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Abstract 

The identification of community structure in graphs continues to attract great interest in several 

fields. Network neuroscience is particularly concerned with this problem considering the key roles 

communities play in brain processes and functionality. Most methods used for community 

detection in brain graphs are based on the maximization of a parameter-dependent modularity 

function that often obscures the physical meaning and hierarchical organization of the partitions 

of network nodes. In this work, we present a new method able to detect communities at different 

scales in a natural, unrestricted way. First, to obtain an estimation of the information flow in the 

network we release random walkers to freely move over it. The activity of the walkers is separated 

into oscillatory modes by using empirical mode decomposition. After grouping nodes by their co-

occurrence at each time scale, k-modes clustering returns the desired partitions. Our algorithm was 

first tested on benchmark graphs with favorable performance. Next, it was applied to real and 

simulated anatomical and/or functional connectomes in the macaque and human brains. We found 

a clear hierarchical repertoire of community structures in both the anatomical and the functional 

networks. The observed partitions range from the evident division in two hemispheres –in which 

all processes are managed globally– to specialized communities seemingly shaped by physical 

proximity and shared function. Our results stimulate the research of hierarchical community 

organization in terms of temporal scales of information flow in the brain network.   

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2020. ; https://doi.org/10.1101/743732doi: bioRxiv preprint 

https://doi.org/10.1101/743732


3 

 

Highlights 

- Oscillatory modes of networks’ signals carry information on architectural rules. 

- Meaningful partitions of the brain networks are found over different temporal scales. 

- The multiscale organization of the brain responds to the function of its components.  
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 1. Introduction  

Network community detection constitutes a problem of current vital importance. Among all 

the nodes and interactions constituting a network, structures of subdivisions exist. In each of these 

communities (also referred to as groups or clusters), nodes have a greater probability of being 

locally connected than to nodes in other groups (Fortunato & Hric, 2016; Garcia, Ashourvan, 

Muldoon, Vettel, & Bassett, 2018). One example with several applications in the literature (Girvan 

& Newman, 2002; Porter, Mucha, Newman, & Warmbrand, 2005; Traud, Kelsic, Mucha, & Porter, 

2011) is the tight-knit of a person’s friendships and the exchanges they have with other groups of 

friends. The identification of community structures provides insights into organizational 

principles, not only in terms of isolation of the clusters per se but also for the collective dynamical 

spreading of processes over the network (Fortunato & Hric, 2016).  

In the brain, neural units connect to one another over different spatio-temporal scales in 

intriguing and fascinating ways (Christopher J Honey, Kotter, Breakspear, & Sporns, 2007; 

Moradi, Dousty, & Sotero, 2019; Sotero & Trujillo-Barreto, 2008; Valdes-Sosa et al., 2009). The 

modularity of such a system is believed to critically impact the phenomena of segregation 

(processes occurring in groups of heavily interconnected brain units) and integration (the 

combination of information exclusive to specialized brain regions) (Rubinov & Sporns, 2010; 

Sporns, 2013). Other advantages of a community structure relate to adaptability, robustness to 

failure and the reduction of wiring costs –see (Garcia et al., 2018) and (Betzel et al., 2017) and the 

references therein. Additionally, grouping exists across different levels (a hierarchy) for supporting 

rapid responses to changes (Garcia et al., 2018). As an illustration, consider the large community 

of neural conglomerates in one cerebral hemisphere. This can be broken into smaller communities 

according to the functional role of their members (Thomas Yeo et al., 2011). An important initial 
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step for the study of brain structure, however, is the definition of the nodes and edges in the graph 

and the scale to be considered. This selection relies on the data available, which depends on the 

imaging modality used to record it. For example, anatomical associations can be examined through 

diffusion-weighted magnetic resonance imaging data (DWMRI) and functional neuroimaging or 

electrophysiological methods, e.g., fMRI and electroencephalogram provide insights into the 

dynamic interactions between brain regions (Y. Iturria-Medina et al., 2007; Valdes-Sosa et al., 

2009).  

Regardless of the network data, the bulk of community studies in the brain use variants of 

Newman’s modularity function (Newman, 2006) and its maximization through Louvain-like 

algorithms (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) for the detection of clusters of 

regions (Sporns, 2013). The partitions obtained through these methods maximize intra-community 

edge weights relative to a specific random network null model (Bassett et al., 2013; Garcia et al., 

2018). Overall, these algorithms are problematic in that the output structure depends on the chosen 

null model and on a resolution parameter, 𝛾, as well.  Exploration of the resolution parameter space 

yields several structures that occasionally present hierarchy (Bassett, Khambhati, & Grafton, 

2017). How could one set 𝛾 so that a meaningful set of communities –and not any partition– is 

revealed? In many instances, researchers exclusively report the partition obtained for 𝛾 = 1 

(Fukushima et al., 2018). Nevertheless, it is known that high-modularity partitions can be found 

for 𝛾 = 1 in random, unstructured graphs, where no community structure should be detected 

(Fortunato & Hric, 2016).  Recently, a useful heuristic has been introduced to retain the so-called 

graph’s most salient partition (Bassett et al., 2013; Garcia et al., 2018). In brief, a grid search is 

performed on the resolution parameter to find the value that generates the set of partitions with the 

greatest similarity. However, modularity maximization tends to split large communities into 
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smaller pieces, which is a consequence of the choice of the null model. This effect is not solved 

by multi-resolution approaches (Fortunato & Hric, 2016). These techniques have also been adapted 

to generate hierarchical output structures (Ashourvan, Telesford, Verstynen, Vettel, & Bassett, 

2019; Jeub, Sporns, & Fortunato, 2018) though the limitations with regard to the choice of null 

models and resolution parameters persist.  

Other algorithms exist with somewhat fewer applications in brain research (Fortunato & 

Hric, 2016; Gates, Henry, Steinley, & Fair, 2016).  Given the connectivity characteristics of 

communities, the utilization of random walkers for their identification is fairly straight-forward. 

Walkers tend to stay trapped in a cluster before transitioning to a different group (Fortunato & 

Hric, 2016). Walktrap (Pons & Latapy, 2005) and Infomap (M. Rosvall & Bergstrom, 2008) are 

examples of detection methods that employ random walk dynamics. The former is a costly, 

parameter-dependent method that exploits the probability of transition between two nodes in a 

certain number of steps as a measure of vertex similarity to group nodes. In the latter, a codeword 

is assigned to each vertex the walker encounters. Infomap considers networks with community 

structure to be analogous to geographical maps: unique codewords (street names) are only 

necessary to identify nodes (streets) in one specific community (city). Although Infomap has 

proven effective in artificial benchmark graphs and large datasets, it has performed more poorly 

in classical real networks traditionally utilized for testing algorithms (Gates et al., 2016; Hric, 

Darst, & Fortunato, 2014), e.g. the Zachary karate club (Girvan & Newman, 2002; Zachary, 1977). 

Those networks, for which ground-truth partitions are known, resemble some commonly analyzed 

brain graphs in that they have relatively small size and present various types of adjacency matrices, 

e.g., sparse, like those obtained from DWMRI or dense, from fMRI (Gates et al., 2016).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2020. ; https://doi.org/10.1101/743732doi: bioRxiv preprint 

https://doi.org/10.1101/743732


7 

 

The description in terms of dynamical flows, as utilized in Walktrap and Infomap despite 

the above-mentioned limitations, is one that appeals to neuroscientists. In the first place, structural 

features like node degrees, the number of edges of the brain graph, etc., condition the dynamics of 

network processes (Fortunato & Hric, 2016). Secondly, the transmission of information in the 

brain is, obviously, a dynamical process (Sotero, Sanchez-Rodriguez, Dousty, Iturria-Medina, & 

Sanchez-Bornot, 2019), brain connectivity being adaptive and function-sensitive within the 

context of structural constraints (Friston, 2011). For these reasons, we believe that the analysis of 

community structure and the identification of hierarchical architectures in brain networks can 

benefit from considering the dynamical aspects of its information flow. Thus, in this paper, we 

present a novel approach to community detection specifically designed for brain graphs, although 

not limited to them. 

We build on the methodology introduced by Sotero et al. in a recent work (Sotero et al., 

2019). These authors studied information flow in brain networks by using the fraction of walkers 

that a given one finds at each node as the variable describing the evolution of the walker over the 

network. This function of time, taken as the network’s signal, can be decomposed into its 

constituent frequencies by using empirical mode decomposition (EMD) (N. E. Huang et al., 1996). 

Each of these oscillatory modes then associates with the notion of a temporal scale. Here, we 

incorporate a final step for performing data partitioning through 𝑘-modes clustering (Z. Huang, 

1998). The arrangement of the nodes visits recorded throughout the walkers’ flows at the different 

temporal scales allows the unveiling of a hierarchical organization. Intuitively, a walker would 

spend considerable time in large communities, which is seen in slow oscillatory modes. 

Analogously, fast modes could reflect the motion over smaller clusters. Initially, we test the 

algorithm on benchmarks and real networks with known community structures such as Girvan-
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Newman (Girvan & Newman, 2002), Lancichinetti-Fortunato-Radicchi (Lancichinetti, Fortunato, 

& Radicchi, 2008) and the Zachary karate club (Zachary, 1977). We then proceed to extract 

communities existing in macaque (Christopher J Honey et al., 2007) and human anatomical 

connectivity matrices (Yasser Iturria-Medina, Sotero, Toussaint, & Evans, 2014), as well as in-

silico (Cabral, Hugues, Sporns, & Deco, 2011) and in-vivo (Smith et al., 2015) functional 

connectivity graphs. Meaningful patterns of communities obtained here support the reliability of 

our method.  

2. Materials and methods  

2.1 The network’s signal 

Let us imagine a network of 𝑛 nodes, possibly presenting community structure, in which a 

random walker is set free. The walker moves over the edges available to it. In general, the 

probability of transitioning from node 𝑗 towards node 𝑖 in the next time step is given by (Zhang, 

Shan, & Chen, 2013):  

𝑝𝑗→𝑖 =
𝐶𝑗𝑖

∑ 𝐶𝑗𝑖
𝑛
𝑗=1

          (1) 

where 𝐶𝑗𝑖 is the weight of the connection from node 𝑗 to node 𝑖. In other words, the process is 

described by Markov dynamics of first-order (the transition probabilities depend on the previous 

state) (Delvenne, Yaliraki, & Barahon, 2010). The walker tends to visit the nodes in a community 

before a route takes it to an outsider, a member of a different community –see (Fortunato & Hric, 

2016) and the references therein. This is because of the predominantly local connectivity pattern 

of communities and the low number of outbound routes (Delvenne et al., 2010; Fortunato & Hric, 

2016; M. Rosvall & Bergstrom, 2008; Martin Rosvall, Esquivel, Lancichinetti, West, & Lambiotte, 

2014; Zhou, 2003). Many studies have extensively explored the particularities of community 

structure in terms of diffusion processes (Delvenne et al., 2010; M. Rosvall & Bergstrom, 2008; 
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Martin Rosvall et al., 2014; Zhou, 2003). Specifically, (Delvenne et al., 2010) characterized the 

stability of partitions across time scales: “natural communities at a given time scale correspond to 

[…] sets of states from which scape is unlikely within the given time scale”. Over short (fast) time 

scales, small clusters persist, whereas larger clusters arise as time evolves.  

Now, suppose that 𝑊(𝑊 ≫ 𝑛) walkers simultaneously move over the same network. Each 

time one walker appears in a node, it finds fellow walkers, while others visit different nodes. Let 

us compute, for each walker, the fraction of the total number of other walkers that it encounters at 

each time step. After 𝑇 time steps, there exist 𝑊 time series reflecting different realizations of the 

flow of information in the network (Sotero et al., 2019). Those series incorporate information on 

the structure of the network (e.g., the number of walkers at a hub is expected to be persistently 

high), and the paths therein existing (i.e., the random walk itself). Finally, for generalization 

purposes –as the ratio of walkers would depend on the size of the network– we standardize such 

time series. Fig. 1a shows an exemplary signal corresponding to one of the walkers flowing over 

one of the networks considered in this paper. The horizontal axis is two-fold, showing both the 

temporal iteration (lower) and the indexes of the nodes the selected walker visits at each time step. 

Given the size of the graphs in this study, i.e., brain networks with 𝑛~102, we fix 𝑊 = 1000. 

The representation of the network we come up with can be decomposed to obtain oscillatory 

modes at different time scales. The temporal scales of random walks processes in complex 

networks depend on the network structure (Sotero et al., 2019). In other words, the network 

structure can be seen through different dynamical levels ranging from slow time scales in which 

walkers practically travel through the entire network to faster scales consisting, for instance, of the 

abrupt transitions from one node to the next. Empirical mode decomposition (EMD) (N. E. Huang 

et al., 1996) solves the problem of finding a nearly orthogonal basis for any complicated, nonlinear 
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and non-stationary process without the need for any predefined model. The components into which 

the signal is broken down representing temporal scales are conventionally called intrinsic mode 

functions (IMFs). Each of these satisfy that: 1) the number of zero-crossings and extrema of the 

function are either equal or differ by one, and 2) the mean of its upper and lower envelopes is zero. 

Components are different as to conveyance of information (Sotero, 2016). For notation purposes, 

IMF1 denotes the fastest mode (highest frequency). The rest are named accordingly.    

 In our interpretation oriented to community detection, the IMFs of the signal corresponding 

to the fraction of walkers reflect hierarchical organization of the network. For example, fast 

temporal scales of the fraction of walkers could associate with partitions composed of small groups 

of nodes. In slower modes, the walker may get to visit all the nodes existing in larger communities. 

To give an example, as shown in Fig. 1b, a walker may quickly transition over nodes 74, 76, 65, 

54 and 60 (seen with IMF2) or more slowly appear at those but also at others (IMF4). The five 

elements mentioned above may represent a community; those and the ones identified by the green 

color, may constitute a broader community.  

 

Fig. 1 goes around here  

Fig. 1. A typical network’s signal. a)  Standard fraction of other random walkers one walker finds 

while flowing in a network. The lower horizontal axis shows the temporal progression of the 

walker. The upper axis shows the succession of nodes it visits. b) Empirical mode decomposition 

of the signal in (a). The activity of five nodes that are found between two zero-crossings of IMF2 

is highlighted in blue. Together with those, other nodes appear between zero-crossings of IMF4 (in 

green). Only the first 30 time steps of 𝑇 = 5000 are shown for visualization purposes.  
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2.2 Finding nodes that cluster together 

The following step consists of exploiting the features of the IMFs and grouping nodes 

together. For each oscillatory mode and walker, we take chunks of data consisting of the network 

nodes seen between zero crossings. In our previous example, 74, 76, 65, 54 and 60 would be one 

of such data chunks for the fast IMF2 (Fig. 1b).  Other sets of nodes will appear in different 

portions. One may think of our selection of the chunks in terms of the oscillations of a spring-mass 

system. There, points to the right/left of the zero-reference cluster together (the spring is 

stretched/compressed). Each time the signal for the displacement of the mass passes through the 

equilibrium position it is also switching from one ‘community’ to the other. An animation of the 

oscillations of the spring-mass system is shown in the Supplementary Video.  

 

Supplementary video goes around here 

Supp. video. The oscillations of a spring-mass system. Points to the right/left of the zero-reference 

cluster together (the spring is stretched/compressed). When the signal for the displacement of the 

mass (right panel) passes through the equilibrium position it is also switching from ‘the community 

of positive coordinates’ to ‘the community of negative coordinates’ and vice versa.  

 

The zero crossings-analogy bases on the interpretation and symmetry properties of the IMFs. 

In practice, nodes outside a certain true community 𝐶𝑞, may occasionally pertain to a chunk of 

otherwise genuine members of 𝐶𝑞, given the existence of edges to that community. Likewise, all 

nodes belonging to a community do not necessarily have to appear together between two 

contiguous zero crossings. The problem is how to identify authentic node clusters over the effects 

of noise with the information available from the IMFs. To address this issue, we turn to 
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unsupervised learning, particularly to clustering. In clustering analysis, the goal is to group objects 

based on the information available –features describing the data (Assent, 2012; Ronan, Qi, & 

Naegle, 2016; Steinbach, Ertöz, & Kumar, 2004). The more similar items in a group are and the 

more different to those in other groups, the better the clustering (Steinbach et al., 2004).   

To capture the natural structure of the data, we proceed to cluster network nodes –or objects, 

in conventional clustering jargon– given their co-appearance between zero-crossings of the IMFs 

–the features. Features are binary vectors encoding the positions of the nodes appearing together 

in the between zero-crossings chunks. In other words, we think of each of the IMFs as independent 

ideal oscillators whose zero-crossings separate various communities of nodes, the clustering 

algorithm being the tool that resolves the natural shortcomings of this abstraction. A complete 

representation of the IMFs corresponding to each walker (Fig. 1) in terms of binary variables is 

thus obtained (Fig. 2a). To ensure a proper sampling of all nodes and their co-appearances, we 

select the features corresponding to a high number of walkers (200 out of the 1000 simulated). 

This is a random selection, in the same way that subsets of variables are sometimes chosen when 

clustering data with multiple independent signals (Jiliang Tang, Salem Alelyani, & Huan Liu, 

2014; Ronan et al., 2016). 

Here, we employ the so-called k-modes clustering algorithm (Z. Huang, 1998). K-modes is 

an extension of the popular k-means method (Macqueen, 1967) for categorical variables, binary 

features being a particular case of those. A simple matching dissimilarity is used as notion of 

distance in k-modes. Two objects, 𝒙 and 𝒚 are far from each other by a quantity that equals the 

number of mismatching features (of 𝑀 features), namely: 

𝑑(𝒙, 𝒚) = ∑ 𝛿(𝒙𝑙 , 𝒚𝑙)𝑀
𝑙=1 , 𝛿(𝒙𝑙 , 𝒚𝑙) = {

0      (𝒙𝑙 = 𝒚𝑙)

1      (𝒙𝑙 ≠ 𝒚𝑙)
     (2) 
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 The algorithm minimizes a cost function after a vector (the mode1) for each of the k clusters 

has been selected and objects grouped around it such that their dissimilarity is minimal. Alike k-

means, Huang’s k-modes yields locally optimal solutions depending on the starting conditions. 

Thus, one necessary first step is running the algorithm several times to select the solution with the 

lowest overall cost. The number of initial conditions for the clustering algorithm is empirically set 

to 50 in this work, based on the consistency of the solutions obtained.  With all these considerations 

k-modes is run (Fig. 2b). The implementation of k-modes we used is available from 

https://github.com/nicodv/kmodes.  

2.3 Accepting/rejecting hierarchical partitions 

Clustering algorithms generally find clusters even in the absence of underlying structure, 

highlighting the necessity of validating solutions (Ronan et al., 2016). In k-modes, objects are 

allocated in k clusters exactly. However, unless the user has prior knowledge on the distribution 

of the data –which rarely occurs– k is a parameter to be determined. Several metrics are intended 

to elucidate the correct number of clusters in the data from running the algorithm over a range of 

k. These metrics use measures of separation, compactness, or both. Various studies, most famously 

the one by Milligan and Cooper (Milligan & Cooper, 1985), have looked at the performance of 

indexes for assessing the results over numerical data and Euclidean distances. To the best of our 

knowledge, such measures have not been transformed to account for categorical data (binary, in 

particular) and matching dissimilarity, as recommended by Huang in his seminal paper (Z. Huang, 

1998). Therefore, in Appendix B, we briefly describe six measures with satisfactory performance 

for recovering true cluster structure, i.e.: the Calinski-Harabasz index (Anderson, 2001; Calinski 

 
1The terms employed here are mostly faithful to the ones used in each of the specific literature, combined. This is why 

the word mode appears with two meanings: one refers to the oscillatory functions in which a signal can be decomposed 

(the intrinsic mode functions), the other represents ‘the centroids’ of the clusters of nodes obtained with binary features 

(as in k-modes clustering). 
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& Harabasz, 1974), the C-index (Milligan & Cooper, 1985), a modified Duda-Hart criterion 

(Duda, Hart, & Stork, 2001), silhouette width (Kaufman & Rousseeuw, 1990), one of the family 

of Dunn indexes (Bezdek & Pal, 1998; Dunn, 1973) and the Davies-Bouldin index (Davies & 

Bouldin, 1979; Dubes, 1987). Details on their utilization and customization to account for binary 

data, if applicable, are also included. Importantly, as the success ratio of an individual index in 

determining the true number of clusters is limited and may depend on the data (Dubes, 1987; 

Milligan & Cooper, 1985), here, we adopt the criterion of selecting the best number of clusters 

based on a majority rule (Charrad, Ghazzali, Boiteau, & Niknafs, 2014). Failure to establish a 

majority of the indexes indicating the same correct number of clusters may hint at the lack of a 

definitive community pattern. This is usually accompanied by at least one of the indexes rejecting 

the existence of community structure altogether (see Appendix C). Fig. 2c shows an example in 

which most of the validation measures indicate the existence of 𝑘 = 4 clusters, to finalize the 

illustration of the basic pipeline of our method. For the networks considered in this paper, 

distributions of nodes in up to 20 clusters only were investigated.   

 

Fig. 2 goes around here  

Fig. 2. Clustering network nodes. a)  -For each IMF, ‘features’ are constructed so that nodes 

appearing together between zero-crossings of the IMF are assigned a logical 1. For example, 

Feature 2 here corresponds to the highlighted nodes for IMF4 of Fig. 1b. Such description is 

extended through all zero-crossings of one IMF and to other walkers to guarantee a proper 

sampling of the network nodes and their close acquaintances in the temporal scale. b) The obtained 

data matrix feeds a k-modes clustering algorithm. For one instance of the data and 𝑘 = 4 clusters, 

the algorithm returns the solution shown (e.g. nodes 76, 77 and 78 are in “community 3”). c) After 
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exploring the 𝑘-space, all the solutions are considered according to several validation indexes. In 

the example, the Calinski-Harabasz index and the silhouette width, both presenting an absolute 

maximum, together with C-index and the Duda-Hart measure (having absolute minimums), 

suggest the existence of 4 clusters in the data. This is sufficient to come to a conclusion although 

the resting indexes (Dunn and Davies-Bouldin) present relative maximum and minimum at 𝑘 = 4, 

respectively, which according to their definition may as well indicate the presence of network 

organization in 4 communities. Values of 𝑘 for which k-modes yields singleton communities are 

not shown (𝑘 = [13, 20], 𝑘 ∈ ℕ).  

The process illustrated in this figure should be performed for many combinations of walkers (to 

build consensus partitions) and for all the IMFs (to unveil hierarchical organization).   

 

The exploration over values of k should be performed for each of the IMFs. The following 

intuitive rule of thumb is followed. First, take the slowest IMF in the decomposition of the signal 

corresponding to the fraction of walkers. After running the clustering algorithm, determine the 

number of communities existing. Move on to the next IMF and determine its corresponding 

partition and the number of clusters present. If this number is equal to any obtained beforehand, 

reject the previous partition and accept only the current one. Else, retain both partitions (with 

different numbers of clusters). Proceed with the analysis until all the IMFs have been considered. 

This way, a hierarchical organization is unveiled.  

One last issue to consider is the stochasticity that is inherent to most community detection 

techniques (Bassett et al., 2013; Fortunato & Hric, 2016). In our method, this is expressed as sets 

of randomly chosen walkers which are considered to build clustering features. The application of 

the clustering algorithm over those subsets of features can yield slightly different partitions. To 
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present unique partitions, we use consensus clustering (Strehl & Ghosh, 2003). One starts by 

building a consensus matrix, 𝑻, that accounts for the co-occurrence of nodes in communities. Non-

significant relationships between nodes are removed by thresholding the co-occurrence matrix. 

Such a threshold is set to the highest value of all co-occurrences in the association matrix resulting 

from random permutations of the original partitions (Bassett et al., 2013). Then, the algorithm is 

applied over 𝑻 until all the partitions are identical (the ‘true-partition’). The results reported in this 

paper correspond to the consensus partition after applying k-modes clustering to 50 sets of 

independent features for each of the networks. Their similarity with known ground-truth 

communities is analyzed by using adjusted mutual information, AMI (N. Vinh, Epps, & Bailey, 

2010) (see Appendix D).  

2.4 Data description and processing 

2.4.1 Benchmarks 

Artificially generated graphs and a real network with known group structure were used to 

assess the performance of our algorithm. We chose simple benchmark graphs with features alike 

the brain networks for which the application was intended, e.g. a similar number of nodes. 

2.4.1.1 Girvan-Newman benchmarks (GN) 

These graphs are random with known community structure. A GN benchmark consists of 

128 nodes and four communities, with 32 nodes each. The average expected degree of a node is 

16 (Girvan & Newman, 2002).  A fraction of those connections (𝜇) is made to vertices in other 

communities. As such fraction increases, algorithms usually struggle to pinpoint the underlying 

community structure. Here, we set 𝜇 = 0.1 (Lancichinetti & Fortunato, 2009) and applied our 

detection algorithm over both binary and weighted versions of the GN model. One limitation of 

GN is its inability to reproduce the scale-free property of real networks (heterogeneous node degree 
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distributions, node degree and community sizes following a power-law distribution) (Lancichinetti 

et al., 2008).  

2.4.1.2 Lancichinetti-Fortunato-Radicchi benchmarks (LFR) 

A more realistic benchmark, LFR does account for the heterogeneous and skewed 

distribution of the degree and community size. Both these parameters are chosen from power-law 

distributions.  Networks are built by joining stubs at random (Fortunato & Hric, 2016; 

Lancichinetti et al., 2008). We kept the value of the mixing parameter at 0.1. The average degree 

in a network of 𝑛 = 100 nodes was set to 13 and the upper extreme of the degree distribution to 

27. Consequently, the randomly generated networks (binary and weighted) utilized here had 5 

communities, with sizes [26, 23, 21, 20, 10].  

The GN and LFR networks used in this work were generated by using code available from 

(https://www.santofortunato.net/resources, LFR benchmark graphs). All the code parameters were 

set to their default values except for the ones above-mentioned.  

2.4.1.3 Zachary’s karate club 

The karate club network collects the interactions of 34 individuals over three years (Zachary, 

1977). A conflict over the price of the karate lessons escalated and provoked the fission of the 

group as the supporters of the club’s instructor formed a new organization, separate from the 

original one that stayed with the president. Thus, Zachary’s data encompasses one of the few 

examples of nearly-definitive ground-truth communities, the two resulting groups (Hric et al., 

2014). Many of the detection algorithms existing in the literature are tested on their ability to 

recuperate Zachary’s factions. Such a task is usually performed over a binary connectivity matrix 

for the members of the club (Girvan & Newman, 2002; Hric et al., 2014; Newman, 2004). In this 

study, instead, we used the weighted version provided by Zachary, in which the strength of an edge 
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is given by the number of external contexts where interactions between two individuals were 

observed (see Appendix A, Fig. S1, for the adjacency matrix that fixes some inconsistencies in 

Zachary’s report). The weights were normalized to the [0,1] interval.  

2.4.2 Brain networks 

We investigated the community structure of multiple brain networks, including macaque and 

human structural connectomes, simulated functional interactions based on Kuramoto oscillators 

(Cabral et al., 2011) and resting-state functional networks in the healthy human brain.  

2.4.2.1 Macaque visual and sensorimotor anatomical network  

Cortico-cortical connections existing between large-scale areas of the macaque neocortex 

have been identified through anatomical tracing studies (Malcolm P Young, 1993). Among all the 

areas and pathways summarized in Young’s paper, only those lying in the cortical visual and 

somatosensory-motor systems are considered here (see Fig. S2). This connectivity matrix, with 46 

nodes, is only slightly different than the one utilized in the network structure study by Honey et al. 

(Christopher J Honey et al., 2007), where visual areas were labeled following (Felleman & Van 

Essen, 1991). Several connections are reciprocal. However, in general, the network is directed and 

binary, with 1’s in a row indicating the efferent projections reported for the given area –see (Van 

Essen & Felleman, 1991; M P Young, 1993) for more details on the cortical areas.  

2.4.2.2 Human brain anatomical network 

An average human brain anatomical network (Yasser Iturria-Medina et al., 2014) was also 

constructed and analyzed in this study. The original data is freely available by The Cognitive Axon 

(CoAx) Lab, in the Center for the Neural Basis of Cognition and Department of Psychology at 

Carnegie Mellon University (http://www.psy.cmu.edu/~coaxlab/data.html), who acquired and 

processed the data. Participants in the study included 60 subjects (29 males and 31 females; ages 
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18 to 45 years, mean 26 ± 6), recruited from the local Pittsburgh community and the Army 

Research Laboratory in Aberdeen Maryland. All subjects were neurologically healthy, with no 

history of either head trauma or neurological or psychiatric illness.  

Ethics statement 

The procedure was approved by the institutional review board at Carnegie Mellon 

University. Participants provided informed consent to participate in the study and consent to 

publish any research findings based on their provided data (Dunovan, Lynch, Molesworth, & 

Verstynen, 2015). 

Image acquisition 

Participants were scanned on a Siemens Verio 3T system in the Scientific Imaging & Brain 

Research (SIBR) Center at Carnegie Mellon University using a 32-channel head coil. Image 

collection was performed with the following parameters: 50 min, 257-direction DSI scan using a 

twice-refocused spin-echo EPI sequence and multiple q values (TR = 9916 ms, TE= 157 ms, voxel 

size = 2.4×2.4×2.4 mm, FoV = 231×231 mm, b-max = 5,000 s/mm2, 51 slices). Head movement 

was minimized during the scan. 

Image processing 

 All images were processed using a q-space diffeomorphic reconstruction method (Yeh & 

Tseng, 2011) to register the voxel coordinates into MNI space (Evans, Kamber, Collins, & 

MacDonald, 1994). As a result of the processing across all 60 subjects, a final template image 

(CMU-60 DSI) was created by averaging the ODF maps. This template constitutes a detailed and 

unbiased representative map of the nervous fiber orientations in the young healthy brain.   

Next, we estimated probabilistic axonal connectivity values between each brain voxel and 

the surface of each considered gray matter region (voxel-region connectivity) using a fully-
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automated fiber tractography algorithm (Y. Iturria-Medina et al., 2007) and the intravoxel fiber 

ODFs of the CMU-60 DSI Template. The tracking parameters were imposed as follows: a 

maximum of 500 mm trace length and a curvature threshold of ±90º. The anatomical regions were 

defined following the labeling procedure by Klein & Tourville (Klein & Tourville, 2012), from 

which 78 regions were considered –see (Y Iturria-Medina et al., 2016; Sanchez-Rodriguez et al., 

2018) for more details. Based on the resulting voxel-region connectivity maps, the anatomical 

connection probability between any pair of regions 𝑖 and 𝑗 (0 ≤  𝐴𝐶𝑃𝑗𝑖  ≤  1, 𝐴𝐶𝑃𝑗𝑖 = 𝐴𝐶𝑃𝑖𝑗) was 

calculated as the maximum voxel region connectivity value between both regions. For any pair of 

regions 𝑖 and 𝑗, the 𝐴𝐶𝑃𝑗𝑖 measure (Y. Iturria-Medina et al., 2007) reflects the degree of evidence 

supporting the existence of the hypothetical white matter connection, independently of the 

density/strength of this connection. A network backbone, containing the dominant connections in 

the regional connectivity map, was computed using a minimum-spanning-tree based algorithm 

(Rubinov & Sporns, 2010). It was the resulting minimum spanning tree the network that we used 

(Fig. 3a).  

2.4.2.3 Simulated human brain functional network 

To construct a representation of functional interactions in the brain, simulations of the 

Kuramoto model (Kuramoto, 1975) were performed. The Kuramoto model is a classical dynamical 

system that describes the behavior of a set of coupled oscillators. For the sake of consistency and 

contrast, the anatomical parcellation described in the previous section was conserved, while the 

relative coupling between two nodes in the network of oscillators corresponded to the backbone-

𝐴𝐶𝑃 measure between regions 𝑗 and 𝑖. The evolution of the phase of the 𝑖-th oscillator, 𝜃𝑖, is given 

by (Daffertshofer & van Wijk, 2011): 

�̇�𝑖 = 𝜔𝑖 +
𝜅

𝑛
∑ 𝐴𝐶𝑃𝑗𝑖 sin(𝜃𝑗 − 𝜃𝑖)𝑛

𝑗=1         (3) 
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where 𝜅 is a global coupling strength and 𝜔𝑖 is the intrinsic frequency of node 𝑖. In all our 

simulations, we drew the natural frequencies from a standard Gaussian distribution and the initial 

conditions from a uniform distribution in the interval [0, 2𝜋). A total of 250 sets of natural 

frequencies and initial conditions were used. System (3) was numerically solved via a Euler 

scheme, with time step Δ𝑡 = 0.001𝑠 and 𝑡𝑡𝑜𝑡𝑎𝑙 = 50𝑠. The first simulated 10𝑠 were discarded in 

all occasions to reduce the effect of transients in the results.  

Intuitively, the collective behavior of the system depends on the parameter 𝜅. Stronger 

interactions (high 𝜅) overcome the dispersion of the intrinsic frequencies yielding coherence in the 

network, whereas in the low−𝜅 regime oscillators tend to remain asynchronous (Breakspear, 

Heitmann, & Daffertshofer, 2010; Daffertshofer & van Wijk, 2011). The degree of synchrony of 

the oscillators is quantified through the phase uniformity (K. V. Mardia, 1975): 

𝑅(𝑡) =
1

𝑛
|∑ 𝑒𝜄𝜃𝑗(𝑡)𝑛

𝑗=1 |          (4) 

In our calculations, a grand-average phase uniformity value for each coupling strength, 𝜅, 

was obtained by averaging 𝑅(𝑡) in the considered time interval across all simulations with such 𝜅 

(Fig. S3). Similarly, a so-called 𝜅-dependent functional connectivity matrix was also calculated. 

To do so, we followed Cabral et al. (Cabral et al., 2011) and assumed an electrophysiological 

measure of the brain activity, such as the mean firing rate or the excitatory postsynaptic potential 

over the brain region, to be given as 𝑦𝑖(𝑡) = 𝑦0 sin(𝜃𝑖(𝑡)). Functional connectivity for a pair of 

nodes was then defined as the Pearson correlation between their 𝑦𝑖(𝑡) and 𝑦𝑗(𝑡) signals, for each 

simulation. The representative interaction matrix associated with 𝜅 was finally obtained after 

Fisher-transforming the pairwise correlation coefficients, averaging, performing one-sample t-

tests (𝛼 = 0.05), correcting by false-discovery rate and applying the inverse transformation 
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(Bordier, Nicolini, & Bifone, 2017). Functional connectivity matrices for 𝜅 = 5 (𝑅 ≈ 0.12), 𝜅 =

30 (𝑅 ≈ 0.47) and 𝜅 = 150 (𝑅 ≈ 0.98) are shown in Fig. 3b, Fig. 3c and Fig. 3d, respectively.  

 

Fig. 3 goes around here  

Fig. 3. Human brain networks of the 78-regions anatomical parcellation. a) Anatomical 

connections between 78 brain areas. b) Functional connectivity obtained from superimposing 

Kuramoto oscillators to the matrix in (a). The global coupling strength is 𝜅 = 5. c) As in (b), 

with 𝜅 = 30. d) As in (b) and (c), with 𝜅 = 150.  

 

2.4.2.4 Human brain resting-state fMRI network 

Organization of the human brain in terms of functional connectivity was studied by using 

resting-state fMRI data and a parcellated connectome obtained by means of independent 

component analysis (ICA) (Mckeown et al., 1998), and available from the Human Connectome 

Project (HCP). The HCP500 "PTN" (Parcels, node Timeseries and Netmats) dataset used in this 

study (https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/) was publicly released via the central HCP 

ConnectomeDB database in late 2014. Access to the HCP data is available online through 

https://db.humanconnectome.org/. We provide a short description of the dataset, following (Smith 

et al., 2015), and additional processing steps. Further details can be found elsewhere (Smith et al., 

2013; Uǧurbil et al., 2013; Van Essen et al., 2013).  

Data 

Resting-state fMRI data (rfMRI) was acquired from 461 healthy subjects (190 males and 

271 females; ages 22 to 35 years) on a 3-T Siemens connectome-Skyra scanner. Each of the four 

15-minutes runs of each subject had temporal resolution 0.73 s and spatial resolution 2-mm 
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isotropic. T1-weighted and T2-weighted structural images of resolution 0.7-mm isotropic and B0 

field mapping were also carried out (Smith et al., 2015).  

Pre-processing and Group-ICA 

Data were preprocessed according to (Smith et al., 2013) and had artifacts removed using 

ICA+FIX (Griffanti et al., 2014). The rfMRI runs were temporally demeaned and had variance 

normalization applied (Beckmann & Smith, 2004).  Group-principal component analysis (PCA) 

output was generated by MIGP (MELODIC’s Incremental Group-PCA), comprising the top 4500 

weighted spatial eigenvectors (Smith et al., 2015). The MIGP output was fed into group-ICA using 

FSL's MELODIC tool (Beckmann & Smith, 2004), applying spatial-ICA at several different ICA 

dimensionalities, 𝑛. Spatial-ICA was applied in grayordinate space (surface and subcortical grey 

matter voxels) with volumetric MNI152 3D-space versions of these maps being available (see 

below).  

Network matrices 

For a given group-ICA decomposition, the set of ICA spatial maps was mapped onto each 

subject's rfMRI time-series data to derive one representative time-series per ICA component. 

Effectively, each ICA component is considered as a network "node". The node time-series were 

obtained by estimating the principal eigen-time-series within each ICA component (O’Reilly, 

Beckmann, Tomassini, Ramnani, & Johansen-Berg, 2010).  Network matrices were obtained from 

the node time-series. Network modeling was performed through the FSLNets toolbox 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). For each subject and ICA dimensionality, the 

HCP provides a connectivity matrix where the strength of any connection is estimated using "full" 

normalized temporal correlation between every node time-series and every other (Smith et al., 

2013).  
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Dimensionality and Group average connectivity matrix 

A set of ICA maps can be considered a parcellation (Smith et al., 2015). The dimensionality 

determines the number of distinct ICA components; a low number typically means that the regions 

within the spatial component maps will be bigger. Each ICA map (node in the parcellation) is 

given as a set of non-overlapping voxels in MNI152 space in the file ‘melodic_IC_sum’ of the 

HCP500 "PTN" release. In this work, we picked 𝑛 = 25 from all the dimensionalities considered 

by the HCP. This is i) to expeditiously illustrate the applicability of the methodology and ii) to 

facilitate the display and interpretability of the results through comparison with well-established 

resting-state sub-systems (Thomas Yeo et al., 2011). To assign each node to one of these sub-

systems, we first co-registered and resampled the 17-sub-systems solution of (Thomas Yeo et al., 

2011), available from https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011, 

to the space of volumetric ICA maps using spm_reslice.m in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/). The greatest overlap (number of common voxels) was used 

to define a node’s assignment to a resting-state sub-system (Betzel, Gu, Medaglia, Pasqualetti, & 

Bassett, 2016; Sacchet et al., 2016). This correspondence is shown in Table S1. Nodes 17, 18 and 

23 did not present any significant overlap with the 17 resting-state sub-systems and were 

eliminated from the analysis. Finally, a group connectivity matrix was obtained by averaging the 

Pearson correlation individual matrices as in section 2.4.2.3 (see Methods, Simulated human brain 

functional network) and is shown in Fig. S4.  

2.4.3 Data and code availability statement 

The datasets and codes analyzed during the current study are available from public 

repositories, which have been referenced throughout the paper. A specific set of codes containing 

a demonstration on how to concatenate the method pipeline is offered 
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at https://www.soterolab.com/software. All calculations but the detection of clusters were 

performed in MATLAB R2019a (The MathWorks Inc., Natick, MA, USA). Python 2.7 (Python 

Software Foundation, https://www.python.org/) was used for an implementation of the k-modes 

algorithm.  

3. Results  

3.1 Community detection in benchmark graphs 

Table 1 shows the results of the application of our method in benchmark graphs (see 

Methods, Benchmarks). The AMI value (see Appendix D), appearing in the last column, illustrates 

the degree of similarity between the obtained partitions and the ground-truth community structure 

known for each of the graphs. For both instances of the GN model (binary and weighted), the right 

partition was found over a range of IMFs. In the case of the LFR benchmarks, our method unveiled 

the 5 communities planted at IMF6.  Over slower IMFs than the ones reported in Table 1, the 

coarser organization of the networks was in some cases observed, e.g. one of the ground-truth 

communities stood alone and the rest merged. The analysis of faster IMFs did not return any 

community structure (see Appendix B and Appendix C). Finally, in the case of the karate club, the 

two known fractions in which it split were nearly obtained over IMF3.  

 

Network No. Nodes No. Communities IMF found AMI 

GN (binary) 128 4 8-4 1 

GN (weighted) 128 4 8-4 1 

LFR (binary) 100 5 6 1 

LFR (weighted) 100 5 6 1 
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Zachary’s  34 2 3 0.83 

Table 1. Characteristics of the benchmarks and results of the application of our detection method. 

For each network, the number of nodes and known communities existing are given. The IMFs over 

which our method finds the right number of communities appear in the fourth column. In the last 

column, the adjusted mutual information values quantifying the degree of similarity between the 

solutions returned by the algorithm and the ground-truth structures are shown.  

 

The results for the network of Zachary’s karate club are further illustrated in Fig. 4. A 

schematic representation of the two-communities structure that was revealed appears in Fig. 4a. 

Fig. 4b contains information regarding the validation measures, showing the selection, by a 

majority rule, of two clusters in the data (see Appendix B). Likewise, other runs of the algorithm 

signaled the existence of two clusters. The left panel in Fig. 4c shows 50 of such partitions (one 

per row). In some of those, node 10 was assigned to the community we have called “1” (in blue). 

Thus, a consensus matrix (Fig. 4c, center panel) basically consists of binary values for the co-

occurrences of all nodes in communities but those including node 10. Re-running the algorithm 

yielded 50 identical partitions (Fig. 4c, right).  This partition (Fig. 4a) corresponds to the division 

reported by Zachary through observations of the karate club except for one member (node 9). This 

result is expected, according to the original paper and many others in which the karate club has 

been analyzed (Girvan & Newman, 2002; Hric et al., 2014), as the data apparently supports node 

9’s membership to the wrong faction.  

The other structure (Fig. 4d) was obtained at IMF2. This consists of three communities and 

suggests a pattern in which the two leaders (node 1, the instructor, and 34, the president) often 

interact with what presumably is their intimate friendship circles (nodes colored in blue and green, 
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respectively) and the rest of the network conforms a different group. It is important to bear in mind 

that our analysis was performed over a weighted matrix accounting for several contexts in which 

the members of the club were seen interacting. Thus, the broader community found may represent 

a set of passive actors in the fission of the social network, some who “sit and wait” for the inputs 

coming from the rapidly exchanging groups of leaders and close followers. Therefore, the 

consideration of temporal scales –essential to our methodology– could be a key aspect to uncover 

new and interesting phenomena.  

 

Fig. 4 goes around here  

Fig. 4. Communities of Zachary’s karate club. a) Representation of the community structure 

obtained over IMF3. The two groups in which the network split after the conflict largely coincide 

with this pattern. The instructor’s (president’s) faction is shown in blue (green). The node colored 

in olive is misclassified as belonging to the president’s faction when compared to the ground-truth. 

The edges drawn are proportional to the weights of the connections. b) Validation indexes 

supporting the selection of 𝑘 = 2 clusters in the data corresponding to IMF3. Values of 𝑘 for which 

k-modes yields singleton communities are not shown (𝑘 = [4, 20], 𝑘 ∈ ℕ). c) Consensus clustering 

for partitions obtained with 50 different sets of random features of IMF3. d) Over IMF2, a new 

partition of three communities is obtained with small clusters including the instructor and the 

president.  

Visualization of the community structures was achieved by means of SpringVisCom (Jeub, 

Balachandran, Porter, Mucha, & Mahoney, 2015). 

  

3.2 Community detection in brain networks 
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3.2.1 The macaque visual and sensorimotor network  

After testing the reliability of our method in several networks for which the community 

structure is known, we proceeded to its application to brain graphs. The first network considered 

was that of binary connections between cortical structures of the macaque visual and 

somatosensory-motor systems (see Methods, Macaque visual and sensorimotor anatomical 

network). As such, a certain distribution of network nodes between those two functional systems 

was expected. Fig. 5 shows the hierarchical tree returned as consensus clustering for the macaque 

anatomical network. At the highest level (two-clusters partition), the communities found 

correspond with the documented distinction between visual and sensorimotor areas (Hilgetag, 

Burns, O’Neill, Scannell, & Young, 2000; Van Essen & Felleman, 1991; M P Young, 1993). The 

sensorimotor system retained a single hierarchy, comprised of areas 3a, 3b, 1, 2, 5, Ri, S2, 7b, IG, 

ID, 4, 6 and SMA, at the following level whereas the other community split in two (showed in 

variations of blue). The first of the groups is composed of areas V1, V2, V3, VP, V3a, V4, V4t, 

MT, MSTd, MSTl, FST, PO, PIP, LIP, VIP and DP. The following cortical regions appear in the 

other set discovered: VOT, PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa, TF, TH, 7a, FEF, 

46, TGV, ER and 35. These two smaller clusters largely resemble the traditional anatomical 

subdivision of the primate visual system in groups of ‘ventral’ and ‘dorsal’ areas (Hilgetag et al., 

2000).  

To further explore the performance of the algorithm herein introduced, we compared our 

results to the more conventional Louvain-like community detection methods –Newman-Girvan 

null model, implemented in the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). Fig. S5 

shows the results of 50 initial runs and the consensus partitions obtained in both cases. Both widely 

used criteria for the selection of the resolution parameter of the Louvain algorithm, i.e., 𝛾 = 1 or 
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𝛾 chosen as the value for which partitions are more similar, yielded the same result, which is a 

three-clusters structure. This organizational pattern echoed our last result (Fig. 5, Fig. S5b), except 

for the ventral occipitotemporal (VOT) cortex which in some partitions appeared together with the 

ventral cortex though was eventually grouped with most dorsal areas.    

 

Fig. 5 goes around here  

Fig. 5. Dendrogram for the hierarchical consensus clustering of the primate visual and 

sensorimotor cortex. Somatosensory and motor areas are colored in green. Regions largely 

regarded as part of the visual system appear in blue. These are divided in two groups for 

predominantly dorsal and ventral anatomical areas.  

 

3.2.2 The human brain networks 

We have also applied our community detection algorithm to the network of 78 cortical and 

subcortical neural conglomerates of the human brain (see Methods, Human brain anatomical 

network and Simulated human brain functional network). Fig. 6 summarizes the results. Firstly, 

the anatomical connectivity matrix was considered. We obtained two organizational levels, which 

are depicted in Fig. 6a and 6b. The highest of the two (Fig. 6a) consists of two communities which 

are the left and right hemispheres of the brain. Running the clustering algorithm with the features 

of a different IMF yielded a structure of subdivisions of the two hemispheres (Fig. 6b). This four-

community organization is practically symmetrical except for the postcentral gyrus, the pallidum 

and the thalamus proper, which switch communities from one hemisphere to the other (see Fig. 6b 

and Table S2). The two communities to the top of the brain representation in the panel are mainly 

part of the frontal lobe, the cingulate cortex, and the basal ganglia. On the other hand, those shown 
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toward the bottom generally correspond with parietal, occipital and temporal areas (Klein & 

Tourville, 2012; Lanciego, Luquin, & Obeso, 2012). An instance of the validation indexes 

supporting the existence of four communities in this data was given as a demonstrative example 

in Fig. 2c.  

The three synthetic functional networks (Fig 3b-d) resulting from superimposing Kuramoto 

oscillators to the matrix of anatomical connections were explored afterward. In Fig. 6c, the only 

communities found in the 𝜅 = 5 case are shown. Two of those communities are a set of neural 

structures belonging to either the left (in blue) or right (in green) hemisphere. However, a third 

community (in maroon) consists of fifteen inter-hemispherical regions, all of which except for the 

right posterior cingulate appeared in a symmetrical manner in both hemispheres, including the 

totality of the occipital areas (see also Table S2). Fig. S6 shows the consensus clusters identified 

by using the two standard criteria for the resolution parameter in Louvain-modularity 

maximization. While three regions are grouped inter-hemispherically with those of their kind, in 

general, modularity maximization seems to fail at recognizing the functional relationships that are 

supposed to exist in this data, e.g., the mixed community pinpointed by our method. The tendency 

to split communities to obtain higher modularity values is also observed in Fig. S6 as anatomical 

communities are divided in a virtually arbitrary way (compare to Fig. 6b, for example). For 𝜅 =

30, our algorithm (and Louvain-maximization) returned the same two-hemispheres structure 

illustrated in Fig. 6a. Nevertheless, for 𝜅 = 150, no community structure was found over any of 

the IMFs and combinations of walkers considered (one cluster encompassed all nodes). This 

conclusion was reached by applying the criteria of Appendix C. 

  

Fig. 6 goes around here 
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Fig. 6. Representation of the communities of the 78-regions human brain anatomical and 

simulated functional networks. a) Two-communities structure obtained for the anatomical 

network. b) Four-communities structure obtained for the anatomical network. c) Three-

communities structure obtained for the functional network with global coupling parameter of the 

Kuramoto oscillators 𝜅 = 5. Colored nodes correspond to communities and their location, to 

average coordinates of the brain regions in MNI space. 

Visualization of the community structures was achieved by means of BrainNet Viewer (Xia, 

Wang, & He, 2013). 

 

Lastly, community finding was applied to the connectivity matrix of the functionally 

specialized cortical regions resulting from the ICA analysis of the HCP500 "PTN" data (see 

Methods, Human brain resting-state fMRI network). The main results are shown in Fig. 7. Five 

clusters were found (IMF3). We have labeled these communities according to their equivalence to 

conventional functional sub-systems observed in resting-state fMRI (see Table S1). For example, 

a mostly-visual cluster I included several visual regions, one dorsal attention (ICA map 8) and one 

somatomotor (ICA map 22) (Sacchet et al., 2016; Thomas Yeo et al., 2011). The ventral attention 

and a mix of the default mode network (DMN) and the somatomotor sub-system were also quasi-

pinpointed at this temporal scale, whereas purely visual (II) and frontoparietal clusters appeared 

as well. Although not shown here, a different partition arose at a slowest IMF containing two 

clusters, one of them including the ICA maps 6, 11, 14 and 19, i.e. the cluster Visual II and 

members of DMN/Somatomotor.  

 

Fig. 7 goes around here 
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Fig. 7. Clusters of the ICA- parcellated healthy human brain connectome. Five communities 

exist with a high degree of correspondence with well-established resting-state sub-systems 

(Ventral attention, in olive; Frontoparietal, in blue; DMN/Somatomotor, in cyan; Visual I, in red 

and Visual II, in violet). Representative axial slices of the spatial components (nodes) combining 

to form the clusters are shown next to them. For consistency, all the clusters are illustrated through 

views of their center axial slice.       

The overlay views were created with MRIcron (https://www.nitrc.org/projects/mricron).  

 

3.3 Interpreting the communities identified by the method 

Given the novelty of the method, we consider opportune to provide an analysis –a 

posteriori– of the unveiled community structures and reiterate the checkpoints and good practices 

we recommend the end-user to implement, to retrieve meaningful communities. Let us start by 

illustrating the interrogation of the communities obtained over all the IMFs to retain only the 

meaningful patterns. This is explained in Methods, Accepting/rejecting hierarchical partitions and 

Appendices B and C. The set of codes accompanying the paper (see Data and code availability 

statement) also incorporates a user-friendly graphical representation of the acceptance/rejection 

guidelines. We show the process in Fig. S7 (exemplary first six IMFs of Zachary’s network for 

visualization purposes). As mentioned (Results, Community detection in benchmark graphs), IMF3 

(2 communities) and IMF2 (3 communities) were chosen as a majority of the validation indices 

(Appendix B) pinpointed such patterns. Conversely, IMF5 and IMF1 were discarded as the Davies-

Bouldin index’s decision rule (Appendix C) suggested that a full set of singleton communities was 

more likely to exist in the data than any organizational pattern. On the other hand, the patterns 

produced with the features of IMF6 and IMF4 were discarded because no majority was achieved. 
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Additionally, a two-communities pattern would have been replaced by the one obtained over IMF3 

(Zachary’s ground-truth clusters).  The main reason for this design choice is the expectation that 

slower time scales correspond to larger communities –and vice versa (Delvenne et al., 2010; 

Fortunato & Hric, 2016) –see below. Zachary’s network’s IMF4 also constitutes a rare example of 

noisy IMF in the sense of being a signal containing no more information than what pure noise does 

(Wu & Huang, 2004) (Fig. S8). In terms of statistical significance, the user may well reject the 

partitions obtained when the IMFs used to build the clustering features are not informative.  

The application of these guidelines may ensure the correct selection of organizational 

patterns in the network. Nevertheless, a necessary condition for successfully selecting the 

communities existing in the generic 𝑛-dimensional network is guaranteeing that the fraction of 

walkers-signal does sample the network and the nodes associations. How many walkers are 

required for this? In Methods, The network’s signal we express 𝑊 ≫ 𝑛. One good initial 

consideration would be having a number of walkers, 𝑊, at least 10 times bigger than the number 

of network nodes. We performed an analysis of the stability of the partitions returned while 

changing the relationship 𝑊 𝑛⁄  in two networks: Zachary’s karate club of 34 nodes and the human 

brain-anatomical, with 78 (see Fig. S9). For these two real networks –and not for the rest– we had 

prior knowledge of the ground-truth partitions, i.e. the two fractions in which the karate club 

separated (obtained at its IMF3) and the expectation that the two hemispheres of the brain should 

be separated by the community detection method (which occurred at its IMF6). Therefore, adjusted 

mutual information can be utilized to provide a measure of the robustness of the method at 

returning these partitions while 𝑊
𝑛⁄  is increased from its minimum possible value (the 200 

walkers that were selected to build the clustering features). In the range up to  𝑊 𝑛⁄ = 100, the 

communities returned by the method generally match the ground-truth communities (with the 
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exception of the above-mentioned node 9 of Zachary’s network thus yielding an AMI of ~0.83). 

In effect, the initial assumption of  𝑊 > 10 ∙ 𝑛 which made us fix 𝑊 = 1000 for all networks in 

this study, seems to suffice. For other networks, particularly those of neuroimaging applications, 

the user could extrapolate the information of Fig. S9 to minimize computing time and consider the 

characteristics of his/her networks, namely the number of nodes, the density of connections, etc. 

On this note, how effective are our clustering features in representing the topology of the networks? 

While grouping nodes by their co-appearances between zero-crossings of the IMFs, nodes with 

unusually high connectivity (hubs) appear more often than less connected nodes do. This is shown 

in Fig. S10 where the probability of finding a node between zero-crossings is represented as a 

function of the strength (“weighted degree”) of the connections that such a node has (Rubinov & 

Sporns, 2010; Sanchez-Rodriguez et al., 2018) for IMF2 of Zachary’s network. Over this IMF, 

three communities were identified. Two of them included the highly connected nodes 1 and 34 

and their close ‘cliques’, while the remaining cluster was formed by somewhat less connected 

nodes (in maroon). However, this cluster is not exclusively made up of low-strength nodes, with 

at least six members being more connected than others in the leaders’ cliques. Topologically, 

connections exist for the movement of walkers between the nodes in the community of the ‘passive 

actors’ (distinct of the leaders and their closest followers), determining the dynamics of the social 

network. The highly symmetrical four communities of the human brain anatomical network (IMF4) 

also present a heterogeneous distribution of node strengths. The hubs of this network, 

corresponding to the mean + 1 SD of the strength distribution (Fulcher & Fornito, 2016), are not 

equally present in all communities. Four of them appear in the ‘Left parietal-occipital-temporal’ 

community (L lateral occipital, L precuneus, L superior temporal, L hippocampus), two in ‘Left 

frontal-cingulate-basal’ (L superior frontal, L insula), two in ‘Right parietal-occipital-temporal’ (R 
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lateral occipital, R superior temporal) and only one in ‘Right frontal-cingulate-basal’ (R superior 

frontal). It is the network’s topology (thus: nodes appearing together between our zero-crossing 

features of the IMFs) and not the mere node strength-dependent probability of finding a node in 

the features what defines the organizational patterns that were identified.  If anything, these 

examples hint at the very essence of our method: the network signal and features sample the 

information flow on the considered network. The information flow is related to the topological 

properties of the network (Sotero et al., 2019).  

Then, what physical (and biological) meaning do the communities obtained by our method 

have? What is the exact relationship between the IMFs (temporal scales) of the network’s signal 

and the spatial scales of the obtained communities? To clarify these issues, we considered all the 

real networks herein studied, their hierarchical patterns, and the IMFs at which these meaningful 

(see above) communities appeared.  Then, for each of the reported communities, we calculated the 

(within-community) characteristic path length (Rubinov & Sporns, 2010; Sanchez-Rodriguez et 

al., 2018), i.e. the mean shortest path length between all pairs of nodes belonging to that 

community. The overall pattern is spatially characterized by the average characteristic path length 

taken across all the communities in the pattern, divided by the full network’s characteristic path 

length, a measure we term ‘average normalized within-communities path length’. Take, for 

example, the human brain anatomical network and its four communities of IMF4. Each of these 

clusters has characteristic path lengths of 1.95, 2.15, 2.02, and 1.99, while the network of 78 nodes, 

3.37. The normalized within-communities path length of approximately 0.60 thus defines the 

expected shortest distance that a walker travels to visit the nodes pertaining to one of the 

communities formed compared to the mean shortest distance it travels to visit any network node. 

On the other hand, the IMFs per se represent the frequencies at which the information flow inside 
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those communities occurs. Since these can be somewhat irregular signals (see Fig. 1), we used the 

average of the instantaneous frequencies, calculated with MATLAB’s  instfreq.m. Here, we 

assumed a sampling rate of 1𝐻𝑧 for all networks with the purpose of illustrating their behavior in 

one single chart, even though this sampling rate value lacks significance in terms of the 

propagation of the walkers within each network. Finally, a grand average over the walkers was 

performed as all of them contributed to the clustering features that yielded the reported community 

structures. The results are shown in Fig. 8. It is important to bear in mind that through the above-

mentioned validation indexes and decision rules, no more than a couple of community structures 

were identified for the considered communities, thus rendering impossible to rigorously fit the 

curves in Fig. 8 to a mathematical law. However, seeing each network separately –as should be, 

given that they are independent entities– one can notice a 𝑐𝑜𝑛𝑠𝑡.
𝑓⁄  -behavior of the average within-

communities path length. In other words, faster time scales (higher frequencies of the IMFs) 

correspond to shorter effective distances in the communities. The constant in these relationships 

may define the velocity of the propagation of the walkers, or information flow, in each network.  

 

Fig. 8 goes around here 

Fig. 8. Relationships between spatial and temporal scales of the real networks considered in 

this work. Each network has been identified with a different color. The clustering features 

corresponding to two IMFs yielded community structure in each case. The number of communities 

existing at these IMFs are written next to the networks’ names (KarateClub: Zachary’s karate club 

network; Macaque: macaque visual and sensorimotor network; HumanAnat: human brain 

anatomical network, HumanFunc: Human brain resting-state fMRI network). Circles represent the 

fastest IMFs, while squares are used for the slowest ones, in each case. Temporal scales are 
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characterized in terms of a grand-average frequency, by taking the mean value of the IMF’s 

instantaneous frequencies over all the walkers and assuming a sampling rate of 1Hz for 

visualization purposes. The spatial scales are described by the average shortest path length of the 

nodes corresponding to one community, divided by the overall network’s characteristic path 

length.   

 

4. Discussion  

The problem of identifying modular structures at different scales of a network has captured 

the attention of the neuroscience community in recent times. Notably, Jeub et al. (Jeub et al., 2018) 

and Ashourvan et al. (Ashourvan et al., 2019) have introduced variants for the sweep through the 

Newman-Girvan modularity’s γ-space eventually yielding hierarchical architecture. These 

methods have been tested in brain networks with encouraging results. Inherent limitations exist, 

however, as the algorithms build on multi-scale modularity functions. Consequently, the exposed 

structures depend on the selection of several parameters and a null model, as in regular Louvain-

like community detection (Blondel et al., 2008). Specifically, authors tend to recommend the 

utilization of null models that suit the characteristics of the data perfectly (Betzel et al., 2017). 

However, null models appear as abundant as detection algorithms in the literature oftentimes, 

making its selection a key step for the success or failure of the application of an algorithm (Sporns, 

2013). Ideally, one would like to provide the user with minimum-input tools that can reveal the 

underlying structures of the data in natural ways.  

In the recent past, much of the discussion as to the directions of neuroscience research was 

centered on avoiding univariate statistical comparisons and, instead, looking at the network 

interactions as a whole (Telesford, Simpson, Burdette, Hayasaka, & Laurienti, 2011). What is 
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more, we believe that to better capture the complexities of a system like the brain, with multiple 

spatio-temporal scales and dynamic reconfigurations, the mere application of generic network 

science methods is not sufficient. Tools must be developed to account for the brain’s unique 

characteristics. Thus, in this paper, we have searched for organizational hierarchies through the 

temporal scales of the network’s random walker signals, without necessitating to fix any model 

parameter. By doing so, the characteristics of the information flow in the brain are also 

incorporated (Sotero et al., 2019). The integration of the network’s architecture with the dynamical 

interactions of the oscillatory modes in the large-scale brain is consequently suggested as an 

important factor in clustering techniques. Likewise, long running times (Nguyen, 2017) and a finite 

number of IMFs in the signal decomposition to investigate the existence of communities  (N. E. 

Huang et al., 1996), could render the algorithm ill-suited for applications on high-dimensional 

graphs (different than large-scale neuroimaging-based networks). In that sense, other random 

walkers-based clustering techniques, including Walktrap (Pons & Latapy, 2005), Infomap (M. 

Rosvall & Bergstrom, 2008), and the method by (Delvenne et al., 2010), have successfully dealt 

with the demands of clustering large networks. In particular, Delvenne et al. (Delvenne et al., 2010) 

explored network time scales through the autocovariance of the clustered Markov process 

associated with the random walk. Natural communities persist over time, which is reflected in the 

autocovariance. This elegant approach was proved efficient in binary undirected graphs of various 

topological characteristics and sizes. To the best of our knowledge, applications in the scope of 

neuroimaging were not demonstrated.   

4.1 The brain organizes according to function 

In discussing the results of applying our methodology to the macaque visual and 

sensorimotor network, several insights can be gleaned. Firstly, the obvious and most 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2020. ; https://doi.org/10.1101/743732doi: bioRxiv preprint 

https://doi.org/10.1101/743732


39 

 

straightforward precedent is the classification of areas according to the functional neural system 

they belong to, visual and sensorimotor (Van Essen & Felleman, 1991; M P Young, 1993). 

Additionally, two anatomical pathways have been identified in the visual system (Mishkin, 

Ungerleider, & Macko, 1983), which are usually known as dorsal (originating in the occipital 

cortex and terminating in the parietal lobe) and ventral (from occipital to temporal). These 

anatomically constrained divisions constituted the rationale for expecting the separation between 

somatosensory-motor and visual areas (which in turn was further divided into dorsal and ventral) 

by our community detection algorithm, given the numerous connections existing between areas in 

a functional system and somehow less connections with outsiders (Christopher J. Honey, 

Thivierge, & Sporns, 2010). We highlight, however, that limbic structures like the entorhinal 

cortex (ER) and the perirhinal cortex (A35), usually considered together with the sensorimotor 

system (Van Essen & Felleman, 1991), were clustered with most visual areas. Also, the VOT 

appeared in an otherwise dorsal community. This result is analogous to the one described by 

Hilgetag et al. (Hilgetag et al., 2000) in a study on cluster organization of a similar, larger network 

using now obsolete techniques. Moreover, in that work, prototypical ventral and dorsal areas V4 

and 7a were clustered with the opposite streams. Notwithstanding the slight differences, the 

subdivision of the visual community obtained here closely resembles the ventral and dorsal streams 

reported by Hilgetag et al. Several more recent studies utilizing modularity maximization methods 

have detected similar sets of communities, yet different macaque datasets have been used (Sporns 

& Betzel, 2016).  

We believe that the minor discrepancies in the analysis of the primate cortical network 

commented in the above paragraph are due to two main issues. First, we should revisit the 

limitations that exist intrinsic to each community detection method. These, of course, affect the 
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partitions returned given any connectivity matrix, revealing the necessity of continuing to develop 

tools and migrating to more comprehensive approaches that use as much valuable network 

information as possible. Another important matter to recall is that imperfections exist in data as 

well. For example, the matrix of connections we used (M P Young, 1993) encompasses reports 

from several studies, which sometimes even employed different anatomical parcellations. Also, 

this matrix accounts only for the existence or absence of reports of links between areas of the 

macaque cortex, without considering the strength of the connections. Whether datasets accurately 

reflect the particularities of the connections existing in the brain or not will remain a fundamental 

question in neuroscience.  

The next application of our newly introduced community-finding method was to human 

brain networks. We considered a connectivity matrix in which each entry reflects the evidence of 

the existence of a white matter link between two brain regions (Y. Iturria-Medina et al., 2007), 

given a template of such connections in the young healthy brain (Dunovan et al., 2015). Dominant 

connections were retained through a minimum spanning tree algorithm. Although the minimum 

spanning tree trims connections and does not contain loops, it is believed to provide a correct 

representation of any denser brain network to which it is applied, retaining paramount topological 

characteristics like its small-worldness and scale-freeness (Tewarie, van Dellen, Hillebrand, & 

Stam, 2015).  

We have found two partitions of the anatomical network, which seemingly follow physical 

proximity and functional specialization rules. In the case of the first partition, commissural fibers 

appear to act as those rare links to members of other communities for the two brain hemispheres 

were perfectly separated. Each hemisphere split into two communities over the other partition 

found. The four-communities structure was almost bilaterally symmetrical, as only the postcentral 
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gyrus, pallidum and thalamus proper exchanged membership, i.e., they grouped with most frontal, 

cingulate and basal ganglia regions in the right hemisphere and with parietal-occipital-temporal 

areas in the left. Variations in local connections within hemispheres may be the reason why these 

regions behaved in such a way. In principle, the thalamus, as universal relay station, and the 

pallidum projecting to the thalamus (Lanciego et al., 2012) should have no constraints to belong 

to one or the other intra-hemisphere community found. The postcentral gyrus, although deemed 

part of the parietal lobe is in the vicinity of the frontal lobe, possibly explaining its grouping with 

such neural structures. The association of brain regions to perform processes and functions could 

also be reflected in the anatomical network and, consequently, in the communities obtained. For 

instance, having the basal forebrain clustered with frontal areas may be justified by the fact that its 

projections to the prefrontal cortex are paramount for attention, learning and memory, and 

decision-making (Tashakori-Sabzevar & Ward, 2018).  

The study of the matrices for the interaction of oscillators over the anatomical frame yielded 

stimulating results. For one thing, the mechanism for the transitions between functional states 

relates to the tuning of the coupling parameter in the model. Three communities appeared in the 

low-coupling regime (𝜅 = 5), one of them presenting areas from both brain hemispheres in a close-

to-symmetrical pattern. When the coupling strength was raised to 𝜅 = 30, the mixed community 

was destroyed and the only recognizable pattern was the one of two separate brain hemispheres, 

which was one already existing in the anatomical network. This is because the connectivity matrix 

of a set of Kuramoto oscillators overcomes the dispersion of natural frequencies for higher values 

of the coupling parameter (Breakspear et al., 2010).  Higher functional couplings amplify the 

anatomical subdivision of the network in two hemispheres.  
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Other characteristics of the clusters of the simulated functional networks are also 

noteworthy. For example, all the occipital areas (Klein & Tourville, 2012), responsible for vision 

(Johns, 2014), appeared in the mixed community of the 𝜅 = 5 -regime. Previous studies of 

modular organization in functional graphs found robust grouping in the occipital cortex (Meunier, 

2009). Among the other areas present in the intra-hemispherical cluster: the superior parietal lobe 

has abundant connections with the occipital lobe and participates in visuospatial perception (Johns, 

2014); the precuneus has a major role in visuo-spatial imagery (Cavanna & Trimble, 2006) and 

the posterior cingulate cortex is considered a core node of the DMN and to be involved in many 

tasks (Yasser Iturria-Medina et al., 2014). The inter-hemispherical community obtained appears 

to be one extended circuit concerned with the function of vision. The rest of the nodes within each 

hemisphere may consequently process all the non-visual stimuli, possibly constituting an optimal 

configuration for speedy and accurate performance on cognitive tasks (Garcia et al., 2018). We 

believe that the detection of these communities supports the notion of functional integration in the 

brain, whereas evidence for segregation can also be found in a division that isolates units 

specialized in handling with visual stimuli.  

Although a valuable exploratory tool, in-silico brain functional networks do not totally 

reflect the vast amalgam of phenomena present in real data. Motivated by this concern, we 

proceeded to study empirical resting-state fMRI data in the healthy brain. Out of the many possible 

options for defining fMRI connectivity that are currently used by the neuroscience community 

(Bassett et al., 2013; Bordier et al., 2017; Moradi et al., 2019; Smith et al., 2013), we decided to 

inherit the connectivity estimations performed by the HCP on the dataset we used (Smith et al., 

2013, 2015). The approach of the HCP builds on the utilization of the data-driven ICA algorithm 

(Mckeown et al., 1998) to simultaneously obtain multiple spatial maps, each of them having 
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relatively homogeneous connectivity profiles and functional specialization (Smith et al., 2013). In 

agreement with the rest of the situations studied in this paper, which are in turn inspired by classic 

network neuroscience methodologies (Bassett et al., 2013; Betzel et al., 2017; Christopher J Honey 

et al., 2007), we treated the functional regions as non-overlapping though these regions are poly-

functional in essence (Betzel et al., 2016). The straight-forward upgrade that should be considered 

in future analyses to allow for the existence of overlapping communities –thus recognizing 

functional multiplicity– is replacing the “hard” clustering k-modes technique with its fuzzy 

counterpart (Z. Huang & Ng, 1999). Additionally, despite the existence of finer ICA-parcellations, 

we adopted a coarse subdivision to seek a (nearly) one-to-one relationship of the nodes in the 

connectivity matrix with studies that replicate systems of functionally coupled regions across the 

cerebral cortex (Thomas Yeo et al., 2011).  

The main partition obtained significantly resembled the conventional subdivision of resting-

state fMRI in functional systems. The visual cortex, once more, presented distinctive community 

patterns. It was further divided into two clusters. The smallest of the two (Visual II) only contained 

two dorsal ICA activation maps of the visual system. Moreover, one dorsal attention ICA map (8) 

was clustered with the mostly-visual community I, in line with evidence suggesting an interaction 

between these two functional sub-systems (Thomas Yeo et al., 2011). Another dorsal attention 

component was associated with the partly somatomotor cluster. Researchers have referred to the 

dorsal attention system as the prototype distributed cortical network (Thomas Yeo et al., 2011) 

given its strong functional coupling with sensory and motor regions. In previous work (Smith et 

al., 2013, 2015), the HCP applied hard agglomerative hierarchical clustering techniques 

implemented in MATLAB to a similar connectivity matrix. Despite the difficulties of their 

methodology for identifying meaningful partitions and the correct number of clusters, a large-scale 
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pattern was observed, which mostly differentiated visual, sensory-motor and dorsal attention 

regions from cognitive-processing ones. Compared to these studies, our community detection 

algorithm yielded suboptimal results when producing a community of mostly DMN and 

somatomotor ICA maps together. This apparent discrepancy may be more closely related to the 

interpretation paradigm we adopted instead of the community detection per se. For example, the 

ICA map 24 was uniquely labeled as “Somatomotor 2” (Table S1), “Somatomotor 2” a system 

with which ICA map 24’s voxels had 59.5% overlap, ignoring altogether the 28.0% overlap it had 

with the system “DMN 4”. This is in strong contrast to, e.g., ICA map 6 which was 86.4% “Visual 

1”. Thus, it is believed that ICA map 24’s connections somewhat had served as strong link between 

DMN and somatomotor regions of the studied parcellation, provoking their combined clustering. 

As above-stated, limitations of this sort could be overcome by considering the more realistic 

overlapping sense of resting-state functional connectivity.  

Regarding the relationship between spatial scales and the IMFs, one may wonder how to 

interpret these temporal scales of the information flow in neuroimaging applications. For example, 

the temporal scales identified in functional neuroimaging data (Yuen, Osachoff, & Chen, 2019) 

are not to be confused with the signal decomposition we adopt in this study, because this, unlike 

the region of interest-oriented conventional neuroimaging analysis, is built from the random 

walker’s frame of reference, i.e. the fraction of other walkers that each one finds throughout its 

journey within the networks (see Methods, The network signal). Although it is possible to construct 

signals for the nodes (e.g., the number of walkers visiting at each time iteration), they would be 

altogether different than the ones we conceived. Consequently, the assumptions adopted and 

physical interpretation in terms of information flow would no longer stand. In the future, it will be 

interesting to design other forms of network signals to investigate relationships between measures 
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derived from structural connectivity and functional connectivity as it has been done in the 

outstanding works of (Abdelnour, Voss, & Raj, 2014; Chiêm, Crevecoeur, & Delvenne, 2020; C J 

Honey et al., 2009). For the moment, the analysis of functional data and its topologically peculiar 

networks (Gates et al., 2016) through our algorithm must be plainly seen as the application of a 

reliable community detection method (see Results, The human brain networks where real resting-

state sub-systems and simulated functional clusters were identified), thus avoiding the temptation 

to overinterpret multi-scale functional relationships. As a proof of concept only, we can calculate 

the IMFs grand-average frequencies (Fig. 8) assuming a sampling time of 1/𝑇𝑅, as the 𝑇𝑅 defines 

the resolution of the fMRI data, thus indirectly affecting the connectivity matrix and the 

propagation of walkers in it (𝑇𝑅 = 0.78𝑠 (Smith et al., 2015)). In this case, the frequencies of the 

IMFs whose features return validated communities are inside the interval corresponding to the 

low-frequency (0.01–0.08 Hz) fluctuations in fMRI (Biswal, Kylen, & Hyde, 1997; Zou et al., 

2008) while faster and slower IMFs than these two had frequencies outside that range. Structural 

connections, on the other hand, constitute the physical scaffold over which interactions occur in 

the brain, which perfectly matches the notion of information flow. For anatomical neuroimaging 

networks, we can then straightforwardly relate the IMFs of the network signal with neuronal 

electrical signaling just by assuming that the motion of the random walkers represents electrical 

impulses traveling through the brain. The sampling time in the analysis yielding to Fig. 8 can be 

replaced by axonal conduction delays (other delays being neglected for the sake of simplicity): we 

record the walker’s IMFs each time it has landed in the following brain region of its path. While 

conduction delays depend on several factors that influence axonal conduction velocity and on the 

distance between the involved sites, we fixed a 7𝑚𝑠 universal value, this being one of the typical 

human callosal conduction delays reported by (Caminiti et al., 2013). Then, the IMFs (6 and 4) 
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detecting communities in the human brain anatomical network had grand-average frequencies of 

approximately 0.98 and 3.10 Hz. In other words, the global oscillations separating the anatomical 

network in two and four communities present frequencies that coincidently lie in the range of the 

EEG delta waves. It has been hypothesized that sustained delta oscillations inhibit the activity of 

neural sub-systems that interfere with accomplishing certain tasks (Harmony, 2013). If this were 

the case, one could explain transitions from one processing scale to another (with their respective 

associated brain organizational patterns) as the network’s re-arrangement to successfully 

accomplish tasks. Further investigation could help clarify physiological mechanisms of network 

multi-scaling in health and disease (Sanchez-Rodriguez et al., 2018) by using realistic measures 

derived from our information flow-centered method.  

4.2 On the strengths and limitations of the algorithm 

To conclude this section, we would like to highlight important features of our method. One 

interesting scenario is the one of functional interactions with 𝜅 = 150. The large synchronization 

seen there yields a close-to- 𝑛-regular graph (Fig. 3d) that goes together with the algorithm 

identifying a single group of nodes. In fact, one recommended practice for testing new community 

detection algorithms is checking that they do not return group structure in the absence of it (Hric 

et al., 2014). Of further value is the effective performance shown when searching for the 

community structure of the benchmark graphs, all of which presented different network 

characteristics. On this topic, one must also mention the diversity of the real networks whose 

organization in groups was explored. The karate club is a small, weighted and undirected network. 

On the other hand, the macaque visual and sensorimotor network is binary and directed. The 

human brain networks, most of them with larger dimensions, had different levels of sparsity. Many 

algorithms, e.g. Infomap and (Delvenne et al., 2010) are initially designed for a specific type of 
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graph (Fortunato & Hric, 2016) and only later extended. However, our method seems to be primed 

to perform reliable community detection in moderate-size networks like the ones associated with 

the brain’s large-scale activity.  

It was not in our interest, though, to test its suitability for high-dimensional graphs.  In that 

case, the demand for computing resources would grow. Firstly, the computational cost of k-modes 

scales linearly with the number of objects and many random initializations of the modes are 

required to find a reliable clustering solution (Nguyen, 2017).  Secondly, the number of possible 

combinations of nodes appearing between zero-crossings of an IMF would increase as well, so the 

implementation of k-modes must be optimal to handle a large number of binary features. We 

bypassed some of these complications by using the University of Calgary’s 

(https://hpc.ucalgary.ca/resources) and Compute Canada’s 

(https://docs.computecanada.ca/wiki/Getting_started) computing clusters resources, where 

calculations were run in parallel. The other two stages of the algorithm, namely the random walks 

and empirical mode decomposition are already fast enough through built-in functions in 

MATLAB. Other speeding-up alternatives for the clustering problem must be explored, however. 

In the case of functional networks, we have shown how dimensionality reduction could be 

achieved by preceding the application of our EMD-k-modes algorithm with ICA-parcellation of 

the brain voxels, instead of trying to cluster the set of single voxels or highly granular parcellations. 

By doing so, we also suggest alternatives to integrate our method with existing functional 

clustering approaches and study hierarchical organization in high-dimensional problems.  

Another solution for reducing dimensionality is the selection of relevant features in the data 

(Ronan et al., 2016). Because the random choice of features (i.e., the set of walks) could also 

generate solutions that differ from the existing structure if many unrepresentative features were 
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combined, the identification of a relevant set is also desired for the stability of the method.  

Dimensionality reduction can be mainly achieved by feature reduction or feature selection. In the 

first approach, the variables are projected into a new space with a lower dimension (Alelyani 

Salem, Jiliang Tang, & Huan Liu., 2013). PCA and, more importantly, its categorical features-

analogy, multiple correspondence analysis (MCA) (Greenacre & Blasius), retain the new features 

that capture the largest amount of covariance in the data (Ronan et al., 2016). However, these 

features cannot be linked to the original space and the application of PCA (MCA) to clustering 

problems oftentimes degrade the results if clusters appear in different subspaces (Lu et al., 2005). 

On the other hand, the selection of features that minimize redundancy is superior to feature 

reduction in terms of interpretability (Alelyani Salem et al., 2013) and performance (Ronan et al., 

2016). Problems like the one our method is concerned with, binary feature selection for clustering, 

have rarely been addressed though, while most of the studies have focussed on numerical variables 

(Silvestre, Cardoso, & Figueiredo, 2015). To our knowledge, only a handful of works did explore 

clustering in the presence of categorical (thus also binary, in particular) data (Bontemps & 

Toussile, 2013; Silvestre et al., 2015). The methods therein developed make certain assumptions 

on the data and only solve the feature selection problem by simultaneously targeting a distribution 

in the desired number of clusters, which would not straightforwardly align with the rest of the 

pipeline in our algorithm. A desirable feature selection step would reduce dimensionality 

immediately before the application of k-modes. Dimensionality reduction by feature selection is a 

complicated matter on its own (Steinbach et al., 2004) and innovative solutions should be 

investigated. In short, we do not recommend the use of the method presented in this paper on large 

networks until further steps towards optimization are taken.  
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As a final note, we would like to discuss some concerns and recommendations that emerged 

from the initial utilizations of the algorithm. One issue is that no more than two hierarchical levels 

were identified over the IMFs of the networks analyzed in this study. Conversely, traditional 

methods like modularity maximization continuously divide clusters to satisfy mathematical 

constrains, which has also been pinpointed as a major limitation (see above and e.g. (Fortunato & 

Hric, 2016)). In lieu of accepting the network partitions returned by any method as the absolute 

truth without validation, the utilization of a broad set of metrics like the ones we define in Appendix  

B has been recommended (Bassett et al., 2013; Fortunato & Hric, 2016; Ronan et al., 2016). We 

can only know the real divisions existing in a handful of networks, like the simulated benchmark 

graphs and the karate club that divided into two fractions after a conflict (see Results, Community 

detection in benchmark graphs). Any other subdivision existing in, say the karate club, is only the 

product of the application of an algorithm and thus, ‘lives in that universe’. For the brain networks, 

the analysis is necessarily qualitative and based on previous anatomical-functional evidence (Klein 

& Tourville, 2012; Thomas Yeo et al., 2011), as it is obviously impossible to ascertain an absolute 

ground-truth (perhaps other than that the existence of two separate brain hemispheres in the 

vertebrate brain).  If we define sparsity as 1 −
𝑚

𝑛2  (Sotero et al., 2019) where 𝑚  is the number of 

non-zero links and 𝑛,  as usual, is the number of nodes, this value is higher for very sparse 

networks. With fewer connections, further divisions in communities are intuitively less likely. 

Table S3 shows sparsity values for several of the networks herein considered. The networks with 

known ground-truth partitions, LFR (100 nodes, 0.87 sparsity and 5 communities) and Zachary’s 

(34 nodes, 0.87 sparsity and 2 communities) thus offer a reference for the rest of the networks. 

Naturally, a dense network (0.16 sparsity) like the human brain functional connections of 22 nodes 

was identified with 5 communities, while the sparser (0.98) anatomical connections of 78 regions 
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had 4 clusters at the finest level returning meaningful community structure in this network (IMF4) 

and no further subdivisions. This intuitive-critical analysis may serve to corroborate the suitability 

of the lowest hierarchical levels obtained in this work.  

 The second of the issues signaled by some users relates to the adoption of  definitive 

consensus partitions to report when, for example (Fig. S5b) the VOT appeared clustered with most 

ventral areas in certain runs although being assigned to the dorsal community in the final partition. 

We understand that neglecting altogether some observed community associations (e.g. the VOT 

with the rest of the ventral areas) may be undesired in certain applications, as they could suggest 

a predefined operational flexibility of the brain areas to work in cooperation with others as in task-

based functional connectivity (Gonzalez-Castillo & Bandettini, 2018). Similarly, our 

implementation ignores partitions that arise of the analysis of slower IMFs when the same number 

of communities is indicated at a faster IMF. In Results, Interpreting the communities identified by 

the method, we showed the inverse relationship existing between the average frequency of the 

IMFs and the spatial separateness of the nodes in the related communities (as given by the 

characteristic path lengths in the obtained clusters). Thus, the same number of communities 

identified with the features of a faster IMF are intuitively more likely to represent the preferred 

organization of the network in such a number of clusters. Although cases like this were not 

common in the networks analyzed, partitions rejected by the hierarchical condition could, again, 

be meaningful in scenarios of functional adaptability. Ultimately, the end-user will decide how to 

better employ the independent parts of our pipeline to satisfy their research question. 

5. Conclusion  

In summary, we have introduced an approach for the detection of modular organization by 

considering the temporal scales of the information flow over the networks of interest. This new 
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tool may be particularly useful for the analysis of large-scale brain graphs, for which: 1) the 

transmission of information is a process of paramount importance and 2) a desirable balance 

between accuracy and computational complexity of the community detection algorithm can be 

achieved given the current implementation state. We find several organizational patterns existing 

in the brain anatomical and functional networks –also in the social network that we study. These 

structures may coexist together, in a dynamical way that is given by the temporal scales of the 

activity they produce, guaranteeing functional independence and coordination. Our results promise 

a shift of focus in the discussion surrounding the occurrence of community structure.   
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Appendix A. Supplementary material 

Supplementary data related to this article can be found at [insert link here]. 

Appendix B. Cluster validation indexes  

In what follows, 𝑛 is the number of objects to be clustered and 𝑘 is the number of such 

clusters. Let {𝐶1, 𝐶2, ⋯ , 𝐶𝑘} be a partition of the integers from 1 to 𝑛 such that 𝑖𝜖𝐶𝑞 if the 𝑖th object, 

𝒙𝑖, belongs to the 𝑞th cluster. The centroid (mode) of a subset 𝐶𝑞 of 𝑛𝑞 objects is the vector 𝒎𝑞 that 

minimizes the sum of the distances to all the objects in 𝐶𝑞. Supposing the (mismatching similarity) 

distances between every 𝑖 and 𝑗, 𝑑𝑖𝑗 are known, which also applies for the distances between 

objects and their clusters’ centroids, then: 

- The Calinski-Harabasz index (Calinski & Harabasz, 1974), also known as pseudo-F ratio, 

is defined as:  

𝐹(𝑘) =
𝑆𝑆𝐴

(𝑘−1)⁄

𝑆𝑆𝑊
(𝑛−𝑘)⁄

          Eq. (A.1) 

SSW and SSA are the within-group sum of squares and the among-group sum of squares, 

respectively. Adapting (Anderson, 2001), these quantities are obtained from the matrix of distances 

between pair of objects: 

𝑆𝑆𝑊 = ∑
1

𝑛𝑞
∑ 𝑑𝑖𝑗

2
𝑖,𝑗∈𝐶𝑞

𝑖<𝑗

𝑘
𝑞=1         Eq. (A.2) 

𝑆𝑆𝐴 = 𝑆𝑆𝑇 − 𝑆𝑆𝑊, 𝑆𝑆𝑇 =
1

𝑛
∑ ∑ 𝑑𝑖𝑗

2𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1      Eq. (A.3) 

The among-group distances are large compared to the within-group distances in the case of 

high separateness and compactness. Thus, maximum values are taken to represent the correct 

number of clusters (Milligan & Cooper, 1985).  

- The C-Index (Milligan & Cooper, 1985) is calculated as: 
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𝐶(𝑘) =
𝑆𝑊−𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛
         Eq. (A.4) 

where  𝑆𝑊 is the sum of the within-cluster distances: 

𝑆𝑊 = ∑ ∑ 𝑑𝑖𝑗𝑖,𝑗∈𝐶𝑞

𝑖<𝑗

𝑘
𝑞=1         Eq. (A.5) 

and 𝑆𝑚𝑖𝑛(𝑆𝑚𝑎𝑥) is the sum of the 𝑁𝑊 smallest (largest) distances in the dataset.  𝑁𝑊 is the total 

number of pairs of objects in the same cluster, 𝑁𝑊 = ∑
𝑛𝑞(𝑛𝑞−1)

2
𝑘
𝑞=1  (Charrad et al., 2014). C-Index 

is restricted to the interval (0,1) and its minimum value suggests the optimal number of clusters 

(Milligan & Cooper, 1985).  

- The Duda-Hart (Duda et al., 2001) score is inspired by the fact that the sum of squared-

errors corresponding to a partition decreases with 𝑘. Thus, in conventional Euclidean-distance 

clustering problems, the optimal number of clusters is the smallest 𝑘 such that 
𝐽(𝑘)

𝐽(𝑘−1)
 is smaller 

than certain critical value (Milligan & Cooper, 1985). In our case of binary distances, we limit 

ourselves to request that ratio to be minimal, indicating a possible correct number of clusters, and 

define 𝐽(𝑘) as a “sum of mismatching similarity distances error”: 

𝐽(𝑘) = ∑ ∑ 𝑑(𝒙𝒊, 𝒎𝑞)𝑖∈𝐶𝑞
𝑘
𝑞=1         Eq. (A.6) 

- The Silhouette width (Kaufman & Rousseeuw, 1990) is calculated with the following 

expression: 

𝑆(𝑘) =
1

𝑛
∑

𝑏𝑖−𝑎𝑖

max{𝑎𝑖,𝑏𝑖}
𝑛
𝑖=1         Eq. (A.7) 

here,  𝑎𝑖 is the average distance from the 𝑖th point to every other object in its cluster: 𝑎𝑖 =

 
1

𝑛𝑞−1
∑ 𝑑𝑖𝑗𝑗∈{𝐶𝑞\𝑖}  and 𝑏𝑖 is the minimum average distance from the 𝑖th object to all objects of other 

clusters, minimized over the clusters, namely: 𝑏𝑖 = min
𝑠≠𝑞

{𝑑𝑖𝐶𝑠
}; 𝑑𝑖𝐶𝑠

=
1

𝑛𝑠
∑ 𝑑𝑖𝑗𝑗∈𝐶𝑠

 (Charrad et al., 

2014). The index can take values in the interval [−1,1] with negative values indicating the 
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clustering solution is not accurate, and understandably so, as the minimum average distance from 

many objects to other clusters would be bigger than the dissimilarity to objects of the clusters 

where they belong to. On the other hand, the maximum value is taken to represent the optimal 

number of clusters in the data (Charrad et al., 2014).  

- The Dunn index (Dunn, 1973) is generally defined as: 

𝐷(𝑘) =
min

1≤𝑟<𝑠≤𝑘
Ι(𝐶𝑟,𝐶𝑠)

max
1≤𝑞≤𝑘

Δ𝑞
         Eq. (A.8) 

where Δ𝑞 is the diameter of the 𝑞th cluster and Ι(𝐶𝑟 , 𝐶𝑠) is the intercluster distance between 𝐶𝑟 and 

𝐶𝑠. Out of the many variants available for computing both these quantities, we use the ones 

recommended by (Bezdek & Pal, 1998): 

Δ𝑞 =
1

𝑛𝑞
∑ 𝑑(𝒙𝑖 , 𝒎𝑞)𝑖∈𝐶𝑞

        Eq. (A.9) 

Ι(𝐶𝑟 , 𝐶𝑠) =
1

𝑛𝑟𝑛𝑠
∑ 𝑑𝑖𝑗𝑖∈𝐶𝑟

𝑗∈𝐶𝑠

        Eq. (A.10) 

𝐷 is maximized when the clusters are compact (the diameter is small) and separate (the intercluster 

distance is large) (Milligan & Cooper, 1985). 

- The Davies-Bouldin index (Davies & Bouldin, 1979) is also a function of the ratio of 

within-cluster dispersions and the between-clusters separation. When using mismatching 

dissimilarities, it can be calculated as: 

𝐷𝐵(𝑘) =
1

𝑘
∑ max

𝑞≠𝑙
(

Δ𝑞+Δ𝑙

𝜎𝑞𝑙
)𝑘

𝑞=1        Eq. (A.11) 

where Δ𝑞 is defined as in Eq. (A.9) and 𝜎𝑞𝑙 is the distance between the centroids of clusters 𝐶𝑞 and 

𝐶𝑙, 𝜎𝑞𝑙 = 𝑑(𝒎𝑞, 𝒎𝑙) (Charrad et al., 2014). The smaller 𝐷𝐵(𝑘), the better the partition (Dubes, 

1987).   
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The diameter, Δ𝑞, is zero for clusters with single members. Thus, as highlighted by Davies & 

Bouldin, theirs and most measures, have limited meaning for singleton clusters.  

Appendix C. Decision rules for random data 

The above-mentioned decision rules are not adequate for identifying the correct number of 

clusters in the limit case of two versus one cluster, as such indexes are not defined for partitions 

of a lone community (Dubes, 1987). Although the Duda-Hart index was originally designed to 

reject the existence of only one cluster in the data, the critical value used for such means was 

obtained by supposing that data came from a normal distribution (Duda et al., 2001), which does 

not hold in our case of binary variables. Two of the other measures had either simplistic or well-

established criteria that could be applied when they and the majority of the indexes indicated the 

presence of two communities. The first one is inspecting for negative silhouette values (Kaufman 

& Rousseeuw, 1990). The second rule checks for the presence of a significant drop in the curve of 

𝐷𝐵(𝑘) at 𝑘 = 2 (Dubes, 1987). A user can conclude one cluster is present when 𝐷𝐵(𝑘) has a 

minimum at 2 but 

𝐷𝐵(3) −  𝐷𝐵(2)  <
2

3
∑ |𝐷𝐵(𝑘𝑚𝑎𝑥 − 𝑘) − 𝐷𝐵(𝑘𝑚𝑎𝑥 − 𝑘 − 1)|3

𝑘=1    Eq. (C.1) 

These two criteria were applied to resolve the optimal number of clusters in the limit case 

situation over all the networks. Consistently, spurious two-clusters partitions over different IMFs 

were rejected (one single cluster existed). On the contrary, meaningful or real two-communities 

patterns were indicated as correct by our method and restated by the silhouette and the 𝐷𝐵-based 

limit-case criteria.  

Appendix D. Estimating the similarity of partitions 

To determine the effectiveness of our clustering technique in retrieving a planted structure, 

we computed the adjusted mutual information, which establishes a measure of similarity between 
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two partitions based on information theory while adjusting for chance (N. Vinh et al., 2010; Weir, 

Emmons, Gibson, Taylor, & Mucha, 2017):  

𝐴𝑀𝐼(𝑋, 𝑌) =
𝑀𝐼(𝑋,𝑌)−𝐸(𝑀𝐼(𝑋,𝑌))

max(𝐻(𝑋),𝐻(𝑌))−𝐸(𝑀𝐼(𝑋,𝑌))
       Eq. (D.1) 

 where 𝑀𝐼(𝑋, 𝑌) is the mutual information between random variables 𝑋 and  𝑌, 𝐻(𝑋) is the 

entropy of 𝑋 and the expected mutual information, 𝐸(𝑀𝐼(𝑋, 𝑌)), is obtained as in (N. X. Vinh, 

Epps, & Bailey, 2009). A MATLAB implementation of 𝐴𝑀𝐼 is available from the Network 

Community Toolbox (http://commdetect.weebly.com/).  
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