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Abstract 

Medulloblastoma (MB) is a heterogeneous disease in which neoplastic cells and associated 

immune cells contribute to disease progression. To better understand cellular heterogeneity in 

MB we profile neoplastic and immune populations in childhood MB samples using single-cell RNA 

sequencing, immunohistochemistry and deconvolution of transcriptomic data. Neoplastic cells 

cluster primarily according to individual sample of origin which is in part due to the effect of 

chromosomal copy number gains and losses. Harmony alignment reveals novel MB 

subgroup/subtype-associated subpopulations that recapitulate neurodevelopmental processes 

and are associated with clinical outcomes. We identify discrete photoreceptor-like cells in MB 

subgroups GP3 and GP4 and nodule-associated neuronally-differentiated cells in subgroup SHH. 

MB immune infiltrates consist of both developmentally-related neuron-pruning and antigen 

presenting myeloid cells. We show that this MB cellular diversity is recapitulated in genetically 

engineered mouse subgroup-specific models of MB. These findings advance our understanding 

of both the neoplastic and immune landscape of MB. 
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Introduction 

Medulloblastoma (MB) is an aggressive brain tumor arising predominantly in childhood. 

MB is comprised of 4 consensus molecular subgroups – GP3, GP4, SHH and WNT – that were 

established based on a series of bulk-tumor transcriptomic, methylomic and genomic profiling 

studies combined with clinical data (Northcott et al., 2011). GP3 subgroup tumors often exhibit 

amplification of MYC and are associated with the poorest clinical outcome; SHH and WNT often 

harbor mutations in sonic hedgehog and wingless pathway genes, respectively; and the genetic 

driver for GP4 is less clear. Studies have subdivided MB subgroups into finer subtypes with 

disparate outcomes and molecular features (Cavalli et al., 2017; Northcott et al., 2017; Sharma 

et al., 2019). The intra-tumoral cellular heterogeneity inherent in these bulk-tumor studies 

impedes a clearer understanding of MB biology. Neoplastic and immune heterogeneity underlies 

cancer cell’s ability to proliferate, survive and evade therapeutic interventions. The emergence of 

single cell analysis allows us to examine the cellular diversity inherent in biological systems, 

resulting in transformative findings when applied to pediatric brain tumors. Hovestadt et al. used 

SMART-seq single cell RNA-seq (scRNA-seq) to interrogate  25 MB (7,745 cells), identifying 

cellular diversity within individual samples recapitulating cell cycle, progenitor and differentiated 

neuronal programs (Hovestadt et al., 2019). Vladoiu et al. used droplet-based scRNA-seq to map 

mouse cerebellar developmental cellular lineages, and then compared these to childhood 

cerebellar brain tumors including 8 MB samples (28,311 cells), identifying putative subgroup-

specific cells of origin (Vladoiu et al., 2019). In the present study, we used droplet-based scRNA-

seq to analyze primary tumor samples from 28 childhood MB (approximately 40,000 cells), 

predominantly from GP3, GP4 and SHH subgroups. Our studies identify and characterize 

additional conserved MB subpopulations and validate these using histology and deconvolution of 

bulk-tumor transcriptomic datasets. Importantly we identify for the first time considerable immune 

cell diversity in MB including subgroup-specific immune populations. To examine the relationship 

of human tumors to experimentally induced mouse tumors that serve as preclinical models, we 
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identify neoplastic GEM subpopulations that correspond to those seen in human samples. Finally, 

we provide these data in the form of an interactive browser for users to interrogate MB subgroup 

neoplastic and immune cells and GEMs at single cell resolution. 

 

Results 

Sample-specific clustering in MB scRNA-seq is an effect of chromosomal copy number 

gains and losses. 

To better understand cellular heterogeneity in MB we performed scRNA-seq on 28 primary 

childhood MB patient samples and a single matched sample from recurrence. MB samples were 

classified into subgroups (1 WNT, 9 SHH, 7 GP3 and 11 GP4) based on bulk-tumor methylome 

and pooled single cell transcriptome profiles (Table S1). The SHH, GP3 and GP4 samples were 

further assigned to more recently described subtypes (Cavalli et al., 2017; Sharma et al., 2019). 

Using the 10x Genomics droplet-sequencing-based platform we generated transcriptomes at the 

single-cell level as previously described (Gillen et al., 2020). The goal of the study was to capture 

sufficient cells to provide a broad view of the cellular heterogeneity of MB. After excluding poor 

quality cells based on low unique molecular identifier (UMI) counts and high mitochondrial 

proportions, 39,946 cells (~1,300 per sample) remained that passed quality controls (Figure S1).  

Cell by gene expression matrices projected as 2D UMAP plots revealed multiple clusters 

of cells that were either unique to or shared between samples. Cell type analysis based on 

transcriptomic signatures identified 3 main categories of cell types – neoplastic, immune (myeloid 

and lymphocyte lineages) and non-neoplastic stroma (oligodendrocytes and astrocytes) (Figure 

1A). The distinction between neoplastic and non-neoplastic designation was confirmed by 

examining copy number variants (CNVs) inferred from the single cell RNA-seq data (inferCNV). 

We identified numerous MB subgroup specific copy number gains and losses (Figure 1B) that 
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were consistent with CNVs observed by methylation analysis (Table S1). Neoplastic cell clusters 

were distributed broadly according to subgroup, determined by prior analysis (Figure 1A). 

Neoplastic clusters were most cohesive within the SHH subgroup, with 5 of the 7 SHH samples 

colocalizing, a reflection of underlying transcriptomic similarity. The 2 discrete SHH clusters were 

each patient-specific, notably from the two SHH patients with germline TP53 mutations and 

particularly extensive CNV aberrations (Table S1). GP3 demonstrated the least cohesive 

clustering, with all patient samples clustering separately. In GP4 5 of 11 samples colocalized. 

These samples harbored less extensive copy number variance. Collectively, these findings 

suggest that sample specific clustering within subgroups is a function of the extent of CNV 

aberration (Figure 1C). To further investigate this observation, we calculated differential gene 

expression between each tumor and all other tumors (only from the neoplastic cells) to generate 

a list of positive and negative markers for each tumor. The proportion of markers that reside in 

CNVs for that tumor were compared to the proportion of all genes within a CNV for that tumor as 

a negative control. Positive markers of each tumor were only counted as within a CNV region if 

that region had a CNV gain, and negative markers were counted only within a CNV loss. For most 

tumors there is significant enrichment of markers within the CNV regions (Figure 1D). By 

extension, the broad subgroup-specific clustering regions may also be dependent on subgroup-

specific CNV commonalities. These findings underscore the significant contribution of CNVs to 

the transcriptional landscape in MB. 

Given the observed distinct subgroup-specific clustering, SHH, GP3 and GP4 subgroup 

neoplastic cells were individually re-clustered. We used the Harmony alignment algorithm to 

identify similar cell types that had clustered discretely in the prior non-aligned analysis (Korsunsky 

et al., 2019a). Harmony generated neoplastic clusters shared between multiple samples in each 

of the subgroups (Figures 2-4). SHH, GP3 and GP4 samples each formed clusters that were 

consistent with recent data including cell cycle (program A), undifferentiated progenitors (program 
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B) and neuronally-differentiated (program C)(Hovestadt et al., 2019). We therefore annotated 

these clusters in a similar fashion, with further subdivisions within these programs corresponding 

to distinct subpopulations, summarized in Table 1. 

 

GP3 MB contain subpopulations corresponding to neuronal and photoreceptor 

differentiation. 

GP3 tumors (n=7) formed 5 major clusters that included two differentiated cell 

subpopulations (GP3-C2, GP3-C1) in addition to two progenitor (GP3-B1, and GP3-B2) and a 

mitotic (GP3-A) subpopulation (Figure 2A,B). GP3-A, and other GP4-A and SHH-A 

subpopulations, were primarily enriched for cells in G2M and S-phase and therefore were labeled 

cell cycle subpopulations, although we note that other subpopulations contain proliferating cells 

to a lesser extent (Figure S2A). This is in contrast to Hovestadt et al. who reported that GP3 

tumors with MYC amplification lacked differentiated cells altogether (Hovestadt et al., 2019).  

Identification of differentiated subpopulations in GP3 provides insights into neuronal 

lineage specificity in this high-risk MB subgroup. We characterized the transcriptional profiles of 

these populations further using Gene Ontology Term (GOTerm) enrichment and inference of  

active transcription factors (TFs) using pySCENIC (single-cell regulatory network inference and 

clustering)(Van de Sande et al., 2020). The predominant GP3 differentiated subpopulation GP3-

C1 (38% of all GP3 neoplastic cells) is characterized by genes related to RNA processing and 

axo-dendritic transport (Table 1, S2, S3). The less abundant GP3-C2 (15% of neoplastic cells) 

was distinguished by genes and TFs related to photoreceptor development (NRL, IMPG2) (Table 

1, S2-4), a phenotype that has been identified and studied in GP3 but not previously recognized 

as a discrete subpopulation of cells (Cho et al., 2011; Garancher et al., 2018; Kool et al., 2008; 

Korf et al., 1987). We examined this photoreceptor like subpopulation using 

immunohistochemistry (IHC) to chart both morphological and spatial characteristics. 
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Interphotoreceptor matrix proteoglycan 2 (IMPG2), a marker of GP3-C2 that was highly enriched 

for photoreceptor related genes, was examined by IHC in a panel of GP3, GP4 and SHH MB 

FFPE samples. IMPG2 protein expression was shown to be significantly higher in GP3 than GP4 

and SHH (one-tailed Student’s t-test p=1.9x10-7), with an expression score 2 or greater in 6 of 7 

samples (Figure 2C). Moreover, IMPG2 was cytoplasmically expressed in discrete clusters of 

cells in GP3 tumors, suggesting focal areas of GP3-C2 photoreceptor differentiation (Figure 2D). 

Of note, IMPG2 RNA expression has previously been identified as a classification marker of GP3 

(Northcott et al., 2012). 

Next using subpopulation signatures derived from scRNA-seq data we deconvoluted 

(Cibersort) the Medulloblastoma Advanced Genomics International Consortium (MAGIC) 

transcriptomic dataset to estimate subpopulation proportions in individual samples (n=747) 

(Cavalli et al., 2017). For each MB subgroup, we compared subpopulation proportions between 

samples grouped according to subtype, CNVs and clinical outcome to identify significant 

associations. Deconvolution analysis of the GP3 MAGIC cohort (n=141) revealed a prominent 

association between photoreceptor-differentiated subpopulation GP3-C2 and GP3-alpha, that 

has the best clinical outcome of GP3 subtypes. The GP3-C2 proportion was 2.5-fold higher in 

alpha than other GP3 subtypes (p=2.3x10-14), being progressively less abundant in GP3-beta and 

GP3-gamma (Figure 2E). GP3 differentiated subpopulation GP3-C1 was more abundant in GP3-

beta than others (p=0.0027)(Figure 2F).  

 

GP3 progenitor proportions are influenced by MYC and chromosome 8 gain   

Examination of GP3 progenitor subpopulations GP3-B1 and B2 further substantiated the 

previously articulated theory that aberrant MYC activity is responsible for preventing differentiation 

of GP3 progenitor subpopulations (Hovestadt et al., 2019). Both GP3-B1 and B2 shared GOTerm 
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enrichment of translation-related genes, including ribosomal proteins and eukaryotic translation 

elongation factors, and MYC TF activity (Table 1, S3,4). One normal physiological function of 

MYC is to directly enhance Pol I transcription of ribosomal RNA (rRNA) genes in response to the 

cellular demand for protein synthesis (Grandori et al., 2005; van Riggelen et al., 2010). This 

normal physiological role of MYC is recapitulated in the GP3-B progenitor cells, and focal 

amplification of MYC or gain of chromosome 8 is associated with increased proportions of 

progenitor cells versus non-MYC amplified GP3 samples (p=0.013)(Figure 2B). Deconvolution 

analysis showed a significantly higher proportion of progenitor GP3-B1 and GP3-B2 cells in GP3-

gamma than in either alpha or beta subtypes (Figures 2G, H). GP3-gamma samples are 

distinguished by broad copy number gains on chromosome 8, focal copy number gains for MYC 

and the poorest clinical outcome of all MB subtypes (Cavalli et al., 2017). We compared all 

subpopulation proportions to broad CNVs reported for the MAGIC sample cohort, which showed 

that the strongest of these associations was between GP3-B2 and chromosome 8 CNVs, being 

higher in samples with chromosome 8 gain than in samples with chromosome 8 WT or loss 

(Figure 2I). These data are consistent with the higher proportions of GP3 progenitor 

subpopulations in our scRNA-seq samples with gain of chromosome 8 or MYC amplification 

(Figure 2B). With respect to clinical outcome, a higher than median proportion of GP3-B2 

conferred the shortest survival of all GP3 subpopulations (Figure 2J, Table S5), consistent with 

the poor outcome conveyed by Gp3-gamma subtype assignment and MYC amplification. 

The relationship between deconvoluted GP3 subpopulation proportions was examined, 

identifying a significant negative correlation between GP3-C2 and all other GP3 subpopulations 

(Table S6) in particular GP3-B1 (Figure 2K). This analysis demonstrates a continuum of 

differentiated and progenitor cell ratios across GP3 alpha, beta and gamma subtypes, an 

important finding that aid with the correct interpretation of GP3 biology. 
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Chromosome 8 loss is associated with lower proportion of GP4 progenitors. 

 Six major neoplastic subpopulations were identified in the 11 GP4 samples, closely 

matching those programs identified in GP3 (Figures 3A,B; Table 1). Two subpopulations were 

characterized by cell cycle-related gene enrichment (GP4-A1 and A2). We identified 2 progenitor 

subpopulations(GP4-B1 and B2) that were characterized by abundant ribosomal gene expression 

as seen in GP3 progenitors (Table 1, S3, S4). Deconvolution analysis of GP4 MAGIC samples 

(n=325) revealed that the strongest CNV association was between GP4-B1 and chromosome 8 

aberrations (Figure 3C). This association differs from that seen with GP3-B2 in that GP4-B1 

proportions are significantly higher in samples with WT chromosome 8 than those with 

chromosome 8 loss (chromosome 8 gain being largely absent in GP4 MB). This finding implicates 

a role for MYC in the maintenance of a progenitor subpopulation in GP4 as well as GP3 and 

warrants further investigation. GP4 subtypes alpha, beta and gamma also showed variable 

subpopulation proportions, the most distinct being GP4-gamma that had significantly lower 

progenitor population GP4-B1 (p=3.2x10-18)(Figure 3D). 

 

The predominant GP4 MB differentiated subpopulation is distinguished from other 

subgroups by higher expression of glutamatergic marker GRIA2 

The predominant differentiated GP4 subpopulation, GP4-C1 (33% of neoplastic GP4), 

was characterized by gene expression similar to GP3-C1, but showed higher expression of 

GRIA2, a component of glutamatergic lineage neurons. In developing murine cerebellum neurons, 

GRIA2 was identified as a marker of unipolar brush cells (UBCs)(Vladoiu et al., 2019) although 

also expressed in Purkinje cells and cerebellar granular neurons (CGNs)(Ocasio et al., 2019a). 

We compared murine cerebellar lineage scRNA-seq data (Vladoiu et al. 2019) with our MB 

neoplastic subpopulations which showed that murine UBC signatures were not enriched in GP4-
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C1 (Figure S3A), but rather in progenitor subpopulations from all subgroups (Figure S3B).  In GP4 

samples, IHC analysis revealed that GRIA2 positive cells, corresponding to GP4-C1, were 

scattered throughout the tumor parenchyma (Figure 3E). As predicted from the scRNA-seq data, 

GRIA2 protein expression was highest in GP4 and lowest in GP3 (one-tailed Student’s t-test 

p=0.045)(Figure 3F).  

GP4 also showed the potential for photoreceptor differentiation, although to a much lesser 

extent than GP3. The small subpopulation of GP4 photoreceptor differentiated cells (GP4-C2) 

constituted on average 7% of GP4 neoplastic cells, and this proportion was highly variable (Figure 

3B). Comparison of GP4-C2 with other neoplastic subpopulations confirmed the strong correlation 

with GP3-C3 (Figure S2B). The presence of photoreceptor-differentiated cells in GP4 was further 

examined by IHC, with 2 of 11 GP4 samples expressing IMPG2 with an IHC score of 2 or more, 

and isolated IMPG2 positive cells in the remainder (Figure 2G). The presence of photoreceptor-

differentiated cells in GP4 may therefore explain those MB samples that are assigned to the mixed 

GP3/GP4 category, as illustrated by the expression of GP3 nanostring markers IMPG2 and NRL 

(Northcott et al., 2012) in the GP4-C2 subpopulation (Figure S4). By deconvolution analysis, GP4 

subtypes alpha, beta and gamma also showed variable differentiated subpopulation proportions 

across the MAGIC cohort, revealing a significantly higher photoreceptor differentiated 

subpopulation GP4-C2 in GP4-gamma (11-fold higher than others, p=5.7x10-12)(Figure 3G).  

No single GP4 subpopulation was significantly correlated with survival (Table S5), 

although the ratio of progenitor (GP4-B1 and B2 combined) to differentiated (GP4-C1 and C2 

combined) conveyed a significantly shorter survival (Figure 3H). Collectively these findings reveal 

that the better clinical survival reported for GP4-gamma compared to other GP4 subtypes (Cavalli 

et al., 2017) is likely attributable to a relatively higher ratio of differentiated to progenitor cells in 

GP4-gamma tumors.  
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SHH tumors contain a unique differentiated subpopulation that comprises nodular 

regions. 

We identified six major subpopulations of neoplastic cells in SHH tumors (n=9) including 

2 cell cycle  (SHH-A1 and A2), 2 progenitor (SHH-B1 and B2) and 2 neuronally-differentiated 

subpopulations (SHH-C1 and C2) (Figure 4A,B). SHH-C2 was distinguished by stathmin gene 

expression (STMN2 and STMN4) and axon-development ontology enrichment (Tables 1,S2,S3). 

In neurons, STMN2 is involved with neuron development and growth (Hannan et al., 1996), and 

is expressed primarily in CGN sub-lineage postnatal excitatory cerebellar nuclei neurons, unipolar 

brush cells (UBCs) and UBC precursors in the developing murine cerebellum (Ocasio et al., 

2019a; Vladoiu et al., 2019). In GP4, STMN2 expression was seen in undifferentiated progenitors 

(Table 1), suggesting that it marks earlier stages of neuron development than GRIA2, consistent 

with its reported role in developing neurons (Stein et al., 1988). As expected, IHC revealed that 

STMN2 protein expressing cells were predominantly observed in SHH and GP4, with significantly 

lower expression in GP3 (one-tailed Student’s t-test p=0.046)(Figure 4C). Furthermore, STMN2 

positive SHH-C2 cells were enriched in nodules (Figures 4D,E) indicating that SHH-C2 is largely 

restricted to this histological feature. Nodules of neuronal maturation are a classic histologic 

feature of SHH that recapitulates aspects of normal cerebellar development (Eberhart et al., 

2001). Consistent with nodules being exclusive to SHH, SHH-C2 signature genes are distinct 

from SHH-C1 and other subgroup differentiated subpopulations (Figure S2B). Using the MAGIC 

cohort, Cavalli et al. delineated a number of SHH subtypes: two infant subtypes, SHH-beta and 

SHH-gamma (the latter largely comprised of MB with extensive nodularity (MBEN)); a subtype in 

older children, SHH-alpha which harbors frequent p53 mutations; and a largely adult subtype, 

SHH-delta (Cavalli et al., 2017). We deconvoluted the MAGIC SHH transcriptomic cohort (n=214) 

and showed that SHH-C2 was the most differentially distributed subpopulation between these 

subtypes (Figure 4F). SHH-C2 was significantly more abundant in the infant subtypes SHH-beta 
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and gamma than other SHH subtypes (Figure 4F). Consistent with SHH-C2 representing the 

primary population of cells that constitute SHH nodules, this subpopulation was most abundant in 

the particularly nodular SHH-gamma subtype that is associated with SHH variant MBEN. 

Conversely, SHH progenitor populations, in particular SHH-B1, were significantly inversely 

correlated with SHH-C2 (Table S6), being highest in non-infant subtypes SHH-alpha and delta 

(Figure 4G). CNVs were not as strongly correlated in SHH as was seen in GP3 or GP4, the most 

interesting being an increase (2.1-fold higher) in cell cycle subpopulation SHH-A1 in those 

samples with 10q loss (Figure 4H). This supports a role of PTEN loss in upregulation of cell cycle 

in SHH that has was also observed in a PTEN-deficient SHH mouse model (Castellino et al., 

2010).  

The predominant neuronally-differentiated SHH subpopulation SHH-C1 (28% of 

neoplastic SHH cells) matched GP4-C1 in particular (Figure S2B), with enrichment of RNA 

processing and axo-dendritic transport ontologies (Tables 1, S2,S3). SHH-C1 was the only 

subpopulation significantly associated with outcome, its relative abundance being favorable for 

survival (Figure 4I, Table S5).   

SHH progenitors are distinct from GP3 and GP4 by expression of critical components of 

SHH biology. These components include inferred TF activity of CGN progenitor specification gene 

ATOH1 (Table S4) and high expression of genes associated with negative regulation of epithelial 

cell proliferation and WNT signaling (SFRP1, SFRP5) (Tables S2,3). This is consistent with 

studies showing that WNT pathway activation is antagonistic to SHH-driven proliferation (Ocasio 

et al., 2019b; Poschl et al., 2014). SHH progenitor subpopulations SHH-B1 and B2 were similar 

to GP3 and GP4 progenitor subpopulations with respect to abundant ribosome and eukaryotic 

translation elongation factor gene expression (Tables S2,3). The MYCN gene is commonly 

amplified in SHH, and like cMYC can upregulate ribosomal RNA expression as a mechanism of 

universal upregulation of gene expression (Boon et al., 2001). Related to this, germline elongation 
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factor ELP1 mutations have recently been implicated as a major driver in SHH etiology (Waszak 

et al., 2020), underscoring the potential importance of ribosomal biology in SHH progenitors.  

 

The immune cell compartment of MB contains diverse myeloid cell subpopulations 

associated with neurodevelopment. 

The immune cell compartment in MB has not yet been described in its entirety. To develop 

a detailed characterization of immune cell phenotypes in the MB microenvironment we specifically 

examined the myeloid and lymphocyte immune cell subpopulations identified in the initial analysis 

of the MB scRNA-seq data (Figure 1A). Cells identified as lymphocyte or myeloid (n=4669), were 

separated out from neoplastic cells and re-clustered, revealing four lymphocyte, six myeloid cell 

and a single cell cycle-related cluster (Figure 5A). Myeloid and immune cells from multiple 

patients’ samples strongly co-clustered and therefore did not require Harmony alignment.  

An unexpected degree of myeloid cell diversity was observed in the majority of MB 

samples analyzed (Figure 5A). Myeloid populations in the CNS are separated into two main 

lineages -  tissue-resident microglia and peripheral bone marrow-derived myeloid cells – and both 

of these play roles in both immune response and neurodevelopment (Li and Barres, 2018). These 

shared functional roles have hindered the identification of distinguishing markers for the two 

etiological lineages. Consequently, we describe MB myeloid subpopulations according to 

neurodevelopmental or immune processes inferred from transcriptomic signatures (Table S7) and 

cannot for the most part reliably assign subpopulations to resident or peripheral myeloid origins.  

The predominant myeloid subpopulation (34% of myeloid cells) exhibited signatures 

associated with neurodevelopmental roles. Specifically this subpopulation expressed all 

complement component 1q subunits (C1QA, C1QB and C1QC) (Table S7), that are responsible 

for the initiation of the classic complement cascade that is involved in neurodevelopmental 
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synapse elimination (Stevens et al., 2007). This population was thus termed complement myeloid 

(Complement-M). A second myeloid neurodevelopment-associated subpopulation was 

characterized by expression of phagocytosis receptors MRC1 (CD206), CD163, and MERTK that 

are crucial for microglia-mediated clearance of apoptotic cell debris from the developing 

neurogenic niche (Fourgeaud et al., 2016). MRC1 and CD163 are widely recognized markers of 

anti-inflammatory or immunoregulatory M2 myeloid polarization. This population is referred to as 

the M2-activated (M2-M) myeloid population. M2-M cells showed the strongest subgroup 

association, being more abundant (8.8-fold) in SHH than GP3 and GP4 combined in scRNA-seq 

samples (Figure 5B). Myeloid cell scRNA-seq subpopulation signatures were used to deconvolute 

the MAGIC dataset (GP3, GP4, SHH and WNT; n=748). This analysis corroborated the 

observation that M2-M were more abundant in SHH that other subgroups (2.2-fold; p=2.0x10-15) 

(Figure 5C). Further, M2-M abundance was significantly higher in infant SHH subtypes beta and 

gamma than older SHH subtypes alpha and delta (1.8-fold; p=3.7x10-6)(Figure 5C). IHC for M2-

M marker MRC1 (CD206), stained cells with an amoeboid morphology that frequently lined SHH 

nodules (Figure 5D). The co-localization of M2-M with nodules, which are comprised of the 

neuronally-differentiated SHH-C2 subpopulation cells support the hypothesis that this myeloid 

subpopulation is programmed for developmental activity, such as synaptic pruning and elimination 

of apoptotic neuron debris, rather than an immune role. This hypothesis is also supported by age 

restriction of M2-M, being significantly more abundant in infant SHH subtypes that are likely more 

developmentally influenced. 

A single myeloid subpopulation could confidently be designated as microglia, expressing 

widely established microglial markers (P2RY12, TMEM119, SALL1, CX3CR1)(Table S7). Due to 

the relatively low expression of myeloid cell immune activation markers (including HLA class II 

and cytokines/chemokines) this myeloid population was classified as non-activated microglia (NA-

microglia). In contrast to M2-M, NA-microglia trended toward being less abundant in SHH 
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compared to GP3 and GP4 in scRNAseq samples (27-fold)(Figure 5E) and were significantly less 

abundant in SHH in the larger MAGIC cohort (4-fold, p=9.4x10-16)(Figure 5F). These findings are 

congruent with prior studies that identified a less immune active phenotype in GP3 and GP4 than 

SHH (Margol et al., 2015; Maximov et al., 2019).  

Two further myeloid subpopulations exhibited transcriptomic profiles associated with 

antigen presentation, both expressing MHC class II genes, suggesting an active immune 

functional role as opposed to the developmental/homeostatic roles inferred for the prior myeloid 

subpopulations. The first of these was distinguished from previous myeloid subpopulations by 

expression of chemokines (CCL3, CCL4, CXCL8 and IL1B) and MHC class II (HLA-DRB1, HLA-

DRA, HLA-DPA)(Table 7), suggesting immune cell recruitment and antigen presentation 

functions, respectively. This population is referred to as the chemokine myeloid (Chemokine-M) 

cell population. A second antigen presenting myeloid subpopulation was distinguished by C-

lectins (CLEC10A, CLEC4A, CLEC12A), CD1 subunits (CD1C, CD1D and CD1E) and MHC class 

II (HLA-DQA1, HLA-DQB1) all of which are associated with antigen presentation by macrophages 

and/or dendritic cells, and was therefore named the dendritic cell-like myeloid (DC-M) 

subpopulation. Outcome analysis of deconvoluted myeloid immune subpopulation factions did not 

identify any significant association with survival for antigen presentation-associated myeloid 

subpopulations Chemokine-M or DC-M (Table S5). A survival advantage was instead observed 

in those GP3 and GP4 with a higher than median proportion of complement-M cells, suggesting 

a significant role for myeloid cells associated with neurodevelopmental processes in MB biology. 

Analysis of lymphocytes in MB was limited by their rarity in this tumor type compared to 

other pediatric brain tumors, including glioblastoma, as has previously been observed (Griesinger 

et al., 2013). The most abundant MB lymphocyte population was identified as T-cells (CD3D, 

TRAC), constituting ~80% of lymphocytes, with no separation of CD4 from CD8 T-cells at this 

level of resolution (Figure 5A). The remaining lymphocyte clusters were NK cells (NKG7, GNLY), 
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B-cells (MS4A1, CD79A) and regulatory T-cells (FOXP3, CTLA4). None of these lymphocyte 

subpopulations was significantly more abundant in any subgroup in scRNA-seq samples. 

Deconvolution of the larger MAGIC cohort did not yield usable results, likely due to the scarcity of 

lymphocyte specific transcripts in bulk transcriptomic data. 

 

Genetically engineered mouse models of MB contain subpopulations corresponding to 

human subgroup-specific subpopulations 

Genetically engineered mouse models (GEMs) for GP3 and SHH MB provide valuable in 

vivo experimental models. We sought to define the cellular heterogeneity present in these with 

respect to identified human MB subpopulations, which is critical for correct interpretation of GEM 

experimental results. Two GP3 models, the first (termed MP) driven by overexpression of cMyc 

and dominant negative Trp53 (Pei et al., 2016; Pei et al., 2012), and the second driven by co-

expression of Myc and Gfi1 (and termed MG)(Lee et al., 2019; Northcott et al., 2014), and one 

SHH model driven by mutant Smo activated in the Atoh1 lineage (Math1-Cre/SmoM2 - termed 

MS)(Mao et al., 2006) were examined using scRNA-seq. Harmony was used to align GEM with 

human MB subgroup scRNA-seq data, revealing that GEM cells clustered most closely their 

intended corresponding human MB subgroups (Figure 6A,B). 

Both GP3 GEMs were generated by retroviral overexpression of oncogenes in neural 

progenitors, and transplantation of these progenitors into the cerebellum of adult NOD-SCID-

IL2R-gamma (NSG) mice. In model MP, scRNA-seq of 5,422 cells identified 7 neoplastic and 2 

non-neoplastic subpopulations (immune and fibroblast) (Figure 6C). The 7 neoplastic GEM 

subpopulations were compared to human GP3 neoplastic subpopulations using three methods: 

(i) comparison of the top 200 marker genes for GEM neoplastic subpopulations (Table S8) 

compared to corresponding subgroup subpopulations (Figure 6D) as used previously to compare 
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neoplastic subpopulations between subgroups; (ii) UMAPs of GEM cells labeled with human 

neoplastic subpopulation metagene signatures (Figure S5A); and (iii) correlation of the genome-

wide mean expression of each GEM neoplastic subpopulation with human neoplastic 

subpopulations which are then visualized using a directed bipartite graph (Figure S5B)(Laughney 

et al., 2020). Results of these analyses were used to assign GEM subpopulations to cell cycle 

(A), progenitor (B) and differentiated (C) phenotypes. This approach identified MP subpopulations 

corresponding to human GP3 cell cycle (MP-A1, -2), progenitor (MP-B1,-B2, -B3) and 

differentiated neoplastic subpopulations (MP-C1, -C2) (Figure 6C). Similarly, the second GP3 

GEM MG harbored neoplastic and non-neoplastic subpopulations (8,144 cells) (Figure 6E), which 

were comprised of 9 neoplastic clusters that grossly corresponded to progenitor (MG-B1, -B2, -

B3, -B4) and differentiated subpopulations (MB-C1, -C2, -C3) (Figures 6F, S6, Table S8), but with 

two subpopulations with no apparent human equivalent (MB-N1, -N2) and no apparent cell cycle 

subpopulations. Both GP3 GEMs harbored subpopulations corresponding to the neuronally-

differentiated human GP3-C1, but with only a very minor subpopulation of cells that were enriched 

for photoreceptor differentiated GP3-C2 metagenes (Figures S5A, S6A). These data suggest that 

the MP GEM caries more fidelity to human GP3 tumors 

SHH GEM model MS was comprised of subpopulations that also corresponded to human 

SHH neoplastic subpopulations. Five neoplastic subpopulations and 8 non-neoplastic 

subpopulations were revealed by scRNA-seq analysis (12421 cells; Figure 6G). Neoplastic cells 

(n=7,123) showed strong concordance with human SHH neoplastic subpopulations, comprising 

2 cell cycle (MS-A1, -2), 1 progenitor (MS-B1) and 2 differentiated subpopulations (MS-C1, -C2). 

(Figure 6H, Figure S7, Table S8), including a neuronally-differentiated subpopulation (MS-C2) 

corresponding to the human SHH nodule-associated SHH-C2 subpopulation. Cumulatively we 

show that the GEM MB models are consistent with human MB and can be used to test therapeutic 

response and resistance to novel agents. 
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Human and mouse MB cell atlas browser 

We have created a publicly available scRNA-seq resource, the Pediatric Neuro-oncology 

Cell Atlas (pNeuroOncCellAtlas.org). This interactive resource allows users to study expression 

of transcripts at the single cell level for neoplastic and immune cells in human samples and GEM 

models, with extensive annotations.  

 

Discussion 

Recognition of the inherent intra-tumoral cellular heterogeneity in MB is critical for the 

correct interpretation of MB cancer biology, an aggressive childhood brain tumor that has seen 

few treatment advances in 20 years. The present study addresses this problem using scRNA-seq 

to study childhood MB, revealing neoplastic and immune subpopulations that had not previously 

been identified. We characterize these previously unexplored subpopulations to provide deeper 

insights into a broad range of aspects of MB biology. 

Our study identified associations between chromosomal aberrations both with single cell 

clustering patterns and progenitors proportions. We show that separation of sample-specific cell 

clusters is driven in part by the expression of genes located in areas of chromosomal copy number 

gain and loss. Copy number variance of chromosome 8 correlated with the proportion of 

progenitor populations in GP3, as previously observed, but this association was also observed in 

GP4. These findings underscore the important role that CNVs play in MB cellular heterogeneity 

and their potential impact on subgroup/subtype assignment. MB cellular heterogeneity may 

confound tumor sub-classifications that are based on sequencing of bulk-tumor samples. Several 

very large international consortium studies have accumulated hundreds of patient samples and 

subjected bulk-tumor samples to genomic, transcriptomic and methylomic analyses (Cavalli et al., 

2017; Northcott et al., 2017; Sharma et al., 2019). This work has resulted in identification of well-
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established molecular subgroups of MB, and further subdivision of these into multiple subtypes. 

In addition to the effect of CNVs, our study reveals differential subpopulation proportions between 

MB subgroups and subtypes, and some restriction of consensus subgroup transcriptional markers 

to discrete subpopulations. It will be critically important to determine how differences in CNVs and 

cellular heterogeneity correspond with difference between tumor subgroups. 

Our analysis revealed the presence of a photoreceptor-differentiated subpopulation that 

was seen predominantly in GP3 and to a lesser extent in GP4 tumor samples. This finding in GP3 

samples is concordant with numerous prior studies that had identified a photoreceptor gene 

signature in MB (Korf et al., 1987) and more recently as a defining feature of GP3 (Cho et al., 

2011; Kool et al., 2008). The proportion of photoreceptor differentiated cells was variable in GP3, 

being inversely proportional to MYC-associated progenitor subpopulations. In the MAGIC 

transcriptomic dataset, the photoreceptor subpopulation was estimated to be significantly greater 

in the GP3-alpha than GP3-gamma MYC-associated subtype, and consequently is associated 

with a comparatively favorable clinical outcome. The presence of photoreceptor subpopulation in 

a subset of GP4 samples runs counter to the prior understanding of photoreceptor differentiation 

as a hallmark of GP3 and serves as an example of the underlying biological commonalities 

between GP3 and GP4 that confound subgroup assignment based on bulk-tumor sample 

analysis. 

  We show that neuronally-differentiated subpopulation SHH-C2 is the major cell type that 

constitutes SHH nodules. The SHH-C2 subpopulation was estimated to be the most abundant in 

infant subtypes SHH-beta and -gamma, further supporting the association of nodule formation 

with early development. SHH-C2 is particular abundant in the SHH-gamma subtype that is largely 

composed of the MBEN histological type that carries a particularly favorable prognosis. Functional 

analyses of the molecular pathways driving differentiation toward the SHH-C2 is feasible now that 

this subpopulation has been molecularly defined and may reveal therapeutically relevant insights. 
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This approach can explored by application of scRNA-seq to in vivo GEM models, that we and 

others have shown to recapitulate the cellular heterogeneity of SHH MB (Cheng et al., 2020).  

The diversity of MB infiltrating myeloid subpopulations revealed by our study is 

significantly greater than what was previously understood using flow and histological studies. A 

number of myeloid subpopulations are distinguished either by neurodevelopment or antigen-

presenting gene signatures. During early development, myeloid cells guide neural development, 

in part by interacting with developing neurons, phagocytosing apoptotic cells, pruning synapses, 

modulating neurogenesis, and regulating synapse plasticity and myelin formation (Schafer and 

Stevens, 2015). Two MB myeloid subpopulations exhibited neurodevelopmental-related 

characteristics, which differs from the immune role that has been assumed for MB tumor infiltrating 

immune cells. In SHH we identified an M2-myeloid subpopulation that was particularly abundant 

in nodular linings. In GP3 and GP4, we identified a complement-expressing myeloid 

subpopulation with potential neurodevelopmental roles that was associated with survival. These 

neurodevelopmentally-related myeloid subpopulations may be either subgroup or age restricted, 

M2-myeloid cells being specific to SHH that is predominant in infants. In addition to those M2-

myeloid subpopulation with a potential role in neurodevelopment, we identified a number of 

subpopulations harboring gene expression profiles indicative of  active immune roles, in particular 

chemokine- and DC-like myeloid subpopulations that are both characterized by MHC class-II 

expression. Conversely, the presence of naïve microglia is consistent with previous observations 

of a particularly immunosuppressed microenvironment in MB (Griesinger et al., 2013). As this 

“cold” immunophenotype is likely to impede immunotherapy in MB, strategies targeting the 

specific immunophenotype of MB are necessary and can be advanced based on the findings of 

the present study. 

Collectively, our study provides further insight into the neoplastic and immune cellular 

heterogeneity of the most common medulloblastoma subgroups and how this intra-tumoral 
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heterogeneity is reflected in GEM models of MB. These data show that tumor cells present a 

range of differentiation states that varies with each subgroup, and also show subgroup-specific 

interaction of the tumors with their immune microenvironments. We also provide interactive 

browsers for each of the described datasets that will facilitate the on-going interpretation of 

complex childhood MB biological data.  
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Figure titles and legends 

Figure 1. Sample specific clustering in MB scRNA-seq is a function of the extent of 

chromosomal copy number gain and loss. (A) Unaligned UMAP projection of single-cell 

expression data of 28 MB patient samples reveals neoplastic clusters and non-neoplastic 

lymphocyte and myeloid clusters. (B) Inference of CNVs in scRNA-seq data. (C) Copy number 

gain or loss event count overlaid onto unaligned UMAP projection of MB cells. (D) Proportions of 

sample-specific over- and under-expressed marker genes in regions of copy number gain and 

loss respectively, compared to portion of all genes in areas of CNV (hypergeometric enrichment 

analysis, * p= < 0.01, ** p< 1e-10, *** p< 1e-100.) 

 

Figure 2. GP3 MB are comprised of progenitor and differentiated neoplastic 

subpopulations including a photoreceptor-differentiated cluster. (A) Harmony alignment of 

GP3 neoplastic cells colored by identified clusters. (B) Subpopulation proportions in each GP3 

sample. (C) GP3-C2 photoreceptor differentiated subpopulation marker IMPG2 IHC score in MB 

(GP3, n=7; GP4, n=11; SHH, n=10). (D) Representative IHC staining pattern of IMPG2 (brown) 

in a GP3 patient sample (scale bar = 50µm). Deconvoluted (E) GP3-C2 photoreceptor, and (F) 

GP3-C1 neuronally-differentiated subpopulation fractions i(MAGIC GP3 cohort). Deconvoluted 

(G) GP3-B2, and (H) GP3-B1 progenitor subpopulation fractions in the (MAGIC GP3 cohort: GP3-

alpha, n=67; GP3-beta, n=37; GP3-gamma, n=37). Association of (I) chromosome 8 gain, and (J) 

patient survival with proportion of GP3-B2  (MAGIC GP3 cohort) (see also Table S5). (K) 

Subpopulation fraction correlation (Pearson) between GP3-C2 and GP3-B1 (MAGIC GP3 cohort) 

colored by subtype (see also Table S6). 
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Figure 3. GP4 MB neoplastic cell heterogeneity. (A) Harmony alignment of GP4 neoplastic 

cells colored by identified clusters.(B) Subpopulation proportions in each GP4 sample. (C) 

Association of chromosome 8 loss, and (D) subtype with deconvoluted proportion of GP4-B1 

(MAGIC GP4 cohort). (E) Representative IHC staining pattern of GP4-C1 neuron differentiated 

subpopulation marker GRIA2 (brown) in a GP4 patient sample (scale bar = 50µm). (F) GP4-C2 

subpopulation marker GRIA2 IHC score in a cohort of MB (GP3, n=7; GP4, n=11; SHH, n=10). 

(G) Deconvoluted GP4-C2 photoreceptor subpopulation fractions (MAGIC GP4 cohort: GP4-

alpha, n=97; GP4-beta, n=109; GP4-gamma, n=119). (H) Association of patient survival with ratio 

of progenitor to differentiated deconvoluted fractions (MAGIC GP4 cohort) (see also Table S5).  

 

Figure 4. SHH MB neoplastic subpopulations include a nodule-associated neuronally-

differentiated subpopulation. (A) Harmony alignment of SHH neoplastic cells colored by 

identified clusters. (B) Subpopulation proportions in each SHH sample. (C) SHH-C2 nodule-

associated subpopulation marker STMN2 IHC score in a cohort of MB (GP3, n=7; GP4, n=11; 

SHH, n=10). (D,E) Representative IHC staining patterns of SHH-C2 subpopulation marker 

STMN2 (brown) in a SHH patient samples (scale bars = 100µm (D) and 50µm (E)). Deconvoluted 

(F) SHH-C2 nodule-associated, and (G) SHH-B1 progenitor subpopulation fractions (MAGIC SHH 

cohort: SHH-alpha, n=62; SHH-beta, n=33; SHH-delta, n=75; SHH-gamma, n=44).  (H) 

Association of chromosome 10q loss with deconvoluted proportion of GP4-A1 (MAGIC SHH 

cohort). (I) Association of patient survival with deconvoluted SHH-C1 neuron-differentiated 

fraction (MAGIC SHH cohort) (see also Table S5). 

 

Figure 5. The immune landscape of MB. (A) non-harmonized alignment of MB tumor infiltrating 

immune cells colored by identified clusters.(B) M2-myeloid subpopulation fractions (scRNA-seq 
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cohort; GP3, n=7; GP4, n=11; SHH, n=9).  (C) Deconvoluted M2-myeloid (M2-M) subpopulation 

in MB subtypes (MAGIC cohort). (D) Representative IHC staining patterns of M2-myeloid 

subpopulation marker MRC1 (brown) in an SHH patient sample showing accumulation at nodule 

linings (scale bar = 100µm). (E) Non-activated microglia (NAM) subpopulation fractions (scRNA-

seq cohort).  (f) Deconvoluted non-activated microglia (NAM) subpopulation in all MB subtypes 

(MAGIC cohort).  

 

Figure 6. GEM cellular heterogeneity and fidelity with human MB subpopulations Alignment 

of GEM with human MB subgroup scRNA-seq data, revealing that GEM cells clustered most 

closely their intended human MB subgroups. (A) UMAP projection of Harmony aligned (theta=2) 

GEM and human MB scRNA-seq data. (B) Hierarchical clustering of GEM and human MB scRNA-

seq data. (C) Non-harmonized alignment of GEM model MP single cells colored by identified 

clusters, and labelled according to corresponding subgroup human neoplastic subpopulations, 

and (D) Jaccard index for the top 200 marker genes between GEM model MP and human GP3 

neoplastic subpopulations. This was repeated for (E,F) GP3 GEM model MG, and (G,H) SHH 

model MS.  Abbr: MP, GP3 GEM Myc/Trp53; MG, GP3 GEM Myc/GFI1; MS, SHH GEM Math-

1/SmoM2; vasc., vascular; oligo, oligodendrocyte.  
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KEY RESOURCES TABLE 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

GRIA2 mouse MAb (1:200) Abcam Clone EP929Y 

IMPG2 rabbit PAb (1:400) Novus NBP2-58919 

MRC1 mouse Mab (1:500) Sigma Clone 5C11 

STMN2 rabbit PAb (1:1000) Novus NBP1-49461 

Biological Samples   

Human surgical samples (refer to Table S1) University of Colorado / 
Morgan Adams 
Foundation tumor bank 

Refer to Table S1 

Chemicals, Peptides, and Recombinant Proteins 

   

Critical Commercial Assays 

Allprep RNA/DNA Mini Kit Qiagen Cat #80204 

Chromium Single Cell V2 and V3 Chemistry Library 
Kit, Gel Bead & Multiplex Kit and Chip Kit 

10x Genomics Cats #120237 

#120262 

#120236 

   

Deposited Data 

scRNAseq and Methylation data superseries  To be uploaded to GEO 

MB scRNAseq browsable webresource  pneuroonccellatlas.org 

Experimental Models: Cell Lines 

Mouse MB model MP: MycT58A/ DNp53 Tumor Initiation and 
Maintenance Program, 
NCI-Designated Cancer 
Center, Sanford 
Burnham Prebys Medical 
Discovery Institute, La 
Jolla, CA 92037, USA 

MycT58A/ DNp53 
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Mouse MB model MG: MycT58A/ GFI1 Tumor Initiation and 
Maintenance Program, 
NCI-Designated Cancer 
Center, Sanford 
Burnham Prebys Medical 
Discovery Institute, La 
Jolla, CA 92037, USA 

MycT58A/ GFI1 

Mouse MB model MS: Math1-Cre/SmoM2 Department of 
Neurology, UNC School 
of Medicine, Chapel Hill, 
NC 27599, USA 

Math1-Cre/SmoM2 

Experimental Models: Organisms/Strains 

   

Oligonucleotides 

   

Software and Algorithms 

R (version 4.0.2) CRAN https://cran.r-project.org/ 

Bioconductor R (version 3.11) Roswell Park 
Comprehensive Cancer 
Center 

https://www.bioconductor
.org/  

CellRanger (version 3.0.2) 10x Genomics https://support.10xgeno
mics.com/single-cell-
gene-
expression/software/over
view/welcome 

Seurat (version 3.2) Satija laboratory https://satijalab.org/seura
t 

pySCENIC (version 0.9.18+1.ge5f9b7c) 
 

 https://github.com/aerts
lab/pySCENIC 
 

MolecularNeuropathology.org version 12 German Cancer 
Research Center (DKFZ) 

https://www.molecularne
uropathology.org/mnp 

InferCNV (version 1.3.6) 
 

Broad Institute https://github.com/broadi
nstitute/inferCNV 

Custom code Github https://github.com/rnabio
co/medulloblast 

Prism 8.0.1 GraphPad NA 

Other 
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STAR Methods 

RESOURCE AVAILABILITY 

Lead Contact. 

Further information and requests for reagents may be directed to and will be fulfilled by 

the Lead Contact, Andrew Donson (andrew.donson@cuanschutz.edu).  

 

Materials Availability.  

This study did not generate any new unique reagents 

 

Data and Code Availability.  

Custom code used in this study is available at https://github.com/rnabioco/medulloblast. 

ScRNAseq and methylation data to be deposited in the National Center for Biotechnology 

Information Gene Expression Omnibus (GEO) database. All MB scRNAseq data will also be made 

available as a browsable web resource at the Pediatric Neuro-oncology Cell Atlas 

(pneuroonccellatlas.org). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Patient sample tumor cell preparation 

MB samples for the scRNA-seq study were dissociated and viably banked at the time of 

surgery at our institution over a 10-year period. Patient material was collected at our institution at 

the time of surgery with consent (COMIRB 95-500). Samples were collected into PBS for 

subsequent scRNA-seq analysis and snap frozen for bulk-tumor methylome analysis (28 primary 
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and 1 matched recurrence sample) (Table S1). ScRNA-seq samples were rapidly dissociated into 

single cells using a mechanical process as described previously (Griesinger et al., 2013), viably 

cryopreserved and banked at <80oC for later use. In this way we were able to batch samples and 

thus limit experimental variance without compromising sample quality, as DMSO cryopreservation 

has been shown to match and in some cases exceed the quality of fresh samples with respect to 

scRNA-seq analysis (Wohnhaas et al., 2019). 

 

Methods for MP and MG Tumor Generation and Tumor Cell Preparation 

Cerebellar stem/progenitor cells (Prominin1+ cells) were purified by fluorescence 

activated cell sorting (FACS) from the cerebella of postnatal day 5–7 (P5–P7) C57BL/6J pups as 

previously described (Northcott et al., 2014; Pei et al., 2016). To generate MP or MG tumors, cells 

were infected with viruses produced from pMSCV-MycT58A-IRES-Luc and pMSCV-DNp53-

IRES-GFP (for MP tumors) or pMSCV-GFI1-IRES-GFP (for MG tumors). After overnight infection, 

cells were washed and 10,000 cells were stereotactically injected into the cerebellum of 6- to 8-

week-old NSG mice. Animals were monitored weekly and euthanized when they showed signs of 

tumor. Tumors were then enzymatically dissociated and viably frozen prior to scRNA-seq 

analysis. 

 

Method for Math1-Cre/SmoM2 SHH GEM tumor generation and tumor cell preparation 

To generate mice with SHH-driven medulloblastoma, we crossed SmoM2 mice (Jackson 

Labs, stock # 005130) with Math1-Cre (Jackson Labs, stock #011104) to generate M-Smo mice. 

All mice were of species Mus musculus and crossed into the C57BL/6 background through at 

least five generations. All animal studies were carried out with the approval of the University of 

North Carolina Institutional Animal Care and Use Committee under protocols (19-098). Mice were 

raised until P15 and then tumors were harvested under general anesthesia. Tumor samples were 
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dissociated using the Papain Dissociation System (Worthington Biochemical) as previous 

described (Ocasio et al., 2019a). Briefly, tumor samples were incubated in papain at 37°C for 15 

min, then triturated and the suspended cells were spun through a density gradient of ovomucoid 

inhibitor. Pelleted cells were then resuspended in 2 ml of Bambanker media (fisher Scientific # 

NC9582225) and viably frozen prior to scRNA-seq analysis. 

 

METHOD DETAILS 

Tissue harvest for single cell suspension, single-cell RNA library preparation and 

sequencing 

ScRNA-seq was performed as previously described (Gillen Cell Reports 2020). Briefly, 

samples were thawed in batches and flow sorted (Astrios EQ) to obtain viable single cells based 

on propidium iodide (PI) exclusion. With the study goal of performing scRNA-seq on 2,000 cells 

per sample, we utilized a Chromium Controller in combination with Chromium Single Cell V2 and 

V3 Chemistry Library Kits, Gel Bead & Multiplex Kit and Chip Kit (10X Genomics). Transcripts 

were converted to cDNA, barcoded and sequenced on Illumina NovaSeq6000 to obtain 

approximately 50 thousand reads per cell.  

 

ScRNA-seq data analysis 

Raw sequencing reads were demultiplexed, mapped to the human reference genome 

(build GRCh38) and gene-expression matrices were generated using CellRanger (version 3.0.1). 

The resulting count matrices were further filtered in Seurat 3.1.0 (https://satijalab.org/seurat/) to 

remove cell barcodes with less than 200 genes or 500 UMIs, more than 30% of UMIs derived 

from mitochondrial genes, or more than 40,000 UMIs. This filtering resulted in 39,946 single cells 
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across all samples (Figure S1). After normalization, these cells were clustered using the Seurat 

workflow based on dimensionality reduction by PCA using the 4,000 most variable genes. Coarse 

cell types were defined (Immune, myeloid, and stroma cells) were assigned based on marker 

gene expression. Tumor cells were readily identified based on their discrete clustering patterns, 

and the presence of CNVs generated using inferCNV(v.1.3.6). Tumor cells from each subgroup 

were then reanalyzed separately. We applied Harmony alignment (theta = 1.5) to correct for inter-

sample variation due to experimental or sequencing batch effects (Korsunsky et al., 2019a).  After 

assessment of clustering using a variety of dimensions, we used 50 harmony dimensions to 

cluster the data and perform dimensionality reduction using Uniform Manifold Approximation and 

Projection (UMAP).  Differential expression and marker gene identification was performed using 

Presto (Korsunsky et al., 2019b).  

Chromosomal CNVs of single cells from scRNA-seq were inferred on the basis of average 

relative expression in variable genomic windows using InferCNV 

(https://github.com/broadinstitute/inferCNV). Cells classified as non-neoplastic were used to 

define a baseline of normal karyotype such that their average copy number value was subtracted 

from all cells.  

Neoplastic subpopulations were characterized by direct examination of neoplastic-

subpopulation specific gene lists, GO-term enrichment analysis, and inference of transcription 

factor regulatory networks. GO-term enrichments were calculated by gProfiler2 (v.0.1.9). Module 

scores for each subpopulation gene signature were generated using the top 200 markers from 

each subpopulation ranked by adjusted p-value, then secondarily ranked by positive fold change. 

Modules were calculated based on the methods in Tirosh, I et al, as implemented in the Seurat 

function AddModuleScore (Tirosh et al., 2016). Single-cell regulatory network inference and 

clustering (pySCENIC) was used to identify transcription factor regulatory networks at the single 

cell level (Van de Sande et al., 2020) . Bipartite graphs were generated, using iGraph, between 
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subpopulations using the correlation of normalized gene expression of shared variable genes as 

edge weights (Laughney et al., 2020). Edges were removed if adjusted p-values were < 0.05 or 

if the correlations were less than 0.2 (GEM to human comparisons) or less than 80% of the 

maximum correlations for human to human comparisons. One-to-one orthologs were used when 

comparing human and mouse single cell datasets and gene signatures.  Harmony alignment 

(theta = 2) was performed to generate a UMAP projection containing mouse and human 

neoplastic subpopulations.   

 

Bulk-tumor methylome analyses 

DNA was extracted from snap frozen EPN-PF surgical tumor samples (Qiagen, Allprep 

DNA/RNA mini kit). Twenty eight surgical tumor samples were from initial presentation and 1 

matched sample from a metastatic first recurrence. Methylome analysis of DNA from presentation 

samples was performed using the Illumina 850K methylation array. Resulting IDAT files were 

uploaded to MolecularNeuropathology.org (https://www.molecularneuropathology.org/mnp) 

which provided subgrouping into MB molecular subgroups and chromosomal copy number 

variants (CNVs) (Table S1). Methylomic profiles of MB samples were further classified to MB 

subtypes by Dr. Martin Sill.  

 

Deconvolution 

Cibersort was used to perform deconvolution of bulk-tumor MB transcriptomes using 

scRNA-seq subpopulation signature genes (Newman et al., 2015). The combined MAGIC 

transcriptomic dataset (n=747) was used unlogged and used as the mixture file. A signature gene 

input matrix was generated from log2 values of normalized raw scRNA-seq expression data 
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averaged for neoplastic and immune clusters (Table S9). Cibersort was run using these datasets 

with 100 permutations.   

 

Immunohistochemistry 

Immunohistochemistry was performed on 5-µm formalin-fixed, paraffin-embedded tumor 

tissue sections using a Ventana autostainer. Antigen retrieval was performed by incubation in 

citrate solution pH 6.0 for 10 min at 110oC. Slides were treated with primary antibodies for GRIA2 

(1:200 dilution), IMPG2 (1:400), MRC1 (1:500) and STMN2 (1:1000) for 32 minutes at 37oC. All 

immunostained sections were counterstained with hematoxylin. Neuropathological review of 

staining and blinded IHC scoring was then performed (A.M.D., N.W.).  

 

Survival studies 

Survival data was obtained for a subset of the MAGIC transcriptomic cohort (n=539). 

Survival analyses were performed using Prism (GraphPad) software, with outcome censored at 

5 years. Hazard ratios (HRs) for progression free survival (PFS) and  overall survival (OS) were 

estimated using log-rank (Mantel–Cox) analysis of high versus low (i) expression of each 

subpopulation as defined by median deconvoluted subpopulation fractions, and (ii) IHC as defined 

by median score or present versus absent.  

 

STATISTICAL ANALYSIS 

Statistical analyses were performed using R, Prism (GraphPad), and Excel (Microsoft) 

software. Details of statistical tests performed are included in figure legends. For all tests, 

statistical significance was defined as P < 0.05.  
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Supplementary Tables 

Table S1. Patient and sample details, related to Figure 1. 

Table S2. Neoplastic subpopulation marker genes, related to Figures 2-4 and Table 1. 

Table S3. Neoplastic subpopulation GOTERM enrichments, related to Figure 2 and Table 1. 

Table S4. Neoplastic subpopulation inferred transcription factor activity, related to Figure 2 and 

Table 1. 

Table S5. Survival analyses of deconvoluted MAGIC cohort subpopulation proportions, related to 

Figure 2-5. 

Table S6. Correlation matrix for deconvoluted MAGIC cohort subpopulation proportions, related 

to Figure 2. 

Table S7. Immune subpopulation marker genes, related to Figure 5. 

Table S8. GEM subpopulation marker genes, related to Figure 6. 
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