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Abstract 30 

Mangroves have among the highest carbon densities of any tropical forest. These “blue 31 

carbon” ecosystems can store large amounts of carbon for long periods, and their protection 32 

reduces greenhouse gas emissions and supports climate change mitigation. The incorporation 33 

of mangroves into Nationally Determined Contributions to the Paris Agreement and their 34 

valuation on carbon markets requires predicting how the management of different land-uses 35 

can prevent future greenhouse gas emissions and increase CO2 sequestration. Management 36 

actions can reduce CO2 emissions and enhance sequestration, but should be guided by 37 

predictions of future emissions, not just carbon storage. We project emissions and forgone 38 

soil carbon sequestration potential caused by mangrove loss with comprehensive global 39 

datasets for carbon stocks, mangrove distribution, deforestation rates, and drivers of land-use 40 

change. Emissions from mangrove loss could reach 2,397 Tg CO2eq by the end of the century, 41 

or 3,401 Tg CO2eq when considering forgone carbon sequestration. The highest emissions 42 

were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of 43 

Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical 44 

Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) 45 

and north Brazil due to erosion. Together, these six regions accounted for 90% of the total 46 

potential CO2eq future emissions. We highlight hotspots for future emissions and the land-use 47 

specfic management actions that could avoid them with appropriate policies and regulation.  48 
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Introduction 49 

 The capacity of mangroves to store carbon and mitigate greenhouse gas emissions 50 

became prominent a decade ago (Donato et al., 2011). Since then, mangroves have gained 51 

international interest for their potential to contribute to carbon mitigation strategies and for 52 

their ecosystem services that support adaptation to climate change (Lovelock & Duarte, 53 

2019). Hundreds of site-scale studies have been conducted to understand the distribution and 54 

accumulation of mangrove soil carbon and aboveground biomass (Kauffman et al., 2020). 55 

These site-scale models have supported globally comprehensive spatial models of carbon 56 

storage (Rovai et al., 2018; Sanderman et al., 2018; Simard et al., 2019). Simultaneously, 57 

global efforts to accurately map and monitor mangrove cover and health have provided 58 

unprecedented knowledge on the risks that mangrove forests face (Bunting et al., 2018; 59 

Goldberg et al., 2020; Hamilton & Casey, 2016). These studies have enabled global-scale 60 

estimation of mangrove carbon storage and its historical loss across different nations 61 

(Murdiyarso et al., 2015; Serrano et al., 2019) and globally (Atwood et al., 2017).  62 

Improved management can reduce CO2 emissions from mangrove forest loss and 63 

enhance the sequestration potential of disturbed forests (Friess et al., 2020; O’Connor et al., 64 

2020), but management actions should be guided by predictions of future emissions, not just 65 

carbon storage. The effectiveness of management relies on understanding how much 66 

emissions can be avoided by specific actions, for instance, by reducing land conversion or by 67 

increasing restoration efforts. Predictions of CO2 emissions from mangrove loss linked with 68 

specific land-use changes can underpin the selection of actions to support adequate mangrove 69 

management actions for specific drivers of loss. These actions include improving the 70 

representation of mangroves in the National Determined Contributions (NDCs) committed to 71 

in the Paris Climate Agreement, strengthening their role as natural-based solutions, and 72 

improving their valuation on carbon markets (Adame et al., 2018; Seddon et al., 2019).   73 
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Recent advances in mapping of mangrove area, rates of loss, carbon storage and 74 

emission factors now enable predictions of CO2 emissions at the global scale (Worthington et 75 

al., 2020). These predictions should overcome several key limitations in past studies 76 

(Macreadie et al., 2019). First, carbon emission estimates have yet to associate particular 77 

land-use changes with CO2 emissions, as mapping of global drivers of mangrove loss has just 78 

recently become available (Goldberg et al., 2020). Second, many global estimates have 79 

included only the first meter of soil, thus, underestimating the total carbon content of 80 

mangroves and the emissions that arise from their conversion to other land uses (Kauffman et 81 

al., 2020). Third, estimates of global carbon emissions have not included the forgone carbon 82 

sequestration and they do not account for the lost opportunity of sequestration when 83 

mangroves are lost (Maxwell et al., 2019). And finally, global estimates have treated all CO2 84 

emissions from mangroves as occurring in the year of loss (Atwood et al., 2017). Depending 85 

on the type of land-use change and the carbon pool affected, it can take years or even decades 86 

for the carbon stored in mangroves to be emitted into the atmosphere (Lovelock et al., 2017) 87 

and exported through tidal exchange (Maher et al., 2013).  88 

To overcome current limitations in global estimations, we developed a spatial model 89 

that projects emissions caused by mangrove loss. Our model synthesised information from 90 

multiple newly available global datasets, including carbon stocks (Kauffman et al., 2020; 91 

Sanderman et al., 2018; Simard et al., 2019), mangrove distribution (Bunting et al., 2018), 92 

deforestation rates (Hamilton & Casey, 2016), drivers of land-use change (Goldberg et al., 93 

2020) and emissions factors (Sasmito et al., 2019). We provide predictions of future CO2 94 

emissions from mangrove loss, accounting for the effect of proximate drivers of land-use 95 

change including: a) conversion to commodities, such as agriculture or aquaculture, b) coastal 96 

erosion, c) clearing, d) extreme climatic events, and e) conversion to human settlements 97 

(Goldberg et al., 2020). Importantly, we account for the foregone opportunity of soil carbon 98 
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sequestration when mangroves are lost (Maxwell et al., 2019). Our modelled emissions 99 

reflect the realistic temporal scale of emissions, which are not annual, but decadal (Lovelock, 100 

et al., 2017). By linking emissions with specific land-use changes and accounting for future 101 

removals, we provide for the first time, spatially explicit information on how different drivers 102 

of mangrove loss are causing CO2 emissions and what management actions can prevent them. 103 

 104 

Methods 105 

Mangrove area, rates of loss and drivers of change 106 

We divided global mangrove extent (Bunting et al., 2018) into the marine provinces (top-107 

level category of the bioregions) that contained mangroves (Spalding et al., 2007; Van der 108 

Stocken et al., 2019; Fig. 1, S1, Table S1). We selected this approach to estimate global CO2 109 

emissions because it is well aligned with climatic and geomorphic characteristics of 110 

mangroves, which are variables associated with carbon stocks and losses (Dürr et al., 2011; 111 

Rogers et al., 2019). Deforestation rate for each province was obtained from the dataset by 112 

Hamilton and Casey (2016) for the years 2000-2012.  113 

The drivers of mangrove loss for each province (2000-2016) were obtained from 114 

changes in mangrove area and a decision-tree model that separated drivers into five 115 

categories: a) conversion to commodities, such as agriculture or aquaculture, b) coastal 116 

erosion, c) clearing due to various activities including logging or hydrological modifications, 117 

d) extreme climatic events, such as tropical storms and fluctuations in sea level, and e) 118 

conversion to human settlements (Goldberg et al., 2020). Briefly, mangrove loss was 119 

estimated from the Surface Reflectance Tier-1 Landsat 5TM, 7ETM+, and 8OLI imagery 120 

within Google Earth Engine. A baseline period (1999-2001) of a Normalised Difference 121 

Vegetation Index (NDVI) optimised mosaic representing the year 2000 was created from 122 
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where mangrove area change was estimated. A threshold change value of -0.2 that occurred 123 

within the Mangrove Forests of the World extent (Giri et al., 2011) was used to indicate the 124 

areas of mangroves that had transitioned from forest to no-forest (Lagomasino et al., 2019). A 125 

random forest classification was applied to the areas showing a drop in NDVI greater than or 126 

equal to 0.2. These areas were trained for each land cover type: water, dark soils, and bright 127 

soils. Erosion was defined as a transition to water that intersected rivers and coastlines. 128 

Commodities (agriculture/aquaculture) were defined where mangrove loss intersected the 129 

Global Food Security-support Analysis Data Cropland Extent 30-m (GFSAD-30) layer 130 

(www.usgs.gov/centers/wgsc/science/global-food-security-support-analysis-data-30-m). 131 

Human settlements were defined as the bright soil land cover class that intersected with the 132 

Global Human Settlements Layer (GHSL). Clearing or non-productive conversions were 133 

defined at bright and dark soil land cover that intersected with a 5 km buffer around the 134 

GRIP-4 global roads dataset (//doi.org/10.7927/H4VD6WCT) and the GHSL human 135 

settlement dataset (//ghsl.jrc.ec.europa.eu/data.php). Lastly, conversion by extreme climatic 136 

events was defined as all other areas of mangrove loss that did not occur within a 5 km 137 

infrastructure buffer.  138 

Total Ecosystem Carbon Stocks (TECS) 139 

Soil organic carbon (SOC) stocks for one and two meters of soil were obtained from the 140 

global SOC dataset (Sanderman et al., 2018), which was derived from a random forest model 141 

trained on field measurements. For aboveground ecosystem carbon (ABC), biomass was 142 

obtained from the global dataset of mangrove biomass (Simard et al., 2019). The total 143 

biomass per province was divided by mangrove area to obtain a mean ABC per province and 144 

multiplied by a factor of 0.48 to obtain carbon values (Kauffman & Donato, 2012). We 145 

compared the TECS obtained from the global models with field measurements from 146 

provinces where data was available ( Kauffman et al., 2020) with a linear regression (IBM 147 
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SPSS Statistics, v25). TECS obtained from global models (Sanderman et al., 2018; Simard et 148 

al., 2019) were lower in provinces with high stocks (> 1,200 MgC ha-1, e.g. Sunda Shelf and 149 

West Coral Triangle) and higher in provinces with small stocks (< 220 MgC ha-1, e.g. 150 

Northwest Australian Shelf and Somali Arabian). There were only 15 provinces with field 151 

data, but the model predictions for these provinces were very close to the modelled data when 152 

the depth of SOC was selected at two meters (Fig. S2, Table S1). Hence, we calculated TECS 153 

for all provinces as the sum of ABC and SOC for the top two meters of soil.  154 

 155 

Emissions factors  156 

The emission factor is the fraction of carbon that is emitted given conversion to a specific 157 

land-use. We selected an emission factor for each province and activity from a recent global 158 

systematic review (Sasmito et al., 2019). Each emission factor was given a level of 159 

confidence (Table S2) from low to high, with Level 1 (lowest confidence) given to emission 160 

factors obtained from a global average, specific to that proximate driver; Level 2 to those 161 

obtained from a similar region, specific to that proximate driver; and Level 3 (highest 162 

confidence), from a similar region with the same geomorphic setting, specific to that 163 

proximate driver (Dürr et al., 2011).  164 

 165 

Model for projecting emissions and missed opportunities to sequester carbon 166 

We updated a model of carbon emissions from deforested mangroves (Adame et al., 2018) to 167 

account for drivers of land-uses and soil carbon sequestration. The model allowed for 168 

variable carbon stocks across discrete spatial units and assumed a constant rate of 169 

deforestation and a constant rate of emissions once mangroves were lost. We modelled 170 
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forgone carbon sequestration from mangrove loss in each province as the difference between 171 

carbon storage with deforestation and a counterfactual with no deforestation:  172 

𝐿𝑡 = 𝐶𝑡
0 − 𝐶𝑡

𝑑             (1) 173 

Cumulative carbon emissions, Lt, were described by three dynamic equations:   174 

𝑑𝐴

𝑑𝑡
= −𝐴𝑑              (2) 175 

𝑑𝐸

𝑑𝑦
= 𝐴1 ∙ 𝑑 ∙ 𝑒−𝑑𝑡 ∙ 𝑐 ∙ 𝑟 ∙ 𝑒−(𝑡−𝑦)𝑟       (3) 176 

𝑑𝑆

𝑑𝑡
= 𝑠 ∙ 𝐴1𝑒−𝑑𝑡             (4) 177 

Where A is the area of mangroves in hectares, d is the total deforestation rate across 178 

all land-uses, E is the emissions, r is the rate of emissions from deforested mangroves, c is the 179 

total carbon stock emitted per hectare, y is the year of deforestation, S is sequestered carbon 180 

and s is the yearly sequestration rate per hectare.  181 

We assumed that future rates of deforestation due to each of the five drivers were in 182 

proportion to their historical contributions to loss from Goldberg et al. (2020). Therefore, 183 

province-specific potential emissions per hectare were scaled by land-use types and their 184 

respective emission factors: 185 

𝑐𝑗 = 𝑐𝑗
𝑚𝑎𝑥 ∑ 𝑓𝑖,𝑗

5
𝑖=1 𝑝𝑖,𝑗    (5) 186 

Where 𝑐𝑗
𝑚𝑎𝑥  is maximum labile carbon per hectare for a province including SOC and AGC, 187 

𝑓𝑖,𝑗 are province and land-use specific emissions factors, and 𝑝𝑖,𝑗 are the proportional contributions of 188 

each land-use type to past deforestation.  189 

 190 

Sensitivity analyses to global datasets and model robustness 191 

To determine how sensitive our future predictions were to each of the variables 192 

selected, we conducted sensitivity analyses where we repeated the predictions with different 193 

datasets for mangrove area (Bunting et al., 2018; Hamilton & Casey, 2016), sources of data 194 
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(modelled and field) ( Kauffman et al., 2020; Sanderman et al., 2018; Simard et al., 2019), 195 

and SOC depth (1m, 2m, and whole sediment column).  196 

We also conducted sensitivity analyses on the emissions factors relating to erosion 197 

and extreme climatic events, which can be highly variable. Erosion can cause large emission 198 

in one location but partly compensate the mangrove area loss by accretion in other areas 199 

(Lagomasino et al., 2019). Extreme climatic events, such as tropical storms can cause large-200 

scale mortality; however, some areas can naturally recover after a few years if conditions are 201 

appropriate, thereby reducing emissions (Krauss & Osland, 2020). Thus, we implemented the 202 

model with emission factors of 50 and 100% for erosion, and with and without the mangrove 203 

area loss from climatic events. Finally, we conducted further formal sensitivity analyses of 204 

the model to all the parameter inputs by taking the derivative of Lt (cumulative carbon 205 

emissions) with respect to each parameter. 206 

 207 

Results and Discussion 208 

Inputs to the model 209 

First, we present summaries of the input data, noting that this data has been reported 210 

elsewhere, but not aggregated by provinces. The mean TECS (mean ± SE, [range]) measured 211 

in the field for all provinces was 624.5 ± 96.9 Mg C ha-1 (181.5–1,434.9). The mean 212 

modelled SOC in the top meter of soil was 331.3 ± 74.9 (207.4–497.8) Mg C ha-1, in the top 213 

two meters was 646.7 ± 150.6 (408.6–975.9) Mg C ha-1, and mean ABC was 101.2 ± 93.5 214 

(9.9–466.0) Mg C ha-1. The provinces with the largest area of mangroves were West Coral 215 

Triangle, the Gulf of Guinea, Sahul Shelf, and Tropical Northwest Atlantic (Table S1, Fig. 216 

S3). Ten provinces contained 88% of all the mangroves in the world. From 2000 to 2012, 35 217 

of the 37 provinces had some level of deforestation, with mean annual losses of 0.09 ± 218 
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0.02%. The highest deforestation rates were in the Bay of Bengal (0.54%), Sunda Shelf (0.34 219 

%), West Coral Triangle (0.32%), and Tropical Northwest Atlantic (0.14%) (Table S1, Fig. 220 

S3). 221 

Conversion of mangroves to aquaculture/agriculture was the primary proximate driver 222 

of mangrove loss, which caused the conversion of 219,392 ha of mangroves from 2000 to 223 

2016, especially in the West Coral Triangle (100,231 ha), Bay of Bengal (54,602 ha) and 224 

Sunda Shelf (44,530 ha, Fig. 1A). This corresponds to 87.1, 73.5, and 70.4% of their total 225 

mangrove loss, respectively. The second most important proximate driver of mangrove loss 226 

was erosion, which caused the loss of 92,787 ha, mainly in North Brazil Shelf (20,547 ha, 227 

54.9% of the total mangrove loss), the Bay of Bengal (14,309 ha, 19.3%) and Sunda Shelf 228 

(11,863 ha, 18.8%). The third proximate driver of mangrove loss was extreme climatic 229 

events, causing the loss of 41,525 ha of mangroves, mainly in North Brazil Shelf (8,605 ha, 230 

5.7%), Tropical Northwest Atlantic (8,257 ha, 30.7%) and Sahul Shelf (8,480 ha, 42.2%). 231 

The fourth most important driver was mangrove clearing which caused the loss of 39,595 ha, 232 

mostly in Tropical Northwest Atlantic (9,244 ha, 30.7%), Gulf of Guinea (8,738 ha, 42.2%), 233 

and West Indian Ocean (5,817 ha, 35.6%). Finally, the fifth proximate driver of mangrove 234 

loss was human settlement, which caused the loss of 10,529 ha, mostly in the Sunda (3,980 235 

ha, 6.3%) and Sahul Shelf (3,397 ha, 16.4%).  236 

 237 

Predictions of carbon emissions and lost opportunities to sequester carbons 238 

Global emissions from mangrove loss are projected to reach 2,397 TgCO2 eq by the 239 

end of the century (2020-2100). Including the loss of potential carbon sequestration once 240 

mangroves are deforested (considered to have a global mean value of 1.5 MgC ha-1 yr-1; 241 

Alongi, 2014) increased our projection to 3,401 TgCO2 eq. Previous estimates of mangrove 242 
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emissions for the same period varied enormously, between 630 and 40,230 TgCO2eq (Friess, 243 

et al., 2020). Our projection lies towards the lower end of this range, and we consider it more 244 

accurate because of the inclusion of land-use drivers, time lags, and foregone future 245 

sequestration that were not considered in previous studies. Projected CO2 emissions showed 246 

significant geographical variability (Fig 1A). They were highest for the West Coral Triangle 247 

(712 TgCO2 eq), followed by Sunda Shelf (452 TgCO2 eq), Bay of Bengal (369 TgCO2 eq), 248 

Tropical Northwest Atlantic (312 TgCO2 eq), Andaman coast (161 TgCO2 eq), and North 249 

Brazil Shelf (137 TgCO2 eq). Collectively, these provinces contributed 90% of the total 250 

projected global CO2 emissions (Fig. 1A, Fig. 2, Table S3). 251 

The West Coral Triangle, Sunda Shelf, and the Bay of Bengal had the highest 252 

predicted emissions due to mangrove conversion to agriculture/aquaculture at 985 Tg CO2 eq 253 

(Fig. 1B, 2). This region has been previously highlighted as a global hotspot of mangrove 254 

CO2 emissions (Atwood et al., 2017). Within these provinces, clearing of large areas of 255 

carbon-rich mangroves has occurred for rice, oil palm, aquaculture, and rubber plantations 256 

(De Alban et al., 2019; Richards & Friess, 2016). In Indonesia, the conversion of mangroves 257 

to aquaculture contributed almost 15% of their national emissions (Murdiyarso et al., 2015).  258 

In Myanmar, deforestation of mangroves has been driven by national policies that support the 259 

intensification of rice production to increase food security (Webb et al., 2014). Our 260 

predictions suggest that emissions from the south and southeast East Asia will be the highest 261 

globally by the end of the century due to the intensity of land-use changes and large 262 

mangrove carbon stocks (Fig. S3). These emissions have the potential to be managed through 263 

changes in agricultural practices, and the restoration of formerly converted mangrove areas, 264 

such as disused aquaculture ponds and land with saltwater intrusion. For instance, the 265 

improvement of the agriculture/aquaculture industry in the West Coral Triangle could reduce 266 

up to 73% of the projected CO2 emission for this region (Fig. 3A).   267 
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 268 

Figure. 1. (A) Global projected CO2 eq emissions (Tg) by the end of the century (2010-2100) 269 

for the marine provinces of the world, and (B) the proximate driver responsible for the largest 270 

CO2 emissions for each marine province (Goldberg et al. 2020). The names for all marine 271 

provinces can be found in Fig. S1 and Table S1. 272 

 273 

An important driver of mangrove loss in the southeast and southeast Asia was erosion, 274 

which accounted for 23, 38, and 30% of the total emissions from the West Coral Triangle, 275 

Sunda Shelf, and Bay of Bengal provinces, respectively (Fig. 2). Additionally, the adjacent 276 

province of Andaman (west Myanmar, Bangladesh, and east India) had significant emissions 277 

due to erosion (98 TgCO2 eq or 60% of its total emissions). In the Sundarbans, changes in 278 

river flows have reduced sediment inputs, which caused the loss of over 7,500 ha of coastline 279 

in the last 37 years (Bhargava et al., 2020). In areas prone to high rates of erosion, decreasing 280 

emissions would need to be achieved through shore stabilisation and the management of 281 

rivers and dams to provide sediment inputs that support the maintenance of mangrove surface 282 

elevations and habitat area (Lovelock et al., 2015; Fig. 3A). Landward migration of 283 
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mangroves, if coastal squeeze is avoided, may also balance some losses in provinces with 284 

high levels of erosion (Schuerch et al., 2018). 285 

 286 

Figure 2. Cumulative CO2 eq emissions (Tg) by the end of the century (2010-2100) attributed 287 

to the proximate drivers of mangrove loss for the marine provinces ranked in the top ten for 288 

future CO2 emissions. 289 

 290 

A second hotspot for mangrove CO2 emissions was identified in the Tropical 291 

Northwest Atlantic, which had large emissions due to erosion (191 TgCO2 eq), clearing (80 292 

TgCO2 eq), and extreme climatic events (23 TgCO2 eq), with total emissions projected to reach 293 

312 TgCO2 eq by the end of the century (Fig. 1, 2; Table S2). In the Mexican Caribbean, 294 

changes in hydrological connectivity that affect groundwater are a significant cause of 295 

unintended clearing of mangroves that are rich in carbon (Adame et al., 2013). The Tropical 296 

Northwest Atlantic is also one of the regions with the highest frequency of tropical storms in 297 
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the world, which can cause large-scale mangrove mortality (Krauss & Osland, 2020). 298 

Management activities to decrease CO2 emissions in the Tropical Northwest Atlantic could 299 

include the stabilisation of the coasts, reduction of illegal deforestation and the improvement 300 

of hydrological connectivity, especially in sites that fail to recover after tropical storms 301 

(Zaldívar-Jiménez et al., 2010). These activities could reduce the projected carbon emissions 302 

by 94% for this region (Fig. 3B).  303 

 304 

Figure 3. Emission reductions (Tg CO2 eq) that could be achieved from (A) management of 305 

agriculture/aquaculture and shore stabilisation in the West Coral Triangle, and (B) decrease 306 

in erosion through shore stabilisation, mangrove protection to avoid clearing, and 307 

management of mangroves affected by tropical storms in the Tropical Northwest Atlantic.  308 

 309 

Smaller hotspots with lower CO2 emissions were predicted to occur on the North 310 

Brazil Shelf, Sahul Shelf, and Gulf of Guinea (Fig. 1A), regions with an intermediate 311 

mangrove area and moderate carbon stocks (Table S1). In Brazil, vegetation clearing, 312 

changes in hydrology, and coastal development have increased erosion which has led to 313 

mangrove loss (Krause & Soares, 2004). Across the Sahul Shelf, northern Australia, the loss 314 

of mangroves during 2015-2016 was associated with an intense El Niño event which caused 315 
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fluctuating sea levels, drought, and high temperatures (Lovelock, et al., 2017). In the Gulf of 316 

Guinea, CO2 emissions are the result of drought and changes in hydrology, which caused the 317 

loss of large areas of mangroves in Senegal (Sakho et al., 2017). 318 

 319 

Sensitivity of predictions to input data sources 320 

The sensitivity analysis demonstrated that our projected hotspots of CO2 emissions 321 

due to mangrove loss are robust to different input data for mangrove area, carbon stock and 322 

emissions factors for extreme climatic events (Fig. S4). However, the total amount of 323 

emissions from SOC and ABC varied when we considered modelled versus field data sets, 324 

and different datasets for mangrove distribution (Fig S4). We considered field estimates to be 325 

more accurate, and since estimates to 2 m were closer to field SOC measurements than the 326 

estimates to 1 m (Fig. S2), we used 2 m as the depth of SOC for our predictions. Global 327 

emissions predictions based on the mangrove distribution dataset of Global Mangrove Watch 328 

(Bunting et al., 2018) were higher than those derived from the Hamilton and Casey (2016) 329 

dataset (Fig. S4). The former is considered a more comprehensive representation of 330 

mangrove forests globally because it captures mangroves of short stature. For instance, we 331 

found that predictions in provinces where short-statured mangroves are dominant (e.g. 332 

Tropical Northwest Atlantic) almost tripled when using the mangrove area from Global 333 

Mangrove Watch (Bunting et al., 2018).  334 

The sensitivity analysis also indicated the model was most sensitive to the 335 

deforestation rates, with emissions increasing linearly as deforestation rate increased. The 336 

model was also sensitive to emission rates, but only in the short-term (Fig. S5-S8). Therefore, 337 

our model may overestimate emissions in regions where mangrove deforestation rates are 338 

slowing because of policy changes (Friess, et al., 2020; Richards et al., 2020). We further 339 
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assumed that future rates of loss due to each of the five drivers were proportional to their 340 

historical contributions. Therefore, if deforestation rates continue to slow into the future, our 341 

CO2 emissions predictions will be overestimated. Changes in the magnitude of all land-use 342 

categories are likely to occur in the future, implying that our assumption of linearity in 343 

predictions may not happen. For example, unused agricultural land may transition to urban 344 

settlements. Also, mangrove loss may accelerate in some areas because of sea-level rise and 345 

climatic events. In other areas, the expansion of mangroves onto floodplains could 346 

compensate for some of the losses (Schuerch et al., 2018).  347 

Overall our sensitivity analysis suggests that predictions on future emissions will be 348 

most sensitive to deforestation rates; thus, a research priority is developing scenarios for 349 

future mangrove loss that consider both climate and economic drivers of mangrove loss 350 

(Duarte et al., 2020; Schuerch et al., 2018). Our CO2 emission predictions could then be 351 

updated to account for changes in land-use trajectories – and the resulting changes in losses 352 

and gains – when higher-resolution global models of landscape change become available.  353 

 354 

Conclusion 355 

We have identified hotspots of CO2 emissions due to mangrove loss associated with 356 

various drivers of land-use change. We predict that emissions arising from mangrove loss 357 

within this century will be concentrated in six provinces of the world: West Coral Triangle, 358 

Sunda Shelf, Bay of Bengal, Tropical Northwest Atlantic, Andaman, and North Brazil Shelf. 359 

These regions have large areas of mangroves (> 500,000 ha), relatively high rates of loss (≥ 360 

0.1 % annually), and most of them have high carbon densities (≥ 500 MgC ha-1). By 361 

accounting for specific land-use changes and the foregone carbon sequestration potential, we 362 

update previous global estimates and provide specific management actions to most efficiently 363 
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minimise future emissions. Activities that improve agricultural practices to reduce further 364 

expansion into mangrove areas, and efforts to stabilise coastlines and restore former 365 

mangrove areas should be prioritised to decrease emissions from mangrove loss by the end of 366 

the century.  367 
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