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Supplementary Methods 

Projection to kernel space 

For a given omic design matrix 𝑿𝑚 on 𝑛 samples and 𝑝𝑚 features, with each column standard-normalized 

to zero mean and unit variance, we project the omic into a sparse kernel space using the simple linear 

kernel: 

𝑲𝒍𝒊𝒏𝒆𝒂𝒓𝑚
 =  𝑝𝑚

−1𝑿𝑚𝑿𝑚
𝑇 , 

resulting in 𝑲𝒍𝒊𝒏𝒆𝒂𝒓𝑚
, an 𝑛 × 𝑛 matrix. We call 𝑲𝒍𝒊𝒏𝒆𝒂𝒓𝑚

 the omic linear kernel matrix for omic 𝑚. 

 

Alternatively, for a given omic 𝑿𝑚 on 𝑛 samples and 𝑝𝑚 features, with each column standard-normalized to 

zero mean and unit variance, we project the omic design matrix into a sparse Gaussian kernel space using 

the Gaussian kernel function. For samples 𝑖 and 𝑗, corresponding to the 𝑖th and 𝑗th rows of 𝑿𝑚, the 𝑖, 𝑗-th 

element of the Gaussian kernel matrix 𝑲𝑮𝒂𝒖𝒔𝒔𝑚
 for omic 𝑚 is defined as 

𝑲𝑮𝒂𝒖𝒔𝒔𝑚
= exp (

−‖𝑥𝑖.−𝑥𝑗.‖
2

𝑝𝑚
) . 

 

To compare two omic kernels 𝑲𝑚1
and 𝑲𝑚2

 in the same kernel space (i.e. two linear kernel matrices or two 

Gaussian kernel matrices), we compute their kernel alignment 𝑆, a measure of similarity between two omic 

kernels [7] using the standardized Frobenius inner product of two matrices: 

𝑆 =  
〈𝑲𝑚1 ,𝑲𝑚2〉𝐹

√〈𝑲𝑚1 ,𝑲𝑚1〉𝐹〈𝑲𝑚2 ,𝑲𝑚2〉𝐹

, 

where, for two 𝑛 × 𝑛 matrices 𝑨 and 𝑩, 〈𝑨, 𝑩〉𝐹 =  ∑ 𝐴𝑖𝑗𝐵𝑖𝑗
𝑛
𝑖,𝑗=1 . 

 

Multiomic kernel predictive model with linear kernels 

We consider the following linear model, assuming 𝑀 total omics considered: 

𝒀 = 𝑿𝑐𝜷𝐶 + 𝑼 + 𝝐, 

where 𝒀 is an outcome of interest (either SRS or IQ), standardized to zero mean and unit variance, 𝑿𝐶 is 

the design matrix of covariates, 𝜷𝐶 is a vector of fixed effects for covariates, 𝑼 is a vector of omic predictive 

scores, and 𝜖 is Gaussian random error with zero mean and identity covariance matrix. We assume that 
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the omic predictive scores are normally distributed with zero mean and a fused kernel matrix as its variance-

covariance matrix, i.e. 𝑼 ∼ 𝑁(0, 𝑲) and 𝑲 =  ∑ 𝑲𝑚
𝑀
𝑚=1 . This model is simply a traditional linear mixed model, 

treating clinical covariates as fixed effects and aggregating all omics into omic predictive scores that are 

treated as random effects clustered around zero. It is straightforward that 

𝑼 =  ∑ 𝑼𝑚

𝑀

𝑚=1

=  ∑ ∑ 𝑿𝑚𝑗𝜂𝑚𝑗

𝑝𝑚

𝑗=1

,

𝑀

𝑚=1

 

where 𝑼𝑚 is the vector of omic predictive scores for the 𝑚th omic profile and the weight sum of omic 

features 𝑿𝑚𝑗 with random effects coefficients 𝜂𝑚𝑗. Assuming 𝜂𝑚𝑗 ∼ 𝑁(0,
𝜎𝑚

2

𝑝𝑚
⁄ ), we see that 𝑼𝑚 ∼

𝑁(0, 𝜎𝑚
2 𝑲𝑚) and 𝑼 ∼ 𝑁(0, 𝑲). 

  

Kernel modeling training and evaluation for linear kernels 

We evaluate our models through 50-fold Monte Carlo cross-validation, using methods similar to Zhu et al 

[8]. Given a single cross-validation fold, with 75% of the data in training set and 25% in a test set, we can 

divide 𝒀 = [
𝒀𝑡𝑟𝑎𝑖𝑛

𝒀𝑡𝑒𝑠𝑡
] and 𝑲𝒍𝒊𝒏𝒆𝒂𝒓 into four blocks: 

𝑲𝒍𝒊𝒏𝒆𝒂𝒓 =  [
𝑲𝑡𝑟𝑎𝑖𝑛 𝑲𝑐𝑜𝑣

𝑲𝑐𝑜𝑣
𝑇 𝑲𝑡𝑒𝑠𝑡

], 

where 𝑲𝑡𝑟𝑎𝑖𝑛 is the variance matrix of the training set, 𝑲𝑡𝑒𝑠𝑡 is the variance matrix of the test set, and 𝑲𝑐𝑜𝑣 

is the covariance matrix between the training and test sets. We find the maximum likelihood estimator �̂�𝐶 

for the fixed effects, the best linear unbiased predictor �̂�𝑡𝑟𝑎𝑖𝑛 of the omic predictive scored of the training 

set, and the restricted maximum likelihood estimators �̂�𝑚
2  for the variance components of the fused kernel, 

using rrBLUP [9]. We then estimate the total predictive scores �̂�𝑡𝑒𝑠𝑡: 

�̂�𝑡𝑒𝑠𝑡 = 𝑿𝐶𝑡𝑒𝑠𝑡
 �̂�𝐶 + 𝑲𝑐𝑜𝑣𝑲𝑡𝑟𝑎𝑖𝑛

−1 �̂�𝑡𝑟𝑎𝑖𝑛 

 

We then compute the adjusted 𝑅2 between the 𝒀𝑡𝑒𝑠𝑡 and �̂�𝑡𝑒𝑠𝑡 to assess the predictive performance of the 

omic predictive scores. This process is repeated across 100 folds and the adjusted 𝑅2 are averaged to 

create a predictive index for a given clinical and omic profile. We consider all possible combinations of 

omics after regressing out clinical covariates in these multiomic kernel models. External validation is 
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conducted similarly; however, as the relevant clinical covariates were not available in the MARBLES 

dataset, we do not adjust the molecular profiles for these clinical covariates in the predictive models applied 

to this dataset[10]. 

 

Kernel regularized least squares regression for Gaussian kernels and model evaluation 

We employ a similar Monte Carlo cross-validation scheme, splitting our data into 75%-25% training and 

test sets across 50 folds. We implement kernel-based regularized squares regression through the KRLS 

package [11], that minimizes the Tikhonov objective function over squared loss. Briefly, the objective of 

KRLS, in our case, is to find the 𝑐 that minimizes 

𝑇(𝑐) =  ∑ (𝒀 − 𝑲𝑮𝒂𝒖𝒔𝒔𝑚
𝑐)

𝑇
(𝑌 − 𝑲𝑮𝒂𝒖𝒔𝒔𝑚

𝑐)𝑛
𝑖=1 + 𝜆𝑐𝑇𝑲𝑮𝒂𝒖𝒔𝒔𝑚

𝑐, 

where 𝜆 is tuned via leave-one-out cross-validation. Furthermore, KRLS can compute the pointwise 

partial derivatives of the fitted function with respect to each predictor using estimators developed by 

Hainmuller and Hazlett [11]. These pointwise partial derivatives can be used to examine the marginal 

effect of every feature in the omic design matrix on the outcome of interest, similar to an ordinary least 

squares regression parameter estimate. 

 

Using the best parameter estimates from the training set, a Gaussian kernel matrix can be computed from 

the test set, and we define predicted values in the test set as 

�̂�𝑡𝑒𝑠𝑡 = 𝑲𝑮𝒂𝒖𝒔𝒔𝑚𝑡𝑒𝑠𝑡
�̂�. 

We compute adjusted 𝑅2 between the observed and predicted values of the outcome of interest here, as 

well, to assess predictive performance. 

 

Sparse regression model and evaluation 

We also consider linear models to predict outcomes of interest using a regularized regression model: 

𝒀 = 𝑿𝒎𝜷𝑚 + 𝝐, 

where 𝑿𝑚 and 𝜷𝑚 are the 𝑛 × 𝑝𝑚 design matrix and effects for a given omic profile 𝑚, using Monte Carlo 

cross-validation to evaluate predictive performance across 100 80%-20% training-test set folds. In the 

training set, using glmnet, we estimate �̂�𝑚 using elastic net regularized regression with a mixing parameter 
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of 0.5 (even mixture of LASSO and ridge penalties) and the regularization penalty parameter tuned over 5 

folds [12]. Using these parameter estimates, we predict on the test set and evaluate predictive performance 

using adjusted 𝑅2. 

 

Feature selection 

To tune the number of features to include for each omic in the final predictive models, we tuned over various 

𝑃-value thresholds from fold-wise one-way tests of associations.  We split the data into 5 80%-20% training 

set-test set folds, conducted one way tests of associations in the training set  (i.e. differential  expression 

analysis for mRNA and miRNA expression, EWAS for DNA methylation) , and selected all biomarkers with 

associations with the outcome of interest with 𝑃-value under a given threshold.  Using these biomarkers, 

we predict the outcome of interest in the test set using both kernel regression methods and compute the 

adjusted 𝑅2 to assess predictive performance. 

 

External validation using MARBLES dataset 

We obtained one external placental CpG methylation dataset from the Markers of Autism Risk in Babies-

Learning Early Signs (MARBLES) cohort [10]. To assess out-of-sample performance of kernel models for 

methylation, we downloaded MethylC-seq data for 47 placenta samples, 24 of which identified as ASD 

cases (NCBI Gene Expression Omnibus accession numbers GSE67615) [10]. We extracted 𝛽-values for 

DNA methylation from BED files and transformed into 𝑀-values with an offset of 1 [13]. We then used the 

best linear kernel and kernel regression models to predict SRS and IQ in the MARBLES dataset, as detailed 

above. It is important to note that not all CpG sites used in the best-methylation model from ELGAN were 

assayed in the MARBLES external validation set (only approximately 85% overlap). Furthermore, the 

MARBLES dataset does not have measures of SRS or IQ. Thus, to assess the validity of predicted SRS 

and IQ estimates in MARBLES, we tested for association between the predicted SRS and IQ values and 

ASD case-control status. 
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 Supplemental Figure 1: Manhattan plots of one-way omic association tests for IQ and SRS. Manhattan plots for one-way tests of association 

for methylation (top), miRNA (middle), and mRNA expression with IQ (A) and SRS (B). The 𝑿-axis plots the genomic position of the biomarker and 

the 𝒀-axis plots the Benjamini-Hochberg FDR-adjusted 𝑃-value for the association with the given outcome. The dotted line provides a reference of 

FDR-adjusted 𝑃 = 0.05, and the solid line provides a reference of FDR-adjusted 𝑃 = 0.01. Biomarkers are labelled with their association has FDR-

adjusted 𝑃 = 0.01. 
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Figure 2: Sparse correlative networks between top predictive biomarkers of IQ and SRS. Using the top 50 CpGs (orange nodes), top 50 

miRNAs (blue), and top 50 mRNAs (red) that are predictive of IQ (left) and SRS (right), we inferred sparse correlative networks [14, 15]. Nodes are 

biomarkers and edges show correlations between biomarkers. Positive correlations are shown in green, negative correlations are shown in red, 

and the thickness of the edge gives the absolute magnitude of correlation.
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