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Abstract:  
The role of natural enemies in promoting coexistence of competing species has generated 

substantial debate. Modern coexistence theory provides a detailed framework to investigate this 

topic, but there have been remarkably few empirical applications to non-plant systems. Trade-offs 

between defence against natural enemies and inherent fecundity provide a potential mechanism 

promoting coexistence between competing species. To test this, we parameterised models of 

competition between six Drosophila species in experimental mesocosms, with and without a 

generalist pupal parasitoid. We found no evidence of a general fecundity-susceptibility trade off, and 

idiosyncratic impacts of parasitism on pairwise coexistence. Methodologically, our novel Bayesian 

approach highlights issues with the separability of model parameters within modern coexistence 

theory and shows how using the full posterior parameter distribution improves inferences. Our 

results emphasise the importance of contextualising specific trade-offs and the value of modern 

coexistence theory in multi-trophic contexts.  
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Introduction 
Species compete for limited resources and (in almost all cases) are consumed by other species. 

Understanding how the impacts of competitors and natural enemies interact to influence species 

coexistence is a long-standing challenge. Natural enemies are regularly cited as a driver of 

coexistence, for example by suppressing otherwise-dominant species (Paine 1966) but their impact 

can be highly variable (Chase et al. 2002).  

Analyses on the effect of natural enemies often focus on ‘reduction in competition’ (e.g. Gurevitch et 

al. 2000), as measured by negative effects between focal species, but consumers can affect 

competition and coexistence in convoluted ways (Chase et al. 2002; Pringle et al. 2019). Modern 

coexistence theory (MCT) focuses on the property of mutual invasibility, and allows the precise 

framing of questions regarding pairwise species coexistence as a balance between niche differences 

promoting stabilisation and fitness differences fostering exclusion of one species by another 

(Chesson 2000; Letten et al. 2017). Through the lens of coexistence theory, interactions mediated 

through competition for resources and through natural enemies are conceptually equivalent 

(Chesson & Kuang 2008; Chesson 2018) and a body of theory has developed to integrate consumer 

effects within the coexistence framework (Chesson & Kuang 2008; McPeek 2019). This theoretical 

work has emphasised that impacts of any process on coexistence can only be determined with 

information on both intrinsic growth rates and competitive terms. However, a corresponding body 

of direct empirical data using the framework to investigate the impact of consumers on coexistence 

is yet to develop (Bartomeus & Godoy 2018).  

Natural enemies are theorised to enhance coexistence through a number of mechanisms. A 

frequently-invoked mechanisms is that they reduce fitness differences, mediated by a trade-off 

between resource acquisition and susceptibility to attack (Paine 1966; Kraaijeveld & Godfray 1997). 

However, such a trade-off is in itself insufficient to enable long-term coexistence, since some kind of 

stabilising niche-difference is required to mitigate any fitness difference (Chesson 2000). Even with 

zero fitness difference, stochastic drift would preclude coexistence in the absence of stabilising 

mechanisms (Adler et al. 2007).  

The great majority of experimental work within a formal MCT framework has been conducted on 

plant or microbial systems (Bartomeus & Godoy 2018; Grainger et al. 2019), but experimental 

studies of insect communities have considerable potential to further our understanding of the role 

of natural enemies in species coexistence. While plants are particularly amenable for competition 

studies, it is challenging to explore how herbivores affect coexistence because, with the exception of 

seed predation (Petry et al. 2018), it is complex to quantify the effect of damage by natural enemies 

directly in terms of fitness. By contrast, since parasitoids kill their insect hosts as they develop in or 

on them, each attack is directly interpretable in terms of host fitness (Hassell 2000). Although 

ecologists have been competing insect species (especially Drosophila) against each other for decades 

(Pearl 1932; Ayala 1969; Gilpin et al. 1986; Worthen 1989; Davis et al. 1998), very few studies have 

explicitly tested for mutual-invasibility in insect systems (Siepielski et al. 2018). In particular, few 

studies have directly assessed coexistence per se, rather than particular conditions necessary for 

coexistence  (Godwin et al. 2020; Spaak & de Laender 2020).  

Recent meta-analyses have emphasised the importance of parameterised models for understanding 

mechanisms of coexistence (Broekman et al. 2019), particularly since large-scale global 
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environmental changes will create novel communities (Alexander et al. 2016). However, parameter 

fitting can have high data demands, and key ecological model parameters are often not fully 

separable (Bolker 2008). For example, in a simple model of competition similar predictions could be 

made by lowering the growth rate term and increasing the competition term. With a well-designed 

experiment and sufficient data, uncertainty can be minimised. Nonetheless, in any realistically-sized 

competition experiment, separability of parameters can be a significant but largely 

underacknowledged issue. This problem is particularly pertinent when working within the 

framework of modern coexistence theory, where conclusions are drawn from comparisons between 

ratios composed of multiple parameters from the underlying model (Barabás et al. 2018; Song et al. 

2019). Failing to address these issues could dramatically affect the confidence with which 

conclusions are drawn from experimental data. 

Here we present one of the first analyses directly quantifying the impact of consumers on pairwise 

species coexistence, focusing on a community of six rainforest Drosophila species. Our experiment 

was designed specifically to capture the key parameters of our focal species and their competitive 

interactions to test the hypothesis that trade-offs between intrinsic growth rate and susceptibility 

contribute to their coexistence. We use a Bayesian approach to propagate uncertainty in model 

parameters through to niche and fitness differences, a method that should be widely applicable for 

understanding species coexistence processes in a range of systems. We show that parasitoids 

strongly influence the fitness differences between species and have inconsistent impacts on pairwise 

coexistence that would not be identifiable solely from fecundity-susceptibility relationships. 

Methods 

Study Species 

We investigated a system of six naturally co-occurring Drosophila vinegar flies (D. birchii (BIR), D. 

pallidifrons (PAL), D. pandora (PAN), D. pseudoananassae (PAN), D. simulans (SIM), and D. 

sulfurigaster (SUL)) from a well-characterised Australian rainforest community (Hangartner et al. 

2015; O’Brien et al. 2017; Jeffs et al. 2020), along with a co-occurring generalist parasitoid wasp 

from the genus Trichopria (Hymenoptera: Diapriidae, lab strain 66LD, SI 1). This parasitoid attacks 

Drosophila species at their immobilized pupal stage, and development of the larvae results in the 

death of the host.  

Drosophila species have long been used in experimental ecology since they are straightforward to 

culture under laboratory conditions, allowing high levels of replication and standardisation. The set 

of Drosophila species used here represents a significant fraction of the diversity of Drosophila 

species co-occurring at rainforest sites in Queensland, Australia (Jeffs et al. 2020). The six species 

span a range of body sizes (Table S1.1), have similar generation times, and can be distinguished 

visually (at least in the case of males). Drosophila are generalist feeders (Valadão et al. 2019) and in 

natural populations they experience high levels of parasitism, including from a suite of highly 

generalist natural enemies (Jeffs et al. 2020).  

Experimental design 

We conducted a large, single-generation pairwise competition assay, in a response-surface design 

following the guidelines of Hart et al. (2018), under the presence or absence of pupal parasitoids. 

We used 25mm-diameter standard Drosophila vials (VWR International) containing 4 ml of standard 

fly medium. Equal numbers of male and female Drosophila were introduced to each vial, so we refer 
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to the number of founder pairs. Each two-species combination (15 combinations in total) was 

represented by (3,3), (6,3), (9,3), (12,3), (3,6), (3,9) and (3, 12) sets of pairs, each replicated three 

times in each parasitism treatment. We also included monocultures of each species, with 12x 1 pair, 

6x 3 pairs, 6x 9 pairs, and 6x 15 pairs within each treatment, making a total of 990 experimental vials 

(360 single-species, 630 two-species). The entire experiment was split over three blocks, each with 

identical sets of combinations, but staggered by two days. The experiment was conducted in a single 

large incubator maintained at 26°C, with the location of trays within the incubator regularly rotated. 

Further details are given in SI 1. 

Initiation of treatments 

Founding adults were offspring of adults drawn from mass-bred line cages and were raised in vials at 

moderate density (approximately 100 adults per vial) at a constant 23°C. These adults emerged 8-10 

days before the start of the experiment, and so could be assumed to be sexually mature and mated. 

The day preceding the start of the experiment, the founding flies were lightly anesthetised under 

CO2 to be separated by sex. The males were added to the experimental vials immediately. Females 

were maintained at moderate density (~50 adults per vial) in holding vials with fly medium and were 

transferred to experimental vials the following day, minimising the time interval between the 

addition of each species in multi-species assays. They were able to lay eggs and re-mate for 24 hours 

before being removed. Fig. 1 provides an overview of the experimental protocol. 

 

Figure 1 Summary diagram of experimental design showing founding process, treatment and sampling 

procedure described in the main text. 

Parasitism 

At the onset of pupation, 5 days after the founder flies were removed, the fly vials were moved into 

Perspex parasitism boxes (35x20x14cm) containing up to 88 vials (SI 1). Vial positions within each 

box were randomised. The vial plugs were removed, and 50 female and 50 male mature and mated 

parasitoid wasps were added. The wasps were free to move between vials within each box. While it 

is possible that late-pupating larvae could cross from one vial to another during this period, we only 

observed a handful of cases where 1-2 individuals of the ‘wrong’ species emerged from a vial, and 

very few pupae (<5 per box) were observed to develop on the outside of the vials. This suggests that 

movement was negligible. After 30 hours, before the emergence of the fastest-developing 

Drosophila species, all wasps were removed with an aspirator, vial plugs were replaced, and the vials 

were returned to their original trays.  
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Counting 

We removed adult flies emerging from all vials every three days, minimising the risk that emerged 

adults started a subsequent generation. Flies in single-species vials were sexed and counted at each 

removal time, while flies in multi-species vials were sexed and identified at the end of the 

experiment (Fig. 1). We observed a highly consistent 1:1 sex ratio across the intra-specific trials and 

in those interspecific trials where females of different species could be reliably distinguished (SI 2 

Fig. S2.1). In the five of the combinations (BIR-PAN, BIR-PSA, BIR-SIM, PSA-PAN and PAL-SUL) where 

it was not possible to identify female flies to species we counted the males and inferred the total 

number of flies of each species assuming a 1:1 sex ratio. 

Modelling 

Determining growth rates 

The larval competition of Drosophila often occurs within individual fruits that represent a discrete 

and temporary resource suitable for only a single generation of flies (Atkinson & Shorrocks 1981; 

Shorrocks 1991). In this way, the population dynamics of Drosophila resemble those for annual 

plants that have been the focus of the majority of recent coexistence work (Levine & HilleRisLambers 

2009; Bartomeus & Godoy 2018; Pérez-Ramos et al. 2019). Our starting point is a Beverton-Holt 

model without any carry-over between generations: 

Ni,t+1 =
𝑟𝑖Ni,t

1  + 𝛼𝑖𝑖𝑁𝑖,𝑡 +   𝛼𝑖𝑗𝑁𝑗,𝑡
   (1) 

where 𝑁𝑖,𝑡is the size of the population of species 𝑖 in generation t, 𝑟 is a species-specific intrinsic 

growth rate term and 𝑎𝑖𝑗  are competition terms representing the effect of species 𝑗 on 𝑖. 

The mean number of adults emerging per founder was consistently lower in vials with only a solitary 

founding pair compared to those with three founders (SI 2, Fig. S2.2). Drosophila use cues from 

other females when determining oviposition sites (Wertheim et al. 2002; Duménil et al. 2016), which 

could be causing this Allee effect. It is not possible to directly incorporate such positive density-

dependence effects within the standard MCT framework without additional assumptions (Barabás et 

al. 2018; Schreiber et al. 2019). Since solitary founders are quite possibly a rather artificial scenario, 

we therefore excluded data from all singleton pair trials from the model fitting.  

Variable generation time 

One key difference between strictly annual plants and our Drosophila system is that the time from 

egg-laying to emergence can be considerably extended in high-competition environments, reducing 

the effective rate of reproduction. Additionally, our test species differ in baseline development time; 

in particular D. birchii has a longer development time. To account for this, we calculated an effective 

daily growth rate as our core ‘fitness’ measure from the raw number of emerged adults over a 

period of time. We use a minimally simple growth model, 𝑁0 × λ𝑡 = 𝑁𝑡, to identify a daily growth 

rate λ: 

λ = 𝑒𝑥𝑝 (
ln(𝑁𝑡/𝑁0)

𝑡
)    (2) 

To avoid observed counts of zero overly influencing the dataset, we added 0.1 to all values of 𝑁𝑡. 

This approach maintains the intuition that observing no emergences from a larger number of 

founders would imply a lower estimated growth rate than the same observation from fewer 
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founders. As an alternative approach, we also fitted models directly to the observed counts. This 

necessarily ignores development time effects, but allows direct representation of estimation errors 

at low counts via a model with a negative-binomial distribution error structure. This alternative 

analysis, which shows broadly similar results, is presented in SI 5. 

Logistical constraints meant we could only observe the mean total generation time 𝑡 directly in the 

monoculture trials. We used these to estimate the emergence time in the interspecific trials with a 

linear regression model selected using AIC, using as predictors the number of founder flies, the 

species, the treatment, and all 2-way interaction terms. This model had an adjusted 𝑅2 of 0.785 for 

the monoculture data. The emergence of larger fly species was delayed for longer by high densities 

than the emergence of smaller fly species (SI 2). 

Inferring model parameters 

The models were fit within a Bayesian framework and posterior distributions of the parameters were 

obtained from Hamiltonian Monte-Carlo sampling using STAN (Carpenter et al. 2017). Since we 

counted both species, each two-species experiment contributed two data points. Although this 

contributes a small component of non-independence, the gain in total sample size is significant. 

Since we excluded the single-founder vials, our effective total ‘n’ across both treatments was 1476, 

to estimate a maximum of 84 free parameters in our most complex model.  

For each vial, the inferred daily growth rate λ for a particular species 𝑖 in the possible presence of 

species 𝑗 was modelled as: 

λ =
𝑟𝑖

1 +  𝛼𝑖𝑖𝑁𝑖,0 +   𝛼𝑖𝑗𝑁𝑗,0

    (3) 

 

and fit assuming a Gaussian error distribution. A separate error term was fit for each parasitism 

treatment. The competition α terms were fit with an underlying Gaussian prior of mean 0 and σ 1 

and constrained to be positive, implying only competitive interspecific interactions, with no 

facilitation possible. Growth rate terms 𝑟 were constrained to be positive, and fit with a weak 

Gaussian prior with mean 1 and σ 1. Tests fitting α values with different priors did not give notably 

different results (SI 3). 

We fit and compared a sequence of candidate models of increasing simplicity. In the first, separate 𝑟 

and α terms were fit for each treatment. In the second, a single set of α terms, but separate 𝑟 terms 

were fit across both treatments, while in a third model a single set of parameters were fit across 

both treatments (i.e. parasitism has no effect). The three models were compared based on expected 

log pointwise predictive density (ELPD, a measure of out-of-sample predictive capacity), computed 

using the loo R package (Vehtari et al. 2017). This approach allows an assessment of whether there is 

sufficient evidence in the data to separate the parameters assigned to the treatment groups in a 

comparable manner to other information criteria such as AIC (Burnham & Anderson 2002). All STAN 

model code and data to fit the models are available online. Posterior predictive checks and 

diagnostics are presented in SI 4.  

Identifying Niche and Fitness differences 

Following Chesson (2000) and Godoy & Levine (2014), we define ρ as the niche overlap between two 

species, and 1 − ρ as the niche difference. For species 𝑖 and 𝑗 this is calculated as: 
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1 − ρ =  1 − √
α𝑖𝑗α𝑗𝑖

α𝑗𝑗α𝑖𝑖
   (4) 

In certain combinations of α values, niche overlap ρ calculated in this manner can be greater than 

one, implying a ‘negative niche difference’. This does not have a clear ecological meaning, and some 

previous authors have elected to define such cases as 0. However, since these negative 1 − 𝜌 values 

can be ecologically interpreted as potentially identifying priority effect situations (Ke & Letten 2018), 

we present the values as calculated. Whether negative or zero, in either case coexistence is not 

possible in the MCT framework. 

Within the framework, fitness differences are calculated as a ratio: 

𝜅𝑖

𝜅𝑗
  =  

𝑟𝑖 − 1

𝑟𝑗 − 1
 √

𝛼𝑗𝑖𝛼𝑗𝑗

𝛼𝑖𝑗𝛼𝑖𝑖
     (5) 

 Coexistence is determined to be possible if: 

ρ  <  
𝜅𝑖

𝜅𝑗
  <  

1

ρ
           (6) 

For each pair of species, we calculated the niche and fitness differences across 3000 draws from the 

posterior distributions of parameter estimates. We partitioned the posterior to infer the support 

given by the data to each of the four outcomes of competition: coexistence, victory by either species 

or a situation of priority effects (see Fig. 3a). Note that the dynamics described by our models are 

fundamentally deterministic – these values express uncertainty in outcome given the data, rather 

than necessarily stochastic outcomes.  

Results 
Based on model comparison, there was strong support for the expectation that parasitism reduces 

the growth rate of each species, but little support for changes in competition coefficients between 

the treatments. Our second model (with different 𝑟 values between treatments but common α) 

performed best (ΔELPD vs Model 1 = -10.9, vs Model 3= -51.37, Table S4.1). The parasitism 

treatment reduced population growth rates, but we did not identify a susceptibility – fecundity 

trade-off across our six species (Fig. 2).  
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Figure 2 No clear susceptibility - fecundity trade-off across the six Drosophila species (Spearman's rank 

correlation test on means: p = 0.497). Mean value of each species is plotted alongside a posterior distribution 

point cloud and fitted ellipse (95%, fitted assuming a multivariate-t distribution) to show distribution of 

uncertainty for each species. We present susceptibility in terms of change in r-1, since this is the quantity used 

in the calculation of fitness differences.  

The impact of the parasitoids on coexistence was inconsistent across species pairs (Fig. 3c). In three 

species-pairs the fitness difference was so large there was essentially no support for coexistence 

under either treatment. Of the remaining twelve pairs, five had higher support for coexistence under 

the parasitism treatment, while seven had less support (Table 1). In only one pair (D. sulfurigaster 

and D. pandora) did the parasitism treatment cause the median estimate of fitness difference to 

cross the boundary delineating coexistence from competitive exclusion. However, this was 

associated with only a small decrease in the posterior support for coexistence (Table 1). Overall, 

intraspecific effects were comparable in strength to interspecific effects (SI 4, Fig. S4.2) implying a 

high niche overlap within many of the species pairs. This had the consequence that ‘negative niche 

differences’ (where coexistence is not possible) were identified in over half (59%) of posterior draws. 

The fitted posterior distributions showed strong positive correlations between the 𝑟𝑖 and α𝑖𝑖 values 

(mean Pearson correlation = 0.76), resulting in non-independence of estimates of the fitness and 

niche differences and non-circular posterior distributions (Fig. 3). The positive correlation between 

α𝑖𝑖 and 𝑟𝑖 can effectively make the coexistence boundary line somewhat ‘repelling’. In many cases, 

where the posterior was centred outside the region of coexistence, the support inclines away (e.g. D. 

sulfurigaster and D. birchii), while if the support is centred inside, the support tends to stay inside 

the zone of coexistence (e.g. D. simulans and D. pandora).  
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Figure 3. The likelihood of coexistence of Drosophila species pairs responds idiosyncratically to parasitism. a) 

Guide to interpretation of coexistence plane diagrams. The region of coexistence (dark grey, bordered by red 

line) defines the region where the niche difference is greater than the fitness differences between species, 

implying that either species could invade from rare. The pale grey area denotes the region of ‘priority effects,’ 

where neither species could invade the other. b) Full posterior distribution of niche and fitness differences of 

one example species pair (D. sulfurigaster and D. simulans) using the best-fitting model. Note the irregular, 

non-circular, shape ultimately derived from correlations between fitted vales in the posterior distribution and 

alpha terms contributing to both niche and fitness differences. c) Equivalent contour plots for all 15 species 

combinations. Table 1 details the support assigned to each region for each pair under each treatment. Note 

that because the best model did not include varying competitive coefficients (α) between treatments, only the 

fitness difference (y-axis) shifts between treatments. An equivalent diagram using a model that allows α to 

vary is shown in Fig. S4.15.  
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Species i Species j Parasitoids 

Present 

Median 

Niche 

Difference 

Median 

Fitness 

Difference 

(
𝜅𝑖

𝜅𝑗

) 

Coexistence 

under 

Median 

Estimate  

Percentage posterior support 

for regions of coexistence plane  

Change in 

support for 

coexistence 
Species 

i Wins 

Species 

j Wins 

Coexistence Priority 

Effect 

pallidifrons birchii No -0.64 2.59  73.93 0.00 0.00 26.07 
 

  
Yes -0.64 2.62 

 
75.43 0.00 0.00 24.57 0 

pandora birchii No -0.05 5.41  93.00 0.22 1.20 5.58 
 

  
Yes -0.05 4.32  89.35 0.32 1.90 8.43 +0.7 

pandora pallidifrons No -0.09 1.14  29.30 22.83 18.05 29.82 
 

  
Yes -0.09 0.89  16.35 35.08 15.70 32.87 -2.4 

pseudoananassae birchii No 0.16 2.85  66.75 3.13 21.05 9.07 
 

  
Yes 0.16 2.04  53.08 6.83 25.92 14.17 +4.9 

pseudoananassae pallidifrons No -0.79 0.59  0.50 47.68 0.47 51.35 
 

  
Yes -0.79 0.42  0.18 59.15 0.23 40.43 -0.2 

pseudoananassae pandora No -2.67 1.46  18.15 3.08 0.40 78.37 
 

  
Yes -2.67 1.31  15.00 3.42 0.42 81.17 0 

simulans birchii No -0.40 2.02  71.68 0.12 0.38 27.82 
 

  
Yes -0.40 2.38  79.68 0.07 0.12 20.13 -0.3 

simulans pallidifrons No 0.14 1.52  67.42 3.53 17.85 11.20 
 

  
Yes 0.14 1.76  79.20 1.20 11.80 7.80 -6 

simulans pandora No 0.55 0.48 Yes 1.08 47.87 50.20 0.85 
 

  
Yes 0.55 0.71 Yes 5.88 29.83 61.38 2.90 +11.2 

simulans pseudoananassae No -0.83 0.79  16.12 16.77 3.63 63.48 
 

  
Yes -0.83 1.31  35.22 4.68 2.72 57.38 -0.9 

sulfurigaster birchii No -0.10 2.54  83.93 0.15 0.37 15.55 
 

  
Yes -0.10 1.57  62.10 1.60 3.92 32.38 +3.6 

sulfurigaster pallidifrons No -0.32 1.18  36.00 6.45 3.22 54.33 
 

  
Yes -0.32 0.72  4.47 49.43 5.83 40.27 +2.6 

sulfurigaster pandora No 0.28 0.84 Yes 13.63 35.23 41.32 9.82 
 

  
Yes 0.28 0.66  4.17 49.18 41.18 5.47 -0.1 

sulfurigaster pseudoananassae No -1.07 1.89  46.65 0.00 0.00 53.35 
 

  
Yes -1.07 1.63  41.67 0.00 0.00 58.33 0 

sulfurigaster simulans No 0.44 1.29 Yes 21.55 5.78 71.22 1.45 
 

  
Yes 0.44 0.67 Yes 0.43 41.02 58.17 0.38 -13.1 

 

Table 1. Summary of the posterior distribution across the coexistence plane between the two treatments for 

each species pair. The percentage of posterior draws that fall into the four major regions of the coexistence 
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can provide a summary of the confidence in the outcome of a particular competition, given the data. The 

distinction between species 1 and 2 is arbitrary.  

Discussion 
Our results demonstrate the power of using a Bayesian approach within the modern coexistence 

framework, and in this case an inconsistent impact of consumers on coexistence. Natural enemies in 

the form of parasitoids affected species growth rates, but had no identifiable impact on pairwise 

competitive coefficients. Across our six species, no general susceptibility - fecundity trade-off was 

clearly observable and the presence of parasitoids did not lead to a consistent shift towards (or away 

from) a state of potential coexistence. In some cases, counter-intuitive results were observed. For 

instance, D. simulans and D. pandora show a negative relationship between fecundity and 

susceptibility (Fig. 2), but parasitism increases the likelihood of coexistence (Fig. 3c).  This work 

highlights the importance and challenges of accurately measuring competition terms (α) to 

understand the consequences of susceptibility - fecundity trade-offs for coexistence (Petry et al. 

2018).  

Advantages of a Bayesian Approach 

Fitting parametric models to ecological data is almost always both challenging and illuminating in 

equal measure. The framework of modern coexistence theory provides particular difficulties, since 

the quantities of interest are highly entangled (Barabás et al. 2018; Song et al. 2019). Because the 

fitted values of the parameters inevitably correlate to some degree, propagating parameter 

uncertainty from a multi-parameter posterior distribution gives a better understanding of the 

uncertainty associated with the key quantities. Such outputs are inherently multi-dimensional, and 

can pose considerable challenges both to intuition and to visualise. By contrast, previous approaches 

that propagate standard errors associated with individual parameters (e.g. Matías et al. 2018) or 

estimate uncertainty by bootstrapping observations (e.g. García‐Callejas et al. 2020) are unable to 

capture these effects, and risk misrepresenting the confidence that can be placed in results. 

Although we took an explicitly Bayesian approach, similar methods could be followed using multi-

dimensional likelihood surfaces computed with a frequentist approach.  

Understanding how the interrelationships between parameters affect uncertainty in the derived 

quantities based upon them is difficult a priori, since the contribution of different correlations will be 

contingent on both the underlying ecology and the experimental design. In the context of modern 

coexistence theory, even a moderate confounding of underlying growth rates and intra-specific 

competition terms may have a significant effect on the conditions for coexistence. In our study, the 

boundary line demarking the region of coexistence tended to be somewhat ‘repelling’. This increases 

the confidence with which pairs of species are located within regions of the coexistence plane. 

Although our individual estimates of model parameters may be rather uncertain, we can often be 

comparatively confident in the result of competition.  

This repelling effect can be attributed to indeterminacy between growth rates and intra-specific 

competition terms. One consequence of this can be seen clearly when the condition for coexistence 

(equation 6) is re-arranged in a simplified form as: 

α𝑗𝑖

𝛂𝒊𝒊
<

𝑟𝑗 − 1

𝒓𝒊 − 1
<

α𝑗𝑗

α𝑖𝑗
       (𝑒𝑞 7) 
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Where there are strong positive correlations in the posterior draws of α𝑖𝑖 and 𝑟𝑖 (shown in bold), this 

would tend to affect both sides of the inequality simultaneously, increasing the tendency that it 

maintains its value. However, it is important to note that there are a number of other correlations 

between core model parameters. For this reason, rather than trying to second-guess how these 

relationships may play out in other studies, we would recommend as far as possible propagating all 

uncertainties through to the final reported result. 

Modern coexistence theory defines a sharp line between coexistence and the inability to invade 

from rare. This mathematical clarity and precision represents a major advantage, but poses 

challenges to the incorporation of inevitable experimental uncertainty. It is important to reiterate 

that the uncertainty of coexistence we discuss should be interpreted as statements of uncertainty in 

the underlying data, rather than implying a probabilistic outcome. The precision of estimates of 

parameters can differ between treatments, which can have the effect of reducing the support for 

coexistence, even if the median estimate does not change. Furthermore, these values should not be 

directly interpreted as some measure of ‘distance from coexistence’, although the concepts may be 

related. The framework of structural stability is better equipped to address such questions (Saavedra 

et al. 2017; Godoy et al. 2018). 

Impact of natural enemies on competition coefficients 

In natural systems, both direct effects of mortality and impacts on the interaction between species 

will determine the impact of consumers on species coexistence (Pringle et al. 2019). Our study 

included species that span a range of body sizes (0.94 mg – 2.64 mg, mean wet mass of female 

adults) but also included two pairs that are very closely related phylogenetically (SI 1, Table S1.1). 

We expected that these choices would structure the competition outcomes, but we did not observe 

any clear patterns in the competition coefficients. Our study design allowed parasitoids to travel 

between vials, opening the prospect of either associational susceptibility or resistance mediated 

through parasitoid foraging behaviour (Holt & Kotler 1987; Abrams 2010). If competitive interaction 

modification effects were strong enough to be detectable, these would manifest as shifts between 

treatments in the fitted α values, and result in ‘side-to-side’ movement in the coexistence plane (e.g. 

SI 4, Fig. S4.15). However, our model selection procedure suggested that modelling changes to the 

competition coefficients matrix between treatments leads to overfitting.  

Nevertheless, our model selection test is a rather blunt all-or-nothing approach. It may well be that 

only particular competitive interactions are strongly affected by the parasitoid. Indeed, in our full 

model, while most of the between-treatment α differences cluster around zero, several show large 

divergences (SI 4 Fig. S4.13). There is no clear predictor for the terms that show these large shifts, 

occurring between different species. A more complex model fitting approach incorporating 

regularisation could potentially determine whether such cases are identifiable effects rather than 

model fitting noise, but is beyond the scope of this paper. Mechanisms that can be modelled as 

shifts in single species process (e.g. 𝑟) are inherently more identifiable statistically than changes to 

multi-species processes (e.g. α). In our models, this can be seen in that uncertainty in fitness 

differences was driven largely by the competitive response ratio√
𝛼𝑖𝑗𝛼𝑖𝑖

𝛼𝑗𝑖𝛼𝑗𝑗
, rather than the 

demographic ratio 
𝑟𝑗−1

𝑟𝑖−1
 (SI 4, Fig. S4.3). 
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Density-mediated apparent competition derived from an increased total population of natural 

enemies, is not directly detectable with our single-generation design. If we had run a multi-

generational experiment, the results could be expected to be complex: Sommers & Chesson (2019) 

show that the relative balance between apparent and resource competition is influenced by prey 

defensive actions. Methods to directly compare resource competition and predation effects in 

parameterised models are developing (Shoemaker et al. 2020) and will be an exciting area for future 

research. 

Limitations of simple laboratory experiments 

The modern coexistence theory approach is agnostic with respect to the particular factors involved, 

but will always be limited by the scope of the empirical data available. Experiments such as this one 

can rarely replicate full natural lifecycles of animals or capture the full range of conditions that occur 

throughout their habitat (Hart et al. 2018); and impacts on one life stage can mitigate differences at 

another (Moll & Brown 2008). Our methods likely favour species with a high egg-laying rate over 

those with a long reproductive lifespan. Equally, our experiment uses a highly simplified 

representation of the consumer pressure experienced by natural communities of Drosophila. We 

included a single pupal parasitoid species; in their natural habitats these species exist in a complex 

trophic network (Jeffs et al. 2020) including specialist parasitoids and larval parasitoids (which may 

directly influence larval competitive performance). Defences against parasitism may be specific to 

particular enemies, or behaviour-based and not observable in the simplified environment of the fly 

vials.  

The simplicity of the experimental set-up cannot capture other plausible mechanisms that could be 

hypothesised to aid coexistence, such as environmental stress resistance (Chesson 2000; Kuang & 

Chesson 2010). It necessarily excludes a number of likely-significant environmental heterogeneities. 

For example, D. simulans is a cosmopolitan species that is not native to the Australian rainforest. It is 

strongly associated with human habitation (Parsons & Bock 1979), and may struggle to compete in 

natural forests against competitor species. Coexistence may only be possible at particular scales 

(Hart et al. 2017), or through spatial mechanisms not reflected in our experiment. In particular, we 

do not include any sense of dispersal capacity, or reproductive lifespan. Ultimately, our experiment 

can only represent a single snapshot combination of environmental conditions. Despite these 

limitations, we believe that our experiment will still be instructive in isolating particular aspects for 

more further investigation. 

Scaling up from pairwise to community coexistence 

The Drosophila species we investigated co-occur in their natural habitat of Australian rainforest (Jeffs 

et al. 2020), although it is important to note that this is not necessarily evidence that they can 

coexist in the technical sense (Siepielski & McPeek 2010). Furthermore, pairwise coexistence is not 

the same as community-level coexistence, and coexistence or otherwise between pairs does not 

necessarily translate to the multispecies community (Song et al. 2019), although they are likely to be 

at least somewhat related (Friedman et al. 2017; Broekman et al. 2019). A diversity of mechanisms 

can allow multispecies coexistence where pairwise coexistence is not possible (Levine et al. 2017; 

Letten & Stouffer 2019; McPeek 2019).  

The general approach of propagating joint-posteriors into derived metrics of coexistence from model 

terms could equally apply to other coexistence modelling frameworks (Godwin et al. 2020; Spaak & 

de Laender 2020) or alternative mechanisms that can facilitate community-level coexistence, such as 
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intransitive competition (non-hierarchical competition, akin to an extended rock-paper-scissors 

tournament). We demonstrate this in SI 6 with a simple analysis of the impact of natural enemies on 

intransitivity. We did not identify a large amount of intransitivity, and it was not changed 

consistently by the presence of parasitoids. Although not a main focus of our investigation, our 

results add to a growing body of work suggesting limited impacts of intransitivity on community 

coexistence (Godoy et al. 2017). 

Conclusion 

Our experiment demonstrates that natural enemies can change the result of competition between 

species pairs, but that this effect is not consistent or necessarily predictable from pairwise fecundity-

susceptibility relationships, reiterating the value of analysing parametrised models (Siepielski & 

McPeek 2010). Further work will be needed to investigate whether trait differences impact the niche 

and fitness differences observed in our system, and more experimental studies of the impact of 

natural enemies on coexistence are needed to form the basis for a more general understanding of 

their impacts. Modern coexistence theory is emerging as a powerful tool to investigate a range of 

biotic and abiotic impacts on coexistence experimentally (Lanuza et al. 2018; Matías et al. 2018), 

However, since the precision with which growth rates and competition coefficients can be estimated 

is limited (even within large studies such as ours), the fundamental inseparability of niche and fitness 

differences can impact the likelihood assigned to coexistence between any given species pair. 

Although these challenges are significant, we hope our approach demonstrates that they can be 

readily and transparently addressed.  
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