes as function of each eigenpose we selected, based 821 

on the movie inspection, a set of four measures: nose-tail distance, neck-tail distance and 822 
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head-to-body angles on the XY and the YZ planes.  We found that the first eigenpose best 823 

correlated with nose-tail distance and head-to-body on the YZ plane indicating that this 824 

eigenpose captures different levels of body elongation (Fig. S3A,D). The second eigenpose 825 

best correlated with head-to-body on the XY plane thus capturing left-right bending (Fig. S3B). 826 

The third eigenpose correlated best with neck-tail distance indicating again a change in body 827 

elongation (Fig. S3C).      828 

    829 

Normalization of the behavioural measures: 830 

 831 

The full set of posture and movement measures was calculated from the refined 3D 832 

reconstruction as analytically described in Fig. 1d. Each measure was then quantile 833 

normalized in the range [0, 1]. First all the values of each measure (n = #time points x #trials 834 

= 320 x 516 = 165120) were ranked from low to high. Then, according to its rank, each value  835 

was assigned to an interval. Each interval contained the same number of values. The interval 836 

containing the lowest values was assigned to 0 and the interval containing the lowest value 837 

was assigned to 1.  All intermediate intervals were linearly spaced in the range (0,1). Finally 838 

the values were converted to their interval number.     839 

 840 

Validation of the postural and movement measures 841 

 842 

In order to validate the measures of postures and movements (Fig. 1C) we compared such 843 

measures with a manually annotated set. The human observer (AA) watched the behavioural 844 

movies and annotated the start and end timing of each action across a subset of data (18 trials 845 

from 24 mice, 18 trials/mouse). We focussed on four annotated actions: “Walk”, ‘Turn”, 846 

“Freeze” and “Rear”. The action “Turn” included left/right bending of the body as well as full 847 

body rotations around its barycentre. The action “Rear” included both climbing up walls and 848 

standing on hind legs without touching the walls. All annotated actions lasted on average less 849 

than 1 second (“Walk”: 0.71s±0.49s, n = 473; “Turn”: 0.68s±0.42s, n = 214; “Rear”: 850 

0.88s±0.78s, n = 505; mean±SD) except “Freeze” (1.12s±0.70s, n = 371; mean±SD).  851 

Overall the automatic measures of Locomotion, Body Rotation, Freeze and Rearing   (Fig. 1C) 852 

were well matched with manual annotations while also providing additional information 853 

about changes in body shape. Thus “Walk” was associated with the largest increase in 854 

Locomotion (Fig. S4A, right panel) as well as an increase in Body Elongation and decrease in 855 

Rearing and Body Bending (Fig. S4A, left panel). “Turn” was associated with the largest 856 

increase in Body Rotation and Body Bending (Fig. S4B). “Freeze” was associated with the 857 

largest increase in our measure of Freeze and the largest decrease in Locomotion (Fig. S4C, 858 

right pane). “Rear” was associated with the largest increase in our measure of Rearing and 859 

high sustained Body Elongation (Fig. S4D, left pane).   860 

 861 

Response Divergence 862 

 863 

We first calculated the Euclidean distance 𝐷 between average time series obtained from two 864 

stimuli. This measure was then normalized by the average distance 〈𝐷𝑠ℎ〉 obtained by 865 

randomly shuffling across trials the association between stimulus and response (n = 1000 866 

shuffles). Finally response divergence was calculated as ((𝐷 − 〈𝐷_𝑠ℎ 〉)) ⁄ 〈𝐷_𝑠ℎ 〉. To test for 867 

significance we used a shuffle test. We counted the number of times 𝐷 was larger than 𝐷𝑠ℎ  868 
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and identified response divergence as significant when 𝐷 > 𝐷𝑠ℎ in more than 95% of the 869 

shuffle repeats.  870 

 871 

Rank estimation: 872 

 873 

For rank estimation we used the Bi-Cross Validation method proposed by (Owen and Perry, 874 

2009). The 𝑚 ×  𝑛 response matrix 𝑿 is partitioned into four submatrices 𝑨, 𝑩, 𝑪, 𝑫 where 875 

𝑨 ∈  𝑅𝑟 × 𝑠, 𝑩 ∈  𝑅𝑟 × (𝑛−𝑠), 𝑪 ∈  𝑅(𝑚−𝑟) × 𝑠, 𝑨 ∈  𝑅(𝑚−𝑟) × (𝑛−𝑠).  Then the matrices 𝑩, 𝑪 and 876 

𝑫 could be used to predict 𝑨. Specifically if both 𝑿 and 𝑫 have rank 𝑘 then 𝑨 = 𝑩𝑫+𝑪 =877 

 𝑩(�̂�𝑘)
+

𝑪  [14], where 𝑫+ represents the pseudoinverse of 𝑫 and �̂�𝑘 represents the k-rank 878 

approximation of 𝐷 obtained by Singular Value Decomposition. Using this property we 879 

partitioned the rows and columns of 𝑿 respectively into ℎ and 𝑙 subsets so that each ℎ × 𝑙 880 

subset represented a different hold out matrix 𝑨. Finally we estimated the Bi-Cross Validation 881 

error as function of the k-rank approximation of the D matrices as: 882 
 883 

𝐵𝐶𝑉(𝑘) =  ∑ ∑ ‖𝐴𝑖,𝑗 − 𝐵𝑖,𝑗(�̂�𝑖,𝑗
(𝑘)

)
+

𝐶𝑖,𝑗‖
𝐹

2
𝑙

𝑗=1

ℎ

𝑖=1

 
 
(5) 

 884 

By systematically changing k we expect the error would reach its minimum around the true 885 

rank of 𝑿.  886 
 887 

Stimulus-response specificity: 888 

 889 

The Specificity Index (SI) for each behavioural response was estimated as the weighted 890 

fraction nearest neighbour responses evoked by the same stimulus class. A formal definition 891 

of this index is given as follows. Let each 𝑖𝑡ℎ behavioural response be quantified by its 892 

projection 𝑋𝑖 on the 𝑅𝑑 space of the first 𝑑 principal components.  We define the distance 893 

between each pair of responses as 𝑑𝑖𝑠𝑡𝑖𝑗 =  ‖𝑋𝑖 −  𝑋𝑗‖
𝐿2

 and its inverse 𝑤𝑖𝑗 =  1 𝑑𝑖𝑠𝑡𝑖𝑗⁄  . 894 

The K-neighbourhood of each target response is then defined as the 𝐾 responses associated 895 

with the smallest pairwise distances. Let each 𝑖𝑡ℎ response be also associated with a variable 896 

𝑌𝑖 =  {1,2} representing the stimulus class. In this way each 𝑖𝑡ℎ response is defined by the 897 

pair (𝑋𝑖, 𝑌𝑖) ∈  𝑅𝑑  ×  {1,2} . We can then define 𝑆𝐼𝑖 , the Specificity Index for the 𝑖𝑡ℎ response 898 

as: 899 

 900 

𝑆𝐼𝑖 =  
∑ 𝑤𝑖𝑗𝐼(𝑌𝑖 = 𝑌𝑗)𝐾

𝑗=1

∑ 𝑤𝑖𝑗
𝐾
𝑗=1

 

 

 
(6) 

 901 

Where the indicator function 𝐼() is equal to 1 if 𝑌𝑖 =  𝑌𝑗  and 0 otherwise.  902 

 903 

Decoding Analysis: 904 

 905 

Decoding performances for K-Nearest Neighbour (KNN) and Random Forest were estimated 906 

by using 10-fold cross-validation. Dimensionality reduction based on Principal Component 907 

Analysis was performed on the data before training the classifiers. To maximize performances 908 
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the KNN algorithm was run by systematically varying the parameter K and the number of 909 

Principal Components (Fig. S6A,B) while the Random Forest algorithm was run by 910 

systematically varying the number of Trees (within the set [10, 20, 40, 80, 160, 320]) and the 911 

number of Principal Components. Each tree was constrained to express a maximum number 912 

of 20 branches. For robustness, the estimates of decoding performances for both KNN and 913 

Random Forest were repeated 50 times for each parameter combination. Data and source 914 

codes for specificity and decoding analyses can be found here: 915 
https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/Decoding 916 
 917 

Clustering and Information Analysis  918 

 919 

Clustering was performed by using k-means algorithm with k-means++ initialization (Arthur 920 

and Vassilvitskii, 2007). The number of clusters k was systematically increased in the range (2-921 

30). For each value of k, clustering was repeated 50 times and for each repeat the best 922 

clustering results was selected among 100 independent runs. We then used Shannon’s 923 

Mutual Information to estimate the statistical dependence between response clusters and 924 

stimuli. A similar approach has been previously applied to neuronal responses (see e.g. [57-925 

59]). In order to estimate Shannon’s Mutual Information the probabilities distributions 𝑝(𝐺) 926 

and 𝑝(𝐺|𝑆), where 𝔾 =  (𝑔1, … , 𝑔𝑘)  indicates the cluster set and 𝕊 = (𝑠1, … ,  𝑠𝑛) the 927 

stimulus set, were estimated directly from the frequency histograms obtained from our 928 

dataset. Thus for 𝑝(𝐺) we counted the number of elements in each cluster and we divided by 929 

the overall number of elements. We estimated 𝑝(𝐺, 𝑆) in the same way and used it to 930 

estimate 𝑝(𝐺|𝑆) as 𝑝(𝐺, 𝑆)/𝑝(𝑆). From these distributions the response and noise entropies 931 

were calculated as  932 

 933 

𝐻(𝐺) =  − ∑ 𝑝(𝑔)𝑙𝑜𝑔2

𝑔 ∈𝐺

𝑝(𝑔) 

 

 
(7) 

𝐻(𝐺|𝑆) =  − ∑ 𝑝(𝑔, 𝑠)𝑙𝑜𝑔2

𝑔 ∈𝐺,𝑠 ∈𝑆

𝑝(𝑔|𝑠) 

 

 
(8) 

These naïve estimates were then corrected for the sampling bias by using quadratic 934 

extrapolation as in [60]. Mutual Information (𝑀𝐼) was then calculated from the difference of 935 

these corrected estimates.  The change in 𝑀𝐼 as function of the number of clusters was fit by 936 

using equation 2 through a mean square error minimization based on the interior point 937 

method (Matlab function fmincon). For fitting the values of the parameters 𝑎, 𝑏  and 𝜏 were 938 

constrained to be positive.  Data and source code for clustering analysis can be found here: 939 
https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/Diversity   940 

 941 

Analysis of Behavioural Primitives 942 

 943 

Behavioural primitives were first identified by applying kmeans++ clustering ([61], best of n = 944 

100 replicates for each parameter combination) to the response matrix. For this analysis the 945 

response matrix encompassed an epoch starting 0.33s before the stimulus onset and ending 946 

2s after the onset.  Since both the number of clusters and the duration of the primitive was 947 

unknown we repeated the clustering for a range of [2,10] clusters and for six different 948 

durations (0.133s, 0.2s, 0.333s, 0.4s, 0.666s and 1s). In order to model arbitrarily (finite) long 949 
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temporal relations between subsequent primitives occurring on the same trial we used 950 

Variable-order Markov Models (VMMs, [62, 63]). Therefore an additional parameter of this 951 

analysis was represented by the maximum Markov order that ranged from 0 (no statistical 952 

dependence between two subsequent primitives), to the whole length L of the trial (L = 15, 953 

10, 6, 5, 3 and 2 for primitives of 0.133s, 0.2s, 0.333s, 0.4s, 0.666s and 1s duration). To 954 

determine the best VMMs we took a decoding approach. This enabled us to rank the models 955 

according to their accuracy in predicting the stimulus on hold-out data. For each combination 956 

of cluster cardinality, primitive duration and maximum Markov order we trained three VMMs, 957 

one for each stimulus (flash, loom and sound). Thus each of the three VMM (respectively 958 

VMMflash, VMMloom, VMMsound) was separately trained by using a lossless compression 959 

algorithm based on Prediction by Partial Matching [64] on a subset of trials associated with 960 

only one stimulus. On the test set the stimulus 𝑆 ̂was then decoded by choosing the VMM 961 

with highest likelihood  𝑆 ̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑡𝑖𝑚  𝜖 {𝑓𝑙𝑎𝑠ℎ,𝑙𝑜𝑜𝑚,𝑠𝑜𝑢𝑛𝑑}(𝑉𝑀𝑀𝑠𝑡𝑖𝑚). Increasing the 962 

temporal resolution of the model by using a larger number of shorter duration primitives 963 

increased decoding accuracy (Fig. S7A). Parameters for the eight most accurate models are 964 

reported in Fig. S7B. Data and source code for VMMs analysis can be found here:  965 
https://github.com/RStorchi/HighDimDefenseBehaviours/tree/master/VMMs 966 

 967 

Clustering Refinement 968 

 969 

To test the possibility that the “one-to-many” mapping shown in Fig. 7B arise from incorrect 970 

cluster membership we developed a procedure to improve goodness-of-clustering. The 971 

element of each cluster were ranked according to their distance from the centroid. Then for 972 

each centroid we removed up to 50% of its elements according to such distance. This resulted 973 

in improved clustering metrics as shown in Fig. S7D&E.  974 

 975 

Estimating the Effects of Initial Positions 976 

 977 

Initial positions were quantified according to 5 dimensions: head elevation and azimuth, and 978 

head X,Y,Z coordinates. In order to partition the space of initial conditions we first generated 979 

a set of 5 elements arrays with up to 8 partitions (each partition with the same number of 980 

trials) for each dimension (e.g. [1, 3, 4, 1, 1] indicates 3 and 4 partitions respectively along the 981 

2nd and 3rd dimension) . For each array in this set the overall number of partitions across the 982 

5 dimensions was the product of the number of partitions in each dimension (e.g. equal to 12 983 

for the previous example). From the initial set we then removed all the items with an overall 984 

number of partitions larger than 20. Mutual Information was then estimated for each 985 

partition array as described in Clustering and Information Analysis. Finally a linear 986 

extrapolation was performed to estimate Mutual Information in the limit of an infinite 987 

number of partitions.        988 
989 
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