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Abstract 

Structural and functional neuroimaging have been widely used to track and predict 

demographic and clinical variables, including treatment outcomes. However, it is often 

difficult to directly establish and compare the respective weights and contributions of brain 

structure and function in prediction studies. The present study aimed to directly 

investigate respective roles of brain structural and functional indices, along with their 

contributions in the prediction of demographic variables (age/sex) and clinical changes of 

schizophrenia patients. The present study enrolled 492 healthy people from Southwest 

University Adult Lifespan Dataset (SALD) for demographic variables analysis and 42 

patients with schizophrenia from West China Hospital for treatment analysis. We 

conducted a model fit test with two variables (one voxel-based structural metric and 

another voxel-based functional metric) and then performed a variance partitioning on the 

voxels that can be predicted sufficiently. Permutation tests were applied to compare the 

contribution difference between each pair of structural and functional measurements. We 

found that voxel-based structural indices had stronger predictive value for age and sex, 

while voxel-based functional metrics showed stronger predictive value for treatment. 

Therefore, through variance partitioning, we could clearly and directly explore and 

compare the voxel-based structural and functional indices on particular variables. In sum, 

for long-term change variable (age) and constant biological feature (sex), the voxel-based 

structural metrics would contribute more than voxel-based functional metrics; but for 
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short-term change variable (schizophrenia treatment), the functional metrics could 

contribute more. 
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1. Introduction 

The diverse functional repertoire of the human brain derives from a relatively static 

anatomy, and the static brain structure affects individual cognition through dynamical 

functional activities. Brain structures and functions are always coupling with each other, 

being shaped by genetic and environmental factors together, and reshaping our cognition 

and behavior (Batista-Garcia-Ramo and Fernandez-Verdecia, 2018; Park and Friston, 

2013). As a result, researchers attempting to understand the neural correlates of 

variations in human behavior across individuals can choose to study either, brain structure 

or function. This choice remains a difficult question as some argues structural indices are 

more test-retest reliable but functional metrics are more sensitive to functional disruptions 

and short-term changes (Shah et al., 2016; Zuo et al., 2013; Zuo et al., 2019). To date, 

empirical evidence guiding such a selection remains lack. 

A few studies have already explored the brain structure-function relationship. Qing and 

Gong (2016) used resting-state functional magnetic resonance imaging (R-fMRI) on 

healthy young adults and found a robust positive linear correlation between voxel-based 

brain volume and amplitude of low frequency fluctuations (ALFF), suggesting a strong 

association between structure and function (Qing and Gong, 2016). Yang and colleagues 

(2016) used a data-driven approach, generalized ranking and averaging independent 

component analysis (gRAICAR), to determine cross-subject co-variance among a few 

surface-based functional and structural imaging metrics on healthy human brains. Their 
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results revealed a wider scope in searching of multi-modal imaging features, which might 

be helpful to explain structural substrates of the functional metrics (Yang et al., 2016). 

Honey and colleagues (2009) used computational modeling to explore the relationship 

between human resting-state functional connectivity and structural connectivity. They 

found that although functional connectivity was variable and had few structural linkage, 

some functional connectivity attributes (strength, persistence, and spatial statistics) were 

still associated with large-scale cerebral cortex structure (Honey et al., 2009). In addition, 

other methods, such as generative models (Betzel et al., 2016), network communication 

theory (Goni et al., 2014), partial least squares (Misic et al., 2016), or simply fitting in a 

linear/nonlinear stochastic model (Deco et al., 2009; Hansen et al., 2015), had also been 

used to estimate the function-structure correlation (Wirsich et al., 2017). Although 

previous researches have clearly implicated a sophisticated relationship between 

structural and functional features of brain, to what extend they correspond to different 

human individual characteristics remains largely unexplored. 

Some individual characteristics may be particularly intriguing in unraveling different 

contributions of structural and functional features. First, aging is associated with changes 

in brain morphology as well as with a decline in cognitive performance (Nakagawa et al., 

2013; Persson et al., 2006). Besides, long-term changes on individual structure and 

function can be used as a biomarker for predicting aging. Second, subtle brain structure 

differences exist between males and females (Allen et al., 2003), and cognitive abilities 

also had different representation for each gender, such as better spatial abilities in men 
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and better verbal skills in women. Thus, it would be meaningful to explore the 

structure-function relationship for clarifying the sex difference, and further to delineate the 

pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders 

(Cosgrove et al., 2007). Finally, schizophrenia has been described as a disorder of both, 

structural and functional connectivity (Skudlarski et al., 2010). In addition, previous 

studies found that long-term treatment may change schizophrenia brain morphology (Ho 

et al., 2011) and the short-time treatment mainly change the function rather than structure 

(Lui et al., 2010). Therefore, through directly comparing the contribution of the brain 

structural and functional changes to baseline and post-schizophrenia treatment, it might 

be helpful to locate the drug sensitivity brain areas for further treatment. 

With aforementioned three individual characteristics (age, sex and schizophrenia 

treatment), we aimed to explore the contribution of voxel-based structural metrics and 

functional metrics to these individual differences, respectively. Gray matter density (GMD) 

and gray matter volume (GMV) were derived with voxel-based morphometry (VBM) as 

structural metrics. GMD is the probability of voxels as gray matter versus white matter and 

other neural tissue, and GMV is the modulated GMD images by using the Jacobian 

determinants and mirrors volumetric deformation (Ashburner and Friston, 2005). To 

explore the fundamental properties of intrinsic brain activity, we picked functional metrics 

including ALFF and fractional ALFF (fALFF), degree centrality (DC), regional homogeneity 

(ReHo), and voxel-mirrored homotopic connectivity (VMHC) in this study (Yan et al., 

2017). On the one hand, as amplitude-based measures had already received widespread 
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attention and could reflect the regional fluctuation characteristics of the intrinsic brain 

activity, we chose to use ALFF and fALFF to quantify low-frequency characteristics of 

fluctuations in intrinsic brain activity (Zang et al., 2007; Zuo et al., 2012). On the other 

hand, we also picked inter-regional synchronization metrics such as DC, ReHo and 

VMHC, which DC revealed the brain functional organizations in a graph-theoretical way 

(Buckner et al., 2009; Zuo et al., 2012), ReHo represented the local synchronization of 

low-frequency fluctuations (Jiang and Zuo, 2016; Zang et al., 2004), and VMHC 

characterized the functional connectivity between paired symmetric inter-hemispheric 

voxels (Anderson et al., 2011; Zuo et al., 2010). Although all of these five functional 

metrics are widely used in the R-fMRI literatures (e.g., see review in Zuo and Xing, 2014), 

they had always been explored separately and lacked the proof about how similar or 

distinct between each other(Yan et al., 2017). Therefore, we used all the aforementioned 

functional measures to provide a comprehensive insight on the interdependencies among 

them. 

The goal of the present study was to directly compare the unique and shared contribution 

of voxel-level structural and functional metrics in the prediction of a given dependent 

variable (age, sex or schizophrenia treatment). In each independent prediction model, we 

used one of structural metrics (GMV and GMD) and one of functional metrics (ALFF, 

fALFF, DC, ReHo and VMHC) as two independent variables. We utilized a model fit test 

with both the structural and functional metrics to explore how they could predict on a given 

variable at voxel-level. Then within the statistically significant brain areas, we perform 
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variance partitioning on each voxel to get four components: the portion of unique variance 

contributed by structural metrics, the portion of unique variance contributed by functional 

metrics, the portion of shared variance contributed by the two metrics, and the portion of 

unexplainable residual variance. Therefore, we could then compare the structural and 

functional contribution to predict the dependent variable, as well as their shared 

contribution. Here we hypothesized that for the long-term change variable (age) and the 

constant biological characteristic variable (sex), the voxel-based structural metrics would 

contribute more than functional metrics; but for the short-term change variable 

(schizophrenia treatment), the functional metrics would contribute more. 

2. Methods 

2.1. Participants 

We performed our analyses on two independent datasets. The first is Southwest 

University Adult Lifespan Dataset (SALD) which is publicly available. It comprises a large 

cross-sectional sample (n = 492; 305 Females, 187 Males; age range: 19-80 years) 

undergoing a multi-modal investigation of these neural underpinnings. All participants 

were recruited as healthy adult and had no history of psychiatric disorder or use of 

psychiatric drugs (Wei et al., 2018).The dataset collection was approved by the Research 

Ethics Committee of the Brain Imaging Center of Southwest University, in accordance 

with the Declaration of Helsinki. Written informed consent was obtained from all 

participants prior to the data collection. 
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The second dataset is from West China Hospital, Sichuan University. This dataset 

contains 39 patients (22 Females, 17 Males; age range: 16-49 years) with schizophrenia 

undergoing structural and R-fMRI brain scans before and after a 6-week intervention with 

antipsychotic medication according to the clinician’s preference, including risperidone, 

olanzapine, clozapine, quetiapine fumarate, sulpiride and aripiprazole. The study was 

approved by the Institutional Review Board (IRB) of West China Hospital and all subjects 

gave written informed consent to their participation. Diagnoses were determined using the 

Structured Clinical Interview for DSM-IV Patient Edition and confirmed after at least 1-year 

follow-up. All patients were evaluated and scanned at baseline and 6 weeks after 

treatment.  

2.2 Imaging protocols 

The first dataset was collected at the Southwest University Center for Brain Imaging using 

a 3T Siemens Trio MRI scanner (Siemens Medical, Erlangen, Germany). Each participant 

took part in 3D structural MRI (sMRI) and R-fMRI scans. For each participant, the 3D 

sMRI and R-fMRI sequences were acquired in succession within one session. 

Three-dimensional T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) 

sagittal images were obtained using the following sequence: repetition time (TR) = 1,900 

ms, echo time (TE) = 2.52 ms, inversion time (TI) = 900 ms, flip angle = 90 degrees, 

resolution matrix = 256×256, slices = 176, thickness = 1 mm, and voxel size = 1×1×1 mm3. 

Functional images were collected axially using gradient echo echo-planar-imaging 

(GRE-EPI) sequences: slices = 32, TR = 2000 ms, TE = 30 ms, flip angle = 90 degrees, 
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field of view (FOV) = 220 mm, thickness/slice gap = 3/1 mm, and voxel size = 3.4×3.4×4 

mm3. Prior to the scan, the subjects were instructed to lie down, close their eyes, and rest 

without thinking about any specific thing but to refrain from falling asleep. The scan lasted 

for about 8-min and thus included 242 functional volumes for each subject. 

The second dataset was collected from the Department of Radiology, West China 

Hospital using a 3T GE MR imaging system (EXCITE, General Electric, Milwaukee, USA) 

with an eight-channel head coil. Participants completed a high-resolution T1-weighted 

(spoiled gradient sequence, SPGR) sequence and a R-fMRI sequence. The scanning 

parameters of anatomical images were: TR = 8.528 ms, TE = 3.4 ms, TI = 400 ms, flip 

angle = 12°, axial slices = 156, FOV = 240 mm, thickness = 1 mm, and voxel size = 

0.47×0.47×1 mm3. The scanning parameters of R-fMRI were: TR = 2000 ms, TE = 30 ms, 

flip angle = 90 degrees, voxel size = 3.75×3.75×5 mm3, FOV = 240×240 mm. All subjects 

were instructed to lie down, close their eyes, and keep awake. The scan lasted for 6.5-min 

and thus included 195 functional volumes for each subject. All images were reviewed by 

two experienced neuroradiologists to exclude those with gross brain abnormalities and 

motion artifacts. 

2.3 Preprocessing 

The Data Processing Assistant for Resting-State fMRI (DPARSF, http://rfmri.org/DPARSF) 

(Yan and Zang, 2010) was used to perform preprocessing. It is based on Statistical 

Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm) and is integrated in the 
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toolbox for Data Processing & Analysis of Brain Imaging (DPABI, http://rfmri.org/DPABI) 

(Yan et al., 2016). Firstly, the initial 10 volumes were discarded, then slice-timing 

correction and head motion realignment were performed. Next, individual T1-weighted 

MPRAGE images were co-registered to the mean functional image using a 6 

degree-of-freedom linear transformation without re-sampling and then segmented into 

gray matter, white matter (WM), and cerebrospinal fluid (CSF) (Ashburner and Friston, 

2005). Finally, transformations from individual native space to MNI space were 

computed with the Diffeomorphic Anatomical Registration Through Exponentiated Lie 

algebra tool (Ashburner, 2007). 

2.4 Nuisance regression 

To minimize head motion confounds, we utilized the Friston 24-parameter model  

(Friston et al., 1996) to regress out head motion effects, which was chosen based on prior 

work that higher-order models remove head motion effects better (Satterthwaite et al., 

2013; Yan et al., 2013). Additionally, mean FD was used to address the residual effects of 

motion in group analyses. Mean FD is derived from Jenkinson’s relative root mean square 

algorithm (Jenkinson et al., 2002). WM and CSF signals (using DPARSF’s default WM 

and CSF masks) were also removed from the data through linear regression. Additionally, 

linear trends were included as a regressor to account for drifts in the blood oxygen level 

dependent signal. We performed temporal bandpass filtering (0.01–0.1 Hz) on all time 

series except for ALFF and fALFF analyses.  
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2.5 Structural metrics 

We used two voxel-based structural metrics including GMV maps and GMD maps to do 

further analysis. GMV was modulated GMD images by using the Jacobian determinants 

derived from the spatial normalization in the voxel-based morphometry (VBM) analysis 

(Good et al., 2001). The GMV and GMD maps were smoothed by a full width at half 

maximum (FWHM) of 4mm. In order to perform the structural-functional contribution 

analysis, we resliced the structural metrics to the resolution of functional metrics, i.e., 

3×3×3 mm3.  

2.6 Functional metrics 

Here we used five kinds of voxel-based functional metrics (ALFF, fALFF, DC, ReHo and 

VMHC) to represent different functional aspects.  

ALFF is the mean amplitude of low-frequency fluctuations (0.01–0.1Hz) by the fast Fourier 

transform in the time course of each voxel (Zang et al., 2007). 

fALFF is a normalized version of ALFF and calculated as the total power in the 

low-frequency range (0.01–0.1Hz) divided by the whole power of entire frequency range 

of the same voxel (Zou et al., 2008).  

DC is the number or sum of significant connections’ weights for each voxel. The weighted 

sum of positive correlations was calculated, including only those connection’s correlation 
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coefficient exceeding the threshold of r = 0.25 was kept (Buckner et al., 2009; Zuo et al., 

2012). 

ReHo is the homogeneity of a voxel’s timeseries with its nearest local neighbors’ (26 

voxels used here) time courses. It is calculated as Kendall’s coefficient of concordance 

(KCC) (Zang et al., 2004).  

VMHC indicates the functional connectivity between paired symmetric inter-hemispheric 

voxels. It is calculated as the Pearson’s correlation coefficient between the time series of 

one voxel and that of its counterpart voxel located the same in the opposite hemisphere. 

Then, the values of VMHC were Fisher’s r-to-z transformed. For better correspondence 

for counterpart voxels, individual functional data were further registered to a group 

averaged symmetric template, which was created by computing a mean normalized T1 

image across all the participants, and then averaged with correspondent left–right 

mirrored version (Anderson et al., 2011; Zuo et al., 2010).  

All these metrics are Z-standardized (i.e., subtract the whole brain mean and then divided 

by the whole brain standard deviation) for each subject. Then we smoothed (4 mm FWHM) 

all the R-fMRI Metrics, except for VMHC as they were smoothed and Fisher-Z 

transformed beforehand. 
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2.7 Statistical analysis for model fit 

We used one of the two structural parameters including GMV and GMD and one of the 

five functional metrics including ALFF, fALFF, DC, ReHo and VMHC as two independent 

variables (predictors) (Chen et al., 2018; Yan et al., 2017). We then used these two 

independent variables to predict age or sex in the first dataset and treatment timepoint 

(baseline or post-treatment) in the second dataset. Specifically, for our study, the following 

regression model was constructed: 

Y = b0 + bs × S + bf × F + ε, 

where Y is one of the three dependent variables (age, sex or treatment), b0 is the intercept 

parameter, S denotes one of two structural parameters (GMV or GMD), bs is the 

regression coefficient corresponding to S, F denotes one of the five functional metrics 

(ALFF, fALFF, DC, ReHo or VMHC), bf is the regression coefficient corresponding to F, 

and ε is the residual. Therefore, we separately performed an F-test for the model fit with 

each model so that ten F maps were generated for each of the three dependent variables. 

Then one-tailed gaussian random field (GRF) correction was used for multiple 

comparison correction on these F maps with voxel-level thresholds of p < 0.001 and 

cluster-level thresholds of p < 0.05, as recent studies suggest strict voxel-level p threshold 

(cluster defining threshold) should be adopted (Chen et al., 2018; Eklund et al., 2016). 
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2.8 Variance partitioning 

To further identify the unique and shared variances of the structural and functional indices 

for predicting a given dependent variable, a voxel-level variance partitioning was 

conducted on the voxels those showed a significant model fit. We performed the variance 

partitioning using the package vegan (version 2.5, Oksanen et al., 2018) in R (version 

3.6.0, R Foundation for Statistical Computing, Vienna, Austria). Variance partitioning gave 

four components of results: the portion of unique variance contributed by structural 

parameters (Vs), the portion of unique variance contributed by functional metrics (Vf), the 

portion of shared variance contributed between the structural and functional metrics (Vsh), 

and the portion of unexplainable residual variance (Vr). The sum of the four portions is 

100%. The portion difference between the unique variances contributed by structural and 

functional metrics (Vs-f) was calculated as (Vs - Vf) on each voxel. 

2.9 Permutation test 

For each component of variance partitioning, we used permutation test to infer the 

statistical significance. To reduce the computational load, we created permutation-based 

null distributions for 200 regions following the Craddock’s functional clustering atlas 

(Craddock et al., 2012), and compared each voxel with the null distribution of the region 

that contains that voxel. For each atlas parcel, we performed 10000 times variance 

partitioning while exchanging the structural and functional metrics for all the subjects 

randomly. By comparing each voxel-level variance partitioning value with the null 
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distribution of its related region, we were able to calculate the p value and the 

corresponding z value. Finally, we performed one-tailed GRF correction for Vs, Vf, and Vsh, 

with voxel-level threshold of p < 0.001 and cluster-level threshold of p < 0.05. The same 

calculation also applied to Vs-f, the portion difference between the unique variances 

contributed by structural and functional metrics. 

3. Results 

3.1 Structural and Functional Metrics in Predicting Age 

Based on the F-test of model fit, we found that age could be predicted by combining 

structural and functional measurements for a broad range of brain areas, including 

precentral gyrus, superior temporal gyrus, insula, thalamus (see Fig. S1). Based on whole 

brain variance partitioning maps of age, structural metrics contributed significant portion of 

unique variance on a broad range of brain areas, while neither the functional metrics nor 

the shared portion of both metrics showed any significant portion of unique variance 

across the brain. As demonstrated in Fig. 1, the superior temporal gyrus, precentral gyrus, 

inferior frontal gyrus, middle frontal gyrus, and cingulate gyrus all showed significant Vs 

when using all the two structural metrics with all the five functional metrics to predict age. 

Furthermore, medial frontal gyrus and superior frontal gyrus also exhibited significant Vs 

only when using GMV and all the five functional metrics to predict age. 

------- Insert Fig. 1 about here ------- 
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For age, based on portion difference between the unique variances contributed by 

structural and functional metrics (see Fig. 2), For most brain regions, Vs was significantly 

higher than Vf (significantly positive Vs-f values), especially for GMV. We found that 

superior temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus, 

cingulate gyrus showed significantly more positive Vs-f when using either of the two 

structural metrics and any of the five functional metrics to predict age. Furthermore, 

medial frontal gyrus and superior frontal gyrus also exhibited significantly more positive 

Vs-f when using GMV and any of the five functional metrics to predict age. 

------- Insert Fig. 2 about here ------- 

3.2 Structural and Functional Metrics in Predicting Sex 

Based on the F-test of model fit, we found that sex could be predicted by combining 

structural and functional measurements for a few brain areas: sub-lobar, thalamus, and 

caudate for GMD and any of the five functional metrics, and sub-lobar, parahippocampal 

gyrus for GMV and any of the five functional metrics (see Fig. S2). Based on the whole 

brain variance partitioning maps of sex, structural metrics contributed significant portion of 

unique variance on a few of brain areas, while the functional metrics and the shared 

portion of both metrics showed few significant portion of unique variance across the brain. 

It was observed that thalamus and caudate showed significant Vs when using GMD and 

any of the five functional metrics to predict sex, while cerebellum, occipital lobe, temporal 

lobe and insula showed significant Vs when using GMV and any of the five functional 
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metrics to predict sex (see Fig. 3). An exception is that precentral gyrus showed 

significant Vf when using GMD and ALFF to predict sex. 

------- Insert Fig. 3 about here ------- 

Furthermore, for sex, based on portion difference between the unique variances 

contributed by structural and functional metrics (see Fig. 4), Vs was also significantly 

higher than Vf across the brain (significantly positive Vs-f values). It was observed that 

thalamus and caudate showed significantly more positive Vs-f when using GMD and any of 

the five functional metrics to predict sex, while cerebellum, occipital lobe, temporal lobe 

and insula showed significantly more positive Vs-f when using GMV and any of the five 

functional metrics to predict sex. An exception is that precentral gyrus showed more 

negative Vs-f when using GMD and ALFF to predict sex. 

------- Insert Fig. 4 about here ------- 

3.3 Structural and Functional Metrics in Predicting 

Treatment (pre- or post-treatment) 

Based on the F-test of model fit, we found that pre- and post-treatment could be predicted 

by combining structural and functional measurements for a few brain areas, which frontal 

lobe showed a prediction effect by using GMD with fALFF or VMHC, and cerebellum and 

frontal lobe showed a prediction effect by using GMV with fALFF or VMHC (see Fig. S3). 
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According to whole brain variance partitioning maps of treatment, functional metrics 

contributed significant portion of unique variance on a few brain areas, while neither the 

structural metrics nor the shared portion of both metrics showed any significant portion of 

unique variance across the brain. It was observed that occipital lobe, lingual gyrus 

showed significant Vf when using all the two structural with fALFF or VMHC to predict 

treatment, while right cerebellum showed significant Vf when using GMV with fALFF or 

VMHC to predict treatment (Fig. 5). 

------- Insert Fig. 5 about here ------- 

However, for treatment, based on portion difference between the unique variances 

contributed by structural and functional metrics (see Fig. 6), Vf was significantly higher 

than Vs across the brain (significantly negative Vs-f values). It was observed that occipital 

lobe, lingual gyrus showed significantly more negative Vs-f when using all the two 

structural metrics with fALFF or VMHC to predict treatment. 

------- Insert Fig. 6 about here ------- 

4. Discussion 

As most studies focused on separately exploring the structural and functional metrics on 

certain variables, it would be intriguing to combine both to achieve a more thorough 

explanation of brain change. In our study, we directly tested two sets of independent 
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voxel-based variables (structural vs. functional) in their model fit on age, sex and 

treatment. Variance partitioning was also performed to compare the portions of explained 

variances contributed by the structural and functional measurements. We found that on 

age and sex, structural indices had a stronger predicting effect than functional metrics; but 

on treatment, the functional metrics showed a stronger predicting effect than the structural 

ones. Our results indicated that age and sex differences may be better characterized by 

structural features, while relatively short-term alterations like treatment effects may be 

better revealed by functional metrics, while all metrics were voxel-based derived in 

volume space. Therefore, through variance partitioning, we could clearly and directly 

explore and compare the structural and functional indices on particular variables. The 

choice of using structural or the functional metrics should depend on the research topics. 

4.1 Comparing the contributions of structural and 

functional metrics in a comprehensive model 

First of all, the goal of testing the model fit was to combine the structural and functional 

effect together to attain a better explanation than simply using a single one. In this way, 

we not only get the unique effect of the voxel-based structural and functional indexes 

contributing on significant brain areas, but also the shared component. Thus, the 

difference between these two sets of brain features can be evaluated and compared in a 

more comprehensive way and let us determine the common and unique contributions 
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from them on predicting a given variable. Moreover, such a two-variable model fit test can 

model more effects on certain variables than a traditional single-variable model. 

Variance partitioning was also performed on brain areas whose metrics can significantly 

predict our tested “dependent variables” (age, sex and treatment). Variance partitioning 

has been proved to be a powerful avenue to compare different sources of variance for a 

certain variable (Groen et al., 2018; Lescroart et al., 2015). For example, Zhao and 

colleagues (2019) used Joint and Individual Variation Explained (JIVE) method to explore 

what extant different cortical shape measures covary. They also found the covariation 

pattern had an excellent prediction effect on age, sex and IQ (Zhao et al., 2019). However, 

this method only focused on the shared covary component but neglect the unique 

components, nor take predicting a target variable into account in estimating shared 

covariation. In our study, we compared both the unique components and the shared 

component. We found that, for age and sex, Vs was higher than Vf and Vsh; but for 

schizophrenia treatment, Vf was higher than Vs and Vsh. Therefore, with the method, we 

could separately inspect the predicting effect of each component from variance 

partitioning, and it can further give us advice about how to select structural or functional 

metrics on different research topics. 

Importantly, a new index as the contribution difference between the voxel-based structural 

and functional metrics was calculated in our study, namely Vs-f, by which Vs subtracted Vf. 

This index offered a direct way to compare the structural and functional effect on given 
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variables. It revealed that for age and sex, the Vs-f was more positive which indicated the 

structural indices had more contribution than the functional ones; while for treatment 

outcome, the Vs-f was more negative which meant the functional indices contributed more. 

Therefore, with this new index Vs-f, comparing the contribution between voxel-based 

structural and functional measurements came to be in a unified way which could provide 

new perspectives. 

4.2 Selecting voxel-based structural or functional 

metrics on different research topics 

As aging leads to widespread neurobiological changes, it would impact the structural 

organization and integrity on which large-scale networks critically depend (Greicius et al., 

2009; Horn et al., 2014; Teipel et al., 2010; van den Heuvel et al., 2008). Thus, structural 

changes related to aging would, in part, account for the functional changes associated 

with cognitive decline. In addition, it has been suggested that older adults’ brains 

compensate for a reduced structural integrity through increased functional activity (Grady 

et al., 2010; Park and McDonough, 2013). However, from our observations on 

voxel-based metrics derived in volume space, brain structure changes accounts 

significantly more variance than functional ones, thus imply the structural characteristics 

may develop substantially over age while brain functions remain stable though 

compensation.  
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Furthermore, sex differences on brain structure might be related to the differences in 

sex-specific hormones, but it might also cause the compensatory mechanisms to reduce 

the functional discrepancy between males and females (De Vries, 2004; McCarthy and 

Arnold, 2011; Ritchie et al., 2018). This perspective may explain our results that Vs was 

much higher over Vf. Structural differences reflect sexual biological constant characteristic 

which indicate more fundamental genetic expression, whereas the unmatched functional 

results may indicate the widespread functional compensatory through the whole brain 

between different sex, for example, men and women achieve a similar intelligence 

quotient (IQ) by the exploitation of different brain areas (Cosgrove et al., 2007). We found 

that thalamus and caudate showed a higher Vs when using GMD and any of the five 

functional metrics in predicting sex. Men have a larger thalamus, while women have a 

larger caudate (Cosgrove et al., 2007). The differences between these regions may reveal 

the different distribution of androgen and estrogen receptors (Cosgrove et al., 2007). Thus, 

based on voxel-based analysis, the sexual difference has a stronger representation on 

structure rather than the function. 

For the treatment, as all patients with schizophrenia only accepted a 6-weeks treatment in 

our study, the drugs' effect would first manifest through functional alterations rather than 

brain structural changes (Lui et al., 2010). Occipital lobe, lingual gyrus showed higher Vf 

on GMD/GMV with fALFF/VMHC. The occipital lobe is popularly known to be associated 

with the sense of vision. It may indicate the symptoms such as delusions, hallucinations 

have been relieved after treatment (Tohid et al., 2015). The higher functional changes on 
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cerebellum of GMV may reflect deficits in motor control seen in patients with 

schizophrenia (Hoptman et al., 2010). Therefore, for those short-term treatment-related 

neuroimaging studies, more attention should be paid on the functional changes rather the 

brain morphology. 

4.3 Recommendations 

Based on the present voxel-based analysis in volume space, some recommendations 

regarding suitable neuroimaging metrics for different research topics may be given. If 

variables are long time change or constant biological characteristics, like age, sex or 

handedness (Fjell et al., 2014; Kertesz et al., 1990), or long-term training (Draganski et al., 

2004; Lazar et al., 2005), then voxel-based structural metrics should be recommended; 

On the other hand, for investigating short-term effects, such as short-term psychiatric 

treatment outcomes (Lui et al., 2010; Wang et al., 2014), or short-time practice (Erickson 

et al., 2006; Tomasi et al., 2004), voxel-based functional metrics may be better. It might 

offer a suggestion about which voxel-based metric could be more effective to explore a 

specific phenomenon so that it could save time and be more precise. 

However, the shared contribution of voxel-based structural and functional metrics 

generally was small on brain areas with significant model-fit among the three dependent 

variables used here. This may imply the independent effects of structural and functional 

metrics are larger than the shared one on age, sex and treatment outcomes. Nevertheless, 

combining two kinds of metrics can achieve better effects than using an independent 
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variable alone (structural or functional metrics). Although the shared contribution was 

small on the three dependent variables, the variance-partitioning method still offers a new 

sight into directly exploring the relationship between voxel-based structural and functional 

metrics. 

In addition, the structural and functional measurements have different reliability levels: the 

reliability of structural metrics were generally higher than functional ones (Zuo et al., 2019). 

However, the current study suggests that the structural and functional metrics may have 

different validity depending on the research questions. Based on our voxel-based analysis, 

for age and sex, a higher Vs may indicate that the two demographic features have been 

more sensitive to brain demographic feature change; while for schizophrenia treatment, a 

higher Vf indicated that the functional change may be more sensitive than the structural 

metrics. Thus, beyond considering reliability in selecting a give measure in a specific 

research topic, attention should be paid to the validity, although which is difficult to be 

examined. Our index Vs-f provides a hint to guide making a choice. 

4.4 Limitations 

Some limitations should be noted for this study. First, here we only performed 

voxel-based analysis in volume space. It’s suggested that surface-based analyses is 

spatially more accurate than volume-based analyses (Coalson et al., 2018). We don’t 

know if our current conclusion can be generalized to vertex-based metrics in surface 

space, which needs future work. Second, with the variance partitioning, large amount of 
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residual remained, especially for sex and treatment outcomes. It means that only by the 

MRI indices used here, we cannot fully explain the change of these variables. Therefore, if 

we consider combining other neuronal measurements (e.g. electroencephalogram or 

magnetoencephalography), we may obtain a better explanation of variances. Third, here 

we used the linear model to explore the model fit between the structural and functional 

metrics, but we cannot detect the nonlinear prediction effect between the variables. 

Further studies should also consider to model the non-linear effects. Finally, for age, only 

cross-sectional samples were involved here. Thus, we were not able to examine the 

longitudinal variation within the participants which might offer more biological meaningful 

results. Further studies could test the model in longitudinal data. 

Conclusions 

In summary, we used variance partitioning to directly compare the structural and 

functional contribution on age, sex and treatment. The voxel-based structural metrics 

contributed more on age and sex, while the voxel-based functional metrics had more 

contribution on schizophrenia treatment. Most importantly, our study offers a new sight 

that based on voxel-level analysis, for the long-term change variable (age) and constant 

biological characteristic variable (sex), more attention should be paid to the structural 

metrics; but for short-term change variable (schizophrenia treatment), we should focus 

more on the functional measurements. 
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Figures 

 

Fig. 1 Variance partitioning of voxel-based structural metrics (GMD or GMV) and 

functional metrics (ALFF, fALFF, DC, ReHo or VMHC) in predicting age (percentages 

explained of the total variance). For each component of permutation test. GMD stands for 

gray matter density, and GMV stands for gray matter volume. ALFF stands for amplitude 
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of low frequency fluctuations, fALFF stands for fractional ALFF, DC stands for degree 

centrality, ReHo stands for regional homogeneity, and VMHC stands for voxel-mirrored 

homotopic connectivity. Vs indicates the portion of unique variance contributed by 

structural parameters, Vf indicates the portion of unique variance contributed by functional 

metrics, and Vsh indicates the portion of shared variance contributed between the 

structural and functional metrics. 
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Fig. 2 Difference between the unique variances contributed by voxel-based structural 

metrics (GMD or GMV) and functional metrics (ALFF, fALFF, DC, ReHo or VMHC) (Vs-f) in 

predicting age (percentages explained of the total variance). It was calculated as (Vs - Vf) 

on each voxel. GRF correction (voxel-level p < 0.001, cluster-level p < 0.05) was utilized 

to correct the large number of voxels across the brain, while the voxel-level p values were 

calculated by comparing each voxel-level variance partitioning value with the null 

distribution of its related region generated by permutation test. 
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Fig. 3 Variance partitioning of voxel-based structural metrics (GMD or GMV) and 

functional metrics (ALFF, fALFF, DC, ReHo or VMHC) in predicting sex (percentages 

explained of the total variance). For each component of variance partitioning on predicting 

sex, GRF correction (voxel-level p < 0.001, cluster-level p < 0.05) was utilized to correct 

the large number of voxels across the brain, while the voxel-level p values were calculated 
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by comparing each voxel-level variance partitioning value with the null distribution of its 

related region generated by permutation test. 
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Fig. 4 Difference between the unique variances contributed by voxel-based structural 

metrics (GMD or GMV) and functional metrics (ALFF, fALFF, DC, ReHo or VMHC) (Vs-f) in 

predicting sex (percentages explained of the total variance). It was calculated as (Vs - Vf) 

on each voxel. GRF correction (voxel-level p < 0.001, cluster-level p < 0.05) was utilized 

to correct the large number of voxels across the brain, while the voxel-level p values were 

calculated by comparing each voxel-level variance partitioning value with the null 

distribution of its related region generated by permutation test. 
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Fig. 5 Variance partitioning of voxel-based structural metrics (GMD or GMV) and 

functional metrics (fALFF or VMHC) in predicting treatment (percentages explained of the 

total variance). For each component of variance partitioning on predicting treatment time, 

GRF correction (voxel-level p < 0.001, cluster-level p < 0.05) was utilized to correct the 

large number of voxels across the brain, while the voxel-level p values were calculated by 

comparing each voxel-level variance partitioning value with the null distribution of its 

related region generated by permutation test. 
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Fig. 6 Difference between the unique variances contributed by voxel-based structural 

metrics (GMD or GMV) and functional metrics (ALFF or VMHC) (Vs-f) in predicting 

treatment (percentages explained of the total variance). It was calculated as (Vs - Vf) on 

each voxel. GRF correction (voxel-level p < 0.001, cluster-level p < 0.05) was utilized to 

correct the large number of voxels across the brain, while the voxel-level p values were 

calculated by comparing each voxel-level variance partitioning value with the null 

distribution of its related region generated by permutation test. 
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