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Abstract 8 

Microbial community studies in general, and of the human microbiome in inflammatory bowel 9 

disease (IBD) in particular, have now achieved a scale at which it is practical to associate features 10 

of the microbiome with environmental exposures and health outcomes across multiple large-scale 11 

populations. This permits the development of rigorous meta-analysis methods, of particular 12 

importance in IBD as a means by which the heterogeneity of disease etiology and treatment 13 

response might be explained. We have thus developed MMUPHin (Meta-analysis Methods with 14 

a Uniform Pipeline for Heterogeneity in microbiome studies) for joint normalization, meta-analysis, 15 

and population structure discovery using microbial community taxonomic and functional profiles. 16 

Applying this method to ten IBD cohorts (5,151 total samples), we identified a single consistent 17 

axis of microbial associations among studies, including newly associated taxa such as 18 

Acinetobacter and Turicibacter detected due to the sensitivity of meta-analysis. Linear random 19 

effects models further revealed associations with medications, disease location, and interaction 20 

effects consistent within and between studies. Finally, multiple unsupervised clustering metrics 21 
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and dissimilarity measures agreed on a lack of discrete microbiome “types” in the IBD gut 22 

microbiome. These results thus provide a benchmark for consistent characterization of the IBD 23 

gut microbiome and a general framework applicable to meta-analysis of any microbial community 24 

types. 25 

Introduction 26 

Meta-analysis for molecular epidemiology in large populations has seen great success in linking 27 

high-dimensional ’omic features to complex health-related phenotypes. One example of this is in 28 

genome-wide association studies (GWAS1), where the appropriate study scale, achieved by 29 

rigorous integration of multiple cohorts, has both facilitated reproducible discoveries (in the form 30 

of disease-associated loci2-4) and addressed confounding due to unobserved population 31 

structure5. The inflammatory bowel diseases (IBD) represent a particular success story for GWAS 32 

meta-analysis3,4, and environmental and microbial contributors complementing the condition’s 33 

complex genetic architecture have been detailed by many individual studies6-8. However, in the 34 

absence of methods appropriate for large-scale microbial meta-analysis, the extent to which these 35 

findings reproduce across studies, or can be extended by increased joint sample sizes, remains 36 

undetermined. Likewise, it is unclear whether reproducible population structure in the microbiome, 37 

such as microbially-driven IBD “subtypes,” exists to help explain the clinical heterogeneity of these 38 

conditions9. 39 

Meta-analysis of microbial community profiles presents unique quantitative challenges relative to 40 

other types of ‘omics data such as GWAS10 or gene expression11. These include particularly 41 

strong batch, inter-individual, and inter-population differences, and statistical issues including 42 

zero-inflation and compositionality12,13. Consequently, methods to correct for cohort and batch 43 

effects from other ‘omics settings14-17 are not directly appropriate. Two recent studies have 44 

suggested quantile normalization18 and Bayesian Dirichlet-multinomial regression (BDMMA)19 for 45 
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microbial profiles, which are applicable to a limited subset of differential abundance tests and do 46 

not provide batch-corrected profiles. To date, there are no methods permitting the joint analysis 47 

of batch-corrected microbial profiles for most study designs. 48 

IBD represents one of the best-studied, microbiome-linked inflammatory phenotypes to date 49 

which thus stands to benefit from such approaches20,21. Among the inflammatory bowel diseases, 50 

Crohn’s disease (CD) and ulcerative colitis (UC) have been individually linked with structural and 51 

functional changes in the gut microbiome in many individual studies21. Each of CD and UC can 52 

itself be highly heterogeneous within the IBD population, however, and diversity in disease-53 

associated gut microbial features has not been consistently associated with factors including 54 

disease subtype, progression, or treatment response7,9,22,23. Of note, two meta-analysis studies 55 

included IBD as one of several phenotypes24,25. These studies were not IBD-specific, did not have 56 

access to appropriate normalization techniques, nor took the aforementioned factors into account. 57 

The complexity of microbial involvement in IBD, and the presence of substantial unexplained 58 

variation in the manifestation of its symptoms, makes it particularly appropriate for application of 59 

meta-analysis techniques. 60 

In this work, we introduce and validate a statistical framework for population-scale meta-analysis 61 

of microbiome data, and apply it to the largest collection to date of ten published 16S rRNA gene 62 

sequencing-based IBD studies (Table 1) to identify consistent disease associations and 63 

population structure. We found both previously documented and novel microbial links to the 64 

disease, with further differentiation among subtypes, phenotypic severity, and treatment effects. 65 

We further confidently conclude that there are no apparent, reproducible microbiome-based 66 

subtypes within CD or UC, which are instead a population structure gradient from less to more 67 

“pro-inflammatory” ecological configurations. Our work thus represents one of the first large-scale 68 
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efforts to assesses consistency in gut microbial findings for IBD and provides methodology 69 

supporting future microbial community meta-analyses. 70 

Results 71 

Integrating 10 studies of the IBD stool and mucosal microbiomes 72 

We collected and uniformly processed ten published 16S studies of the IBD gut microbiome 73 

(Table 1, Fig. 1a, Supplemental Table 1) totaling 2,179 subjects and 5,151 samples. These 74 

studies range widely in terms of cohort designs and population characteristics, including recent-75 

onset and established disease patients, cross-sectional and longitudinal sampling, pediatric and 76 

adult populations, diseases (CD and UC), treated and treatment-naive patients, biopsy and stool 77 

samples, and inclusion of healthy/non-IBD controls. Covariates were manually curated to ensure 78 

consistency across studies (Methods). Major factors available from all or most studies included 79 

demographics (age/sex/race), biogeography, disease location and/or extent, antibiotic usage, 80 

immunosuppression, and steroid and/or 5-ASA usage.   81 

 82 
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Figure 1: A method for large-scale microbial community meta-analysis and its application to inflammatory 83 

bowel disease. a) We developed a novel statistical framework, MMUPHin, allowing joint normalization and meta-84 

analysis of large microbial community profile collections with heterogeneous and complex designs (multiple covariates, 85 

longitudinal samples, etc.). We applied it to a collection of 10 inflammatory bowel disease studies comprising 2,179 86 

subjects and 5,151 total samples (Table 1). We uniformly processed the associated sequence data and harmonized 87 

metadata across cohorts. Microbial taxonomic profiles were then corrected for batch- and study-effects before 88 

downstream analyses for omnibus and per-feature association with disease phenotypes and unsupervised population 89 

structure discovery. b) MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction 90 

visualize the strongest associations with gut microbial composition, including disease, sample type (biopsy or stool), 91 

cohort (visualized separately for larger and smaller studies), and dominant phyla. 92 

Using this joint dataset and upon uniform bioinformatics processing (Methods), we first assessed 93 

the factors that corresponded to overall variation in microbiome structure, which included disease 94 

status, sample type (biopsy versus stool), and dominant phyla (Bacteroidetes and Firmicutes, Fig. 95 

1b). Cohort effects prior to batch correction and meta-analysis were also significant. Microbiome 96 

differences associated with disease were notable even without normalization. However, this can 97 

be misleading due to the confounding of cohort structure between studies, such as the 98 

differentiation between RISK (a predominantly mucosal study of CD) and PROTECT (a 99 

predominantly stool study of UC). Inter-individual differences largely independent of population or 100 

disease, such as Bacteroidetes versus Firmicutes dominance, were also universal among studies 101 

and sample types as expected9,26. Many of these factors were of comparable effect size, both 102 

visually and as quantified below, emphasizing the need for covariate-adjusted statistical modelling 103 

to delineate the biological (disease, treatment) and technical (cohort, batch) effects associated 104 

with individual taxa throughout the cohorts (Supplemental Notes, Supplemental Fig. 1-3). 105 

Study Brief description N 
subject 

N 
sample 

Phenotype(s) Age Gender Sample 
type(s) 

PROTECT
23 

Longitudinal cohort 
of newly diagnosed 
UC 

405 1212 
(539) 

UC 405 12.71 
(3.29) 

Male 
52%/ 

Female 
48% 

Biopsy 
22%/ 
Stool 
78% 
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RISK7 Pediatric cohort of 
treatment-naïve CD 

631 882 CD 430/ 
Control 201 

12.16 
(3.22) 

Male 
59%/ 

Female 
41% 

Biopsy 
72%/ 
Stool 
28% 

Herfarth2

7 
Densely (daily) 
sampled longitudinal 
cohort 

31 860 
(31) 

CD 19/ 
Control 12 

36.03 
(14.12) 

Male 
35%/ 

Female 
58%/ 

Missing 
6% 

Stool 

Jansson-
Lamende
lla22 

Longitudinal follow 
up with fecal samples 

137 683 
(137) 

CD 49/ 
UC 60/ 

Control 28 

 Male 
42%/ 

Female 
58% 

Stool 

Pouchitis
28 

Patients recruited 
underwent IPAA for 
treatment of UC or 
FAP prior to 
enrollment. 

353 577 CD 42/ 
UC 266/ 

Control 45 

46.19 
(13.58) 

Male 
52%/ 

Female 
48% 

Biopsy 

CS-
PRISM29 

Cross sectional 
cohort nested in 
PRISM 

397 467 CD 215/ 
UC 144/ 

Control 38 

41.68 
(15.22) 

Male 
47%/ 

Female 
53% 

Biopsy 
29%/ 
Stool 
71% 

HMP29 Large cohort of newly 
diagnosed IBD with 
multi 'omics 
measurement. 

81 177 
(162) 

CD 37/ 
UC 22/ 

Control 22 

29.76 
(19.63) 

Male 
51%/ 

Female 
49% 

Biopsy 

MucosalI
BD30 

Pediatric cohort with 
Paneth cell 
phenotypes 

83 132 CD 36/ 
Control 47 

12.93 
(3.65) 

Male 
58%/ 

Female 
42% 

Biopsy 

LSS-
PRISM31 

Longitudinal cohort 
nested in PRISM. 

18 88 (19) CD 12/ 
UC 6 

30.37 
(10.52) 

Male 
39%/ 

Female 
61% 

Stool 

BIDMC-
FMT32 

FMT Trial design 8 16 CD 8 38.38 
(12.73) 

Male 
62%/ 

Female 
38% 

Stool 
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Table 1: 10 uniformly processed 16S rRNA gene sequencing studies of the IBD mucosal/stool microbiomes. 106 

For longitudinal cohorts, numbers in parentheses indicate baseline sample size. For age, mean and standard error 107 

(parenthesized) are shown. Additional covariates are summarized in Supplemental Table 1. 108 

A statistical framework for meta-analysis of microbial community profiles 109 

We developed a collection of novel methods for meta-analysis of environmental exposures, 110 

phenotypes, and population structures across microbial community studies, specifically 111 

accounting for technical batch effects and interstudy differences (Methods, Fig. 1a). It consists 112 

of three main components: batch and study effect correction, covariate modeling, and population 113 

structure discovery. First, we extended methods from the gene expression literature (ComBat15) 114 

to enable batch correction of zero-inflated microbial abundance data. Based on linear modelling, 115 

the method can differentiate between technical effects (batch, study) versus covariates of 116 

biologically interest (exposure, phenotype). Second, we combined well-validated data 117 

transformation and linear modelling combinations for microbial community profiles33 with fixed and 118 

random effect modelling34 for meta-analytical synthesis of per-feature (taxon, gene, or pathway) 119 

differential abundance effects. Lastly, we generalized and formalized approaches from cancer 120 

transcriptional subtyping35 to permit unsupervised discovery and validation of both discrete and 121 

continuous population structures in microbial community data (Supplemental Fig. 4). Our 122 

methods, implemented as Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in 123 

microbiome studies (MMUPHin), are available as an R package through Bioconductor36 and at 124 

https://bioconductor.org/packages/release/bioc/html/MMUPHin.html.  125 

We validated MMUPHin both in comparison to existing methods and through extensive simulation 126 

studies (Fig. 2), with simulated realistic microbial abundance profiles at different data 127 

dimensionality, biological/technical batch signal strength, and discrete/continuous population 128 

structures (Methods, Supplemental Table 2, Supplemental Fig. 5-8). MMUPHin successfully 129 

reduced variability attributable to technical effects in simulated microbial profiles, as first quantified 130 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.261214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.261214
http://creativecommons.org/licenses/by/4.0/


 

 

by the PERMANOVA R2 statistic37 (Fig. 2a-b, Supplemental Fig. 5). This was true both in terms 131 

of reducing the overall microbial variability attributable to technical artifacts and in terms of the 132 

ratio of “biological” versus technical variability (Fig. 2a). ComBat correction15, suited for gene 133 

expression data, was capable of reducing batch effects to a lesser degree, but also tended to 134 

reduce desirable “biological” variation in the process, likely due to noise introduced by it changing 135 

many zero counts to non-zero values. Previously proposed techniques for microbial community 136 

data, namely quantile normalization18 and  BDMMA19, are only appropriate for differential 137 

abundance analysis and do not provide batch-normalized profiles, thus precluding PERMANOVA 138 

batch effect quantification; their per-feature testing performance is evaluated together with 139 

MMUPHin in the following section. MMUPHin thus provides batch-corrected microbial community 140 

profiles that retain biologically meaningful variation more than (or not even possible using) existing 141 

methods. 142 

For differential abundance testing, MMUPHin successfully corrected for false associations when 143 

batch/cohort effects were confounded with variables of interest, which is a common concern for 144 

‘omics meta-analysis38, while quantile normalization18 and BDMMA19 had either inflated or overly 145 

conservative false positive rates (Fig. 2c-d, Supplemental Fig. 6). We also validated MMUPHin’s 146 

support for unsupervised population structure discovery, in addition to these “supervised” 147 

differential abundance and statistical association tests. In microbial communities, valid, 148 

generalizable population structure can manifest as either discretely clustered subtypes39 or as 149 

continuously variable gradients of community configurations40, but methods for discovery are 150 

particularly susceptible to false positives in the presence of technical artifacts26,40. To this end, for 151 

discrete structures, MMUPHin utilizes established clustering strength evaluation metrics41 to a) 152 

evaluate the existence of discrete clusters within individual microbiome studies and b) to validate 153 

the reproducibility of such structures among studies meta-analytically (Fig. 2e-f, Supplemental 154 

Fig. 7). For continuous structures, our method generalizes single study principal component 155 
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analysis (PCA42) to multiple studies by constructing a network of correlated top PC loadings35, 156 

thus identifying major axes of variation that explain the largest amount of heterogeneity between 157 

microbial profiles and are also consistent across studies (Fig. 2g-h, Supplemental Fig. 8). As a 158 

result, MMUPHin was able to successfully identify discrete clusters (i.e. microbiome "types") when 159 

present, as well as significantly consistent continuous patterns of microbiome variation that recur 160 

among populations (Supplemental Notes). 161 

 162 
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Figure 2: Effectiveness of batch correction, association meta-analysis, and unsupervised population structure 163 

discovery methods. All evaluations use simulated microbial community profiles as detailed in Methods. Left panels 164 

summarize representative subsets of results (full set of simulation cases presented in Supplemental Table 2 and 165 

results in Supplemental Fig. 5-8), and right panels show examples of batch-influenced data pre- and post-correction. 166 

a, b) MMUPHin is effective for covariate-adjusted batch effect reduction while maintaining the effect of positive control 167 

variables. Results shown correspond to the subset of details in Supplemental Fig. 5 with number of samples per batch 168 

= 500, number of batches = 4, and number of features = 1000 with 5% spiked with associations. c, d) Batch correction 169 

and meta-analysis reduces false positives when an exposure is spuriously associated with microbiome features due to 170 

an imbalanced distribution between batches. Corresponds to Supplemental Fig. 6 with number of samples per batch 171 

= 500, number of features = 1000 with 5% spiked associations, and case proportion difference between batches = 0.8. 172 

Evaluations of BDMMA generates low FPRs due to the zero-inflated nature of simulated microbial abundances, and 173 

are included only in Supplemental Fig. 6. e, f) Batch correction improves correct identification of the true underlying 174 

number of clusters during discrete population structure discovery. Corresponds to Supplemental Fig. 7 with number 175 

of batches = 4. g, h) Continuous structure discovery accurately recovers microbiome compositional gradients in a 176 

simulated population. Corresponds to Supplemental Fig. 8 with number of batches = 6. 177 

Meta-analysis of the IBD microbiome 178 

Given these validations of MMUPHin’s accuracy in simulated data, we next applied it to the 10-179 

study, 4,789-sample IBD gut amplicon profile meta-analysis introduced above (Fig. 3). MMUPHin 180 

successfully reduced the effects both of differences among studies, and of batches within studies 181 

(study effect correction modelling disease and sample type as covariates, see Methods), 182 

although these remained among the strongest source of variation among taxonomic profiles as 183 

quantified by PERMANOVA R2 (Fig. 3a, Methods, Supplemental Table 3). Among biological 184 

variables, sample type (biopsy/stool), biopsy location (multiple, conditional on biopsy samples), 185 

disease status (IBD/control), and disease types (CD/UC, conditional on IBD) consistently had the 186 

strongest effect on the microbiome among studies. Several relationships between study design 187 

and phenotypic effects were apparent. Batches had a particularly strong effect in CS-PRISM and 188 

RISK, for example, where biopsy and stool samples were also perfectly separated by batch. 189 
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Treatment exposures all had small effects on microbiome structure within studies, which typically 190 

reached statistical significance only when combined by meta-analysis; antibiotics were an 191 

exception with slightly larger effects. Montreal classification did not generally correspond with 192 

significant variation, while age (at sample collection as stratified below and above 18, and at 193 

diagnosis by Montreal age classification43) had small but significant effects. The effects of gender 194 

and race were not significant. Lastly, for longitudinal studies, relatively stable differences between 195 

subjects over time were large and significant, consistently for both longer-interval (HMP2) as well 196 

as densely sampled cohorts (Herfarth, daily samples), in agreement with previous individual 197 

studies’ observations9,23. 198 

 199 

Figure 3: Meta-analytic omnibus and per-feature testing reveal novel and previously documented IBD 200 

associations. a) Omnibus testing (PERMANOVA on Bray-Curtis dissimilarities with stratification and covariate control 201 

where appropriate, see Methods and Supplemental Table 3) identified between-subject differences as the greatest 202 

source of microbiome variability, with IBD phenotype, disease (CD/UC), and sample type (stool/biopsy) as additional 203 

main sources of biological variation. MMUPHin successfully reduced between-cohort and within-study batch effects, 204 

although these technical sources also remained significant contributors to variability. b) Individual taxa significantly 205 

associated with IBD phenotypes or treatments after meta-analysis. Taxa are arranged by family-level median effect 206 

size of IBD vs. control for disease results and that of  antibiotic usage for treatment results. Effect sizes are aggregated 207 

regression coefficients (across studies with random effects modelling) on arcsin square root-transformed relative 208 
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abundances. Detailed model information in Methods and Supplemental Table 3. Individual study results in 209 

Supplemental Table 4. 210 

We identified individual taxonomic features consistently associated with disease and treatment 211 

variables (Fig. 3b, Supplemental Table 4), with meta-analysis multivariate differential 212 

abundance analysis, adjusting for common demographics (age, gender, race) and further 213 

stratifying for sample type and disease when appropriate (Methods, Supplemental Table 3). At 214 

a very high level, differential abundance patterns between CD and control microbiomes were 215 

consistent with, and often more severe than contrasts between UC and control, confirming with 216 

increased resolution previous observations that CD patients tend to have more aggravated 217 

dysbiosis than UC patients9. As expected, our meta-analysis confirms many of the taxa 218 

associated with IBD reported by previous individual (Fig. 3b, detailed in Supplemental Notes); 219 

these findings strongly supports the emerging hypotheses of pro-inflammatory aerotolerant 220 

clades forming a positive feedback loop in the gut during inflammation, often of oral origin7, and 221 

depleting the gut’s typical fastidious anaerobe population as a result. 222 

We also identified two taxa not previously associated with IBD, both of modest effect sizes and 223 

likely newly detected by the meta-analysis’ increased power. The genus Acinetobacter was 224 

enriched in CD, and Turicibacter was depleted. Turicibater in particular is poorly represented in 225 

reference sequence databases, with only nine genomes for one species (Turicibacter sanguinis) 226 

currently in the NCBI genome database; this makes it easy to overlook in shotgun metagenomic 227 

profiles relative to amplicon sequencing. The genus Acinetobacter, conversely, is quite well 228 

characterized due to its role in antimicrobial resistant infections44, and it was previously linked 229 

specifically to the primary sclerosing cholangitis phenotype in UC45, although without follow-up to 230 

our knowledge. Turicibacter is overall less characterized both in isolation and with respect to 231 

disease, although our findings and others’ suggest it might be inflammation-sensitive when 232 

present; it was one of many clades increased in mice during CD8+ T cell depletion46 and reduced 233 
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in a homozygous TNF deletion47. As the strains of Acinetobacter implicated in gut inflammation 234 

are unlikely to be those responsible for e.g. nosocomial infections, further investigation of both 235 

clades using more detailed data or IBD-specific isolates is warranted. 236 

Among treatment variables (samples or time points during which subjects were receiving 237 

antibiotics, immunosuppressants, steroids, and/or 5-ASAs), antibiotics had the strongest effects 238 

on individual taxa, as well as the greatest number of significantly associated taxa (Fig. 3b). These 239 

associations are also broadly in agreement with previous observations for microbiome responses 240 

to antibiotics in IBD or generally, e.g. the depletion of Faecalibacterium, Ruminococcus, and 241 

Bacteroides in patients treated with antibiotics, and the enrichment of (often stereotypically 242 

resistant) taxa such as Streptococcus, Acinetobacter, and the Enterobacteriaceae, with 243 

differential responses to the treatment groups speaking to both administration considerations and 244 

their impact on host versus microbial community bioactivities (Supplemental Notes).  245 

Subsets of IBD-linked taxa were additionally associated with the diseases’ phenotypic severity 246 

(Fig. 4a, Supplemental Table 5). Montreal classification43 was used as a proxy for disease 247 

severity, including Behavior categories for Crohn’s disease (B1 non-stricturing, non-penetrating, 248 

B2 stricturing, non-penetrating, B3 stricturing and penetrating) and Extent for ulcerative colitis (E1 249 

limited to rectum, E2 up to descending colon, E3 pancolitis). We tested for features differentially 250 

abundant in the more severe phenotypes when compared against the least severe category (B1 251 

CD and E1 UC, Methods). Among statistically significant results, many extended those identified 252 

above as overall IBD associated (Fig. 3b), such as the depletion of Faecalibacterium in B3 CD 253 

and Roseburia in B2 CD, as well as the enrichment of Enterobacteriaceae in E3 UC. In most 254 

cases, microbial dysbiosis was also additionally aggravated from the moderate to the most 255 

extreme disease manifestations; such differences were statistically significant (Methods) in, for 256 

example, the progressive depletion of Bacteroides in CD and UC, as well as the enrichment of 257 

Enterobacteriaceae in UC. This meta-analysis is uniquely powered to detect these subtle 258 
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differences, which aid in shedding light on the microbiome’s response to progressive inflammation 259 

and disease subtypes. Pancolitis corresponds with a unique microbial configuration distinct from 260 

regional colitis and not generally detectable in smaller studies6, for example, while more severe 261 

CD induces essentially a more extreme form of the same dysbiosis observed in less severe forms 262 

of the disease. 263 

 264 

Figure 4: IBD-associated taxa are aggravated in more severe disease; disease biogeography and CD/UC 265 

differentially affect some taxa with respect to disease and treatment. a) Statistically significant genera from meta-266 

analytically synthesized differential abundance effects among severity of CD and UC phenotypes as quantified by 267 

Montreal classification. The difference between the most severe phenotype with the least severe one (B3 vs. B1 for 268 

CD, E3 vs. E1 for UC) was in most cases more aggravated than that of the intermediate phenotype. Many of the 269 

identified features overlap with those associated with IBD vs. control differences, suggesting a consistent gradient of 270 

severity effects on the microbiome. Individual study results in Supplemental Table 5. b) Genus Dehalobacterium as 271 

an example in which a taxon is uniquely affected in the stool microbiome during CD and not at the mucosa. Likewise, 272 

family Enterobacteriaceae as an example in which steroid treatment corresponds with enrichment of the clade in CD 273 
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samples, but depletion in UC. In all panels, effect sizes are aggregated regression coefficients on arcsin square root-274 

transformed relative abundances. Full sets of statistically significant interactions, with individual study results, are in 275 

Supplemental Table 6. 276 

Additionally, diseases (CD and UC) and their corresponding dysbioses also interacted distinctly 277 

with the microbiome under different treatment regimes and in different biogeographical 278 

environments (mucosa vs. stool, Fig. 4b, Supplemental Table 6). Interaction effects, in the 279 

statistical sense, were defined as a main exposure (IBD or treatment) having differential effects 280 

on taxon abundance with respect to either sample type (biopsy/stool) or diseases (CD/UC); they 281 

were identified via moderator meta-analysis models (Methods). Overall, we found elevated 282 

effects of both CD (relative to controls) and antibiotic treatment in stool as compared to biopsy-283 

based measurements of the microbiome (Supplemental Table 6). An example of this is 284 

Dehalobacterium, with significantly greater depletion in CD stool relative to biopsies (Fig. 4b). 285 

Dehalobacterium, as with Turicibacter above, is underrepresented in reference sequence 286 

databases, better-detected by amplicon sequencing, and thus not a common microbial signature 287 

of IBD. It has been linked to CD in at least one existing 16S-based stool study48. In contrast, 288 

several UC-specific microbial disruptions were more prominent at the mucosa (i.e. in biopsies, 289 

Supplemental Table 6). Coupled with the severity-linked differences above, this suggests CD-290 

induced changes in the entire gut microbial ecosystem largely as a consequence of inflammation, 291 

with UC-induced dysbioses both more local and more specific to disease and treatment regime. 292 

Additional results include effect of steroids on the Enterobacteriaceae, which tended to be more 293 

abundant in CD patients receiving steroids, but less abundant in UC recipients (Fig. 4b, 294 

Supplemental Table 6, Supplemental Notes). 295 

Consistent IBD microbial population structure discovered by unsupervised analysis 296 

The existence of subtypes within gut microbial communities has been a major open question in 297 

human microbiome studies, and it is of particular importance within IBD as a potential explanation 298 
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for heterogeneity in disease etiology and treatment response6,9. To systematically characterize 299 

population structure in the IBD gut microbiome that was reproducible among studies, we 300 

performed both discrete and continuous structure discovery on the 10 cohorts using our meta-301 

analysis framework. To identify potential discrete community types (i.e. clusters), we performed 302 

clustering analysis within each cohort’s IBD patient population, and evaluated the clustering 303 

strength via prediction strength (Methods). We found no evidence to support discrete clustering 304 

structure within individual cohorts, nor were we able to reproduce each cohort’s clustering results 305 

externally (Fig. 5a). This lack of discrete structure was consistent when we further stratified 306 

samples to either CD or UC populations (Supplemental Fig. 9), or extended to additional 307 

dissimilarity metric and clustering strength measurements (Supplemental Fig. 9, Methods). Our 308 

observation that the IBD gut microbiome cannot be well characterized by discrete clusters is thus 309 

consistent with previous findings on gut microbial heterogeneity for healthy populations40 and 310 

suggests that, at the level powered by this study, such microbiome subtypes are not clearly 311 

responsible for clinical heterogeneity. 312 
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 313 

Figure 5: Unsupervised population structure discovery finds no evidence of microbiome-based subtypes in 314 

the IBD gut, but a reproducible gradient of continuously variable dysbiosis in disease. a) No support was 315 

detected for discrete microbiome subtypes (clusters) within the IBD microbiome, neither within cohort nor when 316 

evaluated among studies (red bars) using prediction strength41. This remained true during stratification within CD and 317 

UC, and for additional dissimilarity metric/clustering strength measurements (Supplemental Fig. 9). b) Conversely, 318 

two reproducible, continuously variable patterns of microbiome population structure were identified using groups of 319 

similar principal components (Methods)35. These patterns were consistent within and between cohorts, disease types, 320 

and sample types, as well as under different edge strength cutoffs (Supplemental Fig. 11), and their consensus 321 

loadings were reproducible among cohorts (Supplemental Fig. 12). c) Top 20 genera with highest absolute loadings 322 

for the disease-associated dysbiosis score corresponding to the first cluster in b. Many of these taxa were also IBD-323 

associated (Fig. 3b). d) Distribution of the dysbiosis pattern across CD, UC, non-IBD control, and healthy populations. 324 
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Although it was defined in an unsupervised way solely within the IBD population, across which the pattern is highly 325 

variable, it also differentiates well between IBD and control populations (Supplemental Fig. 13). 326 

Conversely, we identified two consistent, continuously varying gradients of microbial community 327 

variation in the IBD microbiome (Fig. 5b-d, Supplemental Fig. 10). These gradients represent 328 

patterns of microbes that occur with greater or lesser abundance in tandem, and which covary 329 

across subjects in a population; they were identified as principal component (PC) vectors that 330 

recur among different cohorts (see Methods)35. Briefly, we used the four largest IBD cohorts (CS-331 

PRISM, Pouchitis, PROTECT, and RISK) as training datasets to identify two clusters of consistent 332 

PCs (Fig. 5b), which were confirmed with sensitivity analysis (Supplemental Fig. 11) and 333 

validated in the remaining cohorts (Supplemental Fig. 12). The consensus loadings (i.e. within-334 

cluster average) representing these two clusters (Fig. 5c, Supplemental Fig. 10, Supplemental 335 

Table 7) were used to assign continuously varying scores to the IBD population that capture 336 

gradient changes in the microbiome that occurred consistently within IBD, across diseases, 337 

sample types, and cohorts. This disease-linked "type" of microbiome variation corresponded 338 

roughly to severity or extent of inflammation, as detailed below. 339 

In particular, while the second continuous population structure captured the Firmicutes-340 

Bacteroidetes tradeoff present in most gut microbiome studies (Supplemental Fig. 10)9,26,40, the 341 

first continuous score was IBD-specific and corresponded roughly to more extreme disease-342 

associated dysbiosis in CD and UC populations (Fig. 5d). This is evidenced by the taxa with 343 

highest weights in the scores’ consensus loading vector (Fig. 5c), which included taxa 344 

differentially abundant between IBD and control populations (Fig. 3). The score was consistent 345 

both within CD and UC while also further differentiating IBD, non-IBD control, and healthy 346 

populations (Fig. 5d, Supplemental Fig. 13), even though it was identified unsupervisedly only 347 

from diseased subsets. The composition of the score and its population structure are also 348 

consistent with our recent definition of dysbiotic gut microbiome configurations corresponding with 349 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.261214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.261214
http://creativecommons.org/licenses/by/4.0/


 

 

multi’omic perturbations during IBD activity9. Together with the supervised meta-analysis results 350 

above, these unsupervised population structure findings confirm that there are no detectable 351 

discrete subtypes of the gut microbiome in IBD even among ~5,000 combined samples, while 352 

showing a single continuously variable gradient of microbiome changes reproducibly present 353 

during more dysbiotic diseases. 354 

Discussion 355 

Here, we provide a novel framework for microbial community meta-analysis and apply it to the 356 

first large-scale integration of over 5,100 amplicon profiles of the stool and mucosal microbiomes 357 

in IBD. This identified a significantly reproducible gradient in the gut microbiome indicative of 358 

increasing dysbiosis in subsets of patients. The study also showed no evidence of additional 359 

population structure, such as microbiome-driven discrete disease subtypes, within CD or UC. The 360 

increased power provided by meta-analysis supported many of the taxonomic associations 361 

previously ascribed to IBD (e.g. Faecalibacterium, Ruminococcus, Enterobacteriaceae) while 362 

uncovering new associations (Turicibacter, Acinetobacter) not confidently associated with 363 

inflammation by other populations or data types. Almost all effects were exhibited similarly using 364 

either stool or mucosal profiling, with a small number of exceptions showing significant 365 

differentiation (e.g. Dehalobacterium). Novel disease-treatment response interactions were 366 

observed (e.g. steroids on Enterobacteriaceae). Finally, the meta-analysis framework developed 367 

for the study, MMUPHin, has been extensively evaluated and its performance for batch effect 368 

removal, supervised meta-analysis of exposures and covariates, and unsupervised population 369 

structure discovery validated on a variety of simulated microbial community types. It is extensible 370 

to integration of microbial community taxonomic or functional profiles from other data types (e.g. 371 

metagenomic sequencing) or environments. 372 
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However, all microbial community meta-analyses should be approached with caution, since in 373 

many cases unwanted sources of technical variation between studies (i.e. batch effects) are so 374 

large as to potentially mask biological signals even after correction49-51 (Supplemental Notes). 375 

Reducing inter-study variation in microbial community profiles is challenging relative to other 376 

'omics data types due to 1) the extreme heterogeneity of microbes within most communities 377 

(exacerbating both technical and biological differences), and 2) feature zero-inflation arising from 378 

both biological and technical reasons13,52. Notably, despite these challenges, MMUPHin was able 379 

to meta-analyze amplicon profiles in this study both to associate microbial shifts with disease 380 

outcome, to associate them with treatment-specific differences, and to identify a single pattern of 381 

typical microbial variation within IBD. While previous efforts have developed IBD dysbiosis scores 382 

by contrasting patients with control groups7,9, this pattern of microbial variation was present 383 

specifically within IBD patients (both CD and UC), and in agreement with supervised methods, 384 

captured several classes of microbial functional responses in the gut (Supplemental Note). 385 

The IBD gut microbiome particularly stands to benefit from meta-analysis, as have other multiply-386 

sampled conditions such as colorectal cancer53,54, in order to identify ecological and 387 

microbiological changes during the disease that are reproducible across populations. We consider 388 

this study based on 16S rRNA gene sequencing to be a proof of concept, able to achieve 389 

unprecedented power due to the number of amplicon profiled samples available, but with greater 390 

precision possible in future work using e.g. metagenomic and other ‘omics technologies. This also 391 

enabled comparison of responses in the stool versus mucosal microbiomes, the latter of which 392 

are not amenable to metagenomic profiling from biopsies; these were in overall good agreement, 393 

but the few areas of significantly differential responses to inflammation are likely of particular 394 

immunological interest. The large sample and population sizes also provide some confidence in 395 

ruling out discrete, microbially-driven population subtypes as an explanation for CD and UCs’ 396 

clinical heterogeneity. Instead, the work identified a single consistent axis of gradient microbial 397 
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change corresponding to increasing departures from “normal” microbiome configurations7,9,55. 398 

This pattern of consistent microbial dysbiosis can continue to be explored in further work on its 399 

functional, immunological, and clinical consequences. Overall, this study represents one of the 400 

first large-scale, methodologically appropriate, targeted meta-analysis of the IBD microbiome, and 401 

the corresponding methodology and its implementation are freely available for future meta-402 

analyses of human-associated and environmental microbial populations. 403 

Methods 404 

MMUPHin: a uniform statistical framework for meta-analysis of microbial community 405 

studies 406 

We developed MMUPHin (Meta-analysis Methods with a Uniform Pipeline for Heterogeneity in 407 

microbiome studies) as a framework for meta-analysis of microbial community studies using 408 

taxonomic, functional, or other abundance profiles. It includes components for batch effect 409 

adjustment, differential abundance testing, and unsupervised discrete and continuous population 410 

structure discovery.  411 

Batch adjustment 412 

For microbial community batch correction, we extended the batch correction method developed 413 

for gene expression data in ComBat15 with an additional component to allow for the zero inflated 414 

nature of microbial abundance data. In our model, sample read count𝑌 was modelled with respect 415 

to both batch variable and biologically relevant covariate(s) 𝑋: 416 

𝑌!"# = 𝑒𝑥𝑝{𝛽#𝑋!"′ + 𝜎#(𝛾!# + 𝛿!#𝜖!"#)} × 𝐼!"# 417 
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Where 𝑖 indicates batch/study, 𝑗 indicates sample, and 𝑝 indicates feature. 𝛾!# and 𝛿!# are batch-418 

specific location and scale parameters. 𝜎#  is a feature-specific standardization factor. 𝛽#  are 419 

covariate-specific coefficients, and 𝜖!"# is an independent error term following a standard normal 420 

distribution. 𝐼!"# is a binary (0, 1) zero-count indicator, to allow for zero inflation of features. As in 421 

ComBat, 𝛾!#  and 𝛿!#  are modelled with normal and inverse-gamma priors, respectively. 422 

Hyperparameters are estimated with empirical Bayes estimators as in ComBat15. The posterior 423 

means,  𝛾∗%#6  and 𝛿∗%#6 , along with standard frequentist estimates 𝛽#6and 𝜎#7 are used to provide 424 

batch-corrected count data: 425 

𝑌%&#8 = 𝑒𝑥𝑝{
𝑌!"# − 𝛽#6𝑋!"′ − 𝛾∗%#6 𝜎#7

𝛿∗%#6
+ 𝛽#6𝑋!"′} × 𝐼!"# 426 

Per-sample feature counts are then re-normalized to keep sample read depth unchanged post-427 

correction. In practice, the user provides sample microbial abundance table (𝑌), batch/study 428 

information, and optionally any other covariates 𝑋 that are potentially confounded with batch but 429 

encode important biological information. MMUPHin outputs an adjusted profile 𝑌: that is corrected 430 

for the effect of batches but retains the effects of 𝑋 (if provided). 431 

Meta-analysis differential abundance testing 432 

For meta-analytical differential abundance testing, after batch correction, MMUPHin first performs 433 

multivariate linear regression within individual studies using previously validated data 434 

transformation and modelling combinations appropriate for microbial community profiles 435 

(MaAsLin233). This yields study-specific, per-feature differential abundance effects estimations 436 

𝛽%#6 , where 𝑖  indicates study and 𝑝  indicates feature. These are then aggregated into meta-437 

analysis effect size with fixed/random effects modelling as implemented in the metafor R 438 

package34: 439 
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𝛽%#6 = 𝛽# + 𝜖!# + 𝑒!# 440 

𝛽# is the overall differential abundance effect of feature 𝑝. 𝜖!# is per-study measurement error, 441 

and 𝑒!# is study-specific random effects term (not present in fixed-effect models). In practice, the 442 

user provides a microbial community profile, study design (batch) information, the main exposure 443 

variable of interest, and optional additional covariates. If any meta-analyzed studies include 444 

repeated measures (e.g. longitudinal designs), then random covariates can also be provided and 445 

will be modelled for such studies. MMUPHin then performs MaAsLin2 regression modelling within 446 

each study and aggregates effect sizes of the exposure variable 𝛽%#6  across studies using the 447 

resulting random/fixed effects model. The estimated overall effect, 𝛽#6, is reported as the overall 448 

differential abundance effect for feature 𝑝. 449 

Unsupervised discrete structure discovery 450 

For unsupervised discrete (i.e. cluster) structure discovery of a single study, again after batch 451 

correction, MMUPHin uses average prediction strength41, an established clustering strength 452 

metric, to measure the existence of reproducible clusters among meta-analyzed datasets. Briefly, 453 

for each individual dataset, the metric randomly and iteratively divides samples into “training” and 454 

“validation” subsets. In each iteration, clustering is first performed on the training samples, across 455 

a range of cluster numbers 𝑘, yielding (for a specific 𝑘) training sample clusters 𝐴'(, 𝐴'), …, 𝐴''. 456 

Note that 𝐴'( , 𝐴') , …, 𝐴''  jointly forms a partition of the testing sample indices. The same 457 

clustering analysis is then performed on the validation samples, and the resulting partition of 458 

sample space provides classification membership potentially different from clustering 459 

memberships 𝐴'(, 𝐴'), …, 𝐴''. Prediction strength for 𝑘clusters is defined as 460 
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𝑝𝑠(𝑘) 	461 

= min
(*+*'

1
𝑛'+(𝑛'+ − 1)

D 𝐼{validation	samples	𝑗	and	𝑗′	are	classified	to	the	same	group	according	to	training	samples}
","-∈/!"

 462 

i.e. the minimum (across validation clusters) proportion of same-cluster sample pairs also being 463 

classified as the same group by training samples. 𝑛'+ = |𝐴'+|, or the number of test samples in 464 

the 𝑙th cluster. 465 

Average prediction strength is the average of prediction strengths across randomization iterations. 466 

Intuitively, it characterizes the degree of agreement between the clustering structures in randomly 467 

partitioned validation and training subsets; if 𝑘 is appropriately describing the true number of 468 

discrete clusters in the dataset, then average prediction strength should be close to one (training 469 

and validation samples agree most of the time). 470 

We additionally generalized this metric to meta-analysis settings, where we aimed to quantify the 471 

agreement of clustering structures between studies. In the meta-analytical setting, generalized 472 

prediction strength for cluster number 𝑘in study 𝑖with validation study 𝑖′ is 473 

𝑔𝑝𝑠!!-(𝑘) 	474 

= min
(*+*'

1
𝑛'!;+(𝑛'!-+ − 1)

D 𝐼{validation	samples	𝑖′𝑗	and	𝑖′𝑗′	are	classified	to	the	same	group	according	to	study	𝑖}
","-∈/!#;"

 475 

Where 𝐴'!+ indicates the 𝑙-th cluster membership in study 𝑖, when cluster number is specified as 476 

𝑘; 𝑛'!+ = |𝐴'!+|. The average generalized prediction in study 𝑖 for cluster number 𝑘 is then defined 477 

as the average of 𝑔𝑝𝑠!!-(𝑘) across all 𝑖′ ≠ 𝑖, i.e., all validation studies (instead of iterations of 478 

randomized partitions). Similar to  the single study prediction strength, it describes the 479 

generalizability of clustering structure in study 𝑖 in external validation studies. 480 
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Unsupervised continuous structure discovery 481 

We extended our previous work in cancer gene expression subtyping35 to perform unsupervised 482 

continuous structure discovery in microbial community profiles. Complementary to discrete cluster 483 

discovery, the goal is to identify strong feature covariation signals (gradients) that are reproducible 484 

across studies. This is carried out by performing principal component analysis individually in 485 

microbiome studies and constructing a network of correlated PCA loading vectors, to identify 486 

loadings that are consistently present across studies. In detail, given a collection of training 487 

microbial abundance datasets, our method takes the following steps (visualized in Supplemental 488 

Fig. 4): 489 

1. For each dataset 𝑖, PCA is performed on normalized and arcsin square root-transformed 490 

microbial abundance data. Given a user-specified threshold on variance explained, we 491 

record its top PC loading vectors, 𝑤!(, 𝑤!), . . . , 𝑤!1#, where 𝐽! is the smallest number of top 492 

loading vectors that jointly explain percentage of variability in the dataset past a 493 

customizable threshold 0 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 < 1 (default to 80%). 494 

2. For two PC loadings from different datasets 𝑤!" and 𝑤!-"-,  similarity is quantified with the 495 

absolute value of cosine coefficient56 |𝑐𝑜𝑠 < 𝑤!" , 𝑤!-"- > |. This yields a network of PC 496 

loading vectors associated by weighted edges𝑤!" and 𝑤!-"-, retaining edges only if their 497 

weight surpasses a customizable similarity threshold ( |𝑐𝑜𝑠 < 𝑤!" , 𝑤!-"- > | >498 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3, 0 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3<1). 499 

3. In the resulting network, we perform community detection57 to identify densely connected 500 

modules of PCs. Each module by definition consists of PCs from different datasets that 501 

are similar to each other - whether or not they occur in the same order or with similar 502 

percent variance explained - and which thu represent strong feature covariation signals 503 

that are recurrent in studies. 504 
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4. For a module 𝑘  containing PC set 𝑀' , its consensus vector 𝑊'  is calculated as the 505 

average of sign-corrected loading vectors in 𝑀' , i.e., 𝑊' ≔
∑ 5%&6'#(∈*!

|8!|
. Note that the 506 

average is taken not over the original loading vectors 𝑤!", but rather their sign-corrected 507 

versions 𝑤%&i . Specifically, the signs of each 𝑤!"  in 𝑀'  are corrected so that all of the 508 

loading vectors have positive cosine coefficients. 509 

5. The module-wide consensus vectors 𝑊'  represent strong, mutually independent, and 510 

reproducible covariation signals across the microbial datasets; they are used to identify 511 

continuously varying gradients in microbial abundance profiles that represent reproducible 512 

population structures. Specifically, given a sample with normalized and transformed 513 

microbial abundance measurements 𝑥, its continuous score for module 𝑘 is defined as 514 

𝑥′𝑊', as in regular PCA. 515 

6. If additional studies are available, the reproducibility of each 𝑊'can be further examined 516 

by correlating 𝑊' with the top PC loadings in each such validation study. For each 517 

additional study, 𝑊' is considered to be validated in that dataset if its absolute cosine 518 

coefficient with at least one of the dataset’s top PCs surpasses the coefficient similarity 519 

cutoff 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3; the number of top PCs to consider in the validation dataset loadings is 520 

determined with the same cutoff 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2. 521 

Simulation validation of MMUPHin 522 

We performed extensive simulation studies (Fig. 2, Supplemental Fig. 5-8, Supplemental Table 523 

2) to validate the performance of each component of MMUPHin. In all cases these employed 524 

realistic microbial abundance profiles generated using SparseDOSSA 525 

(http://huttenhower.sph.harvard.edu/sparsedossa). This is a model of microbial community 526 

structure using a set of zero-inflated log-normal distributions fit to selected training data, in this 527 

case drawn from the IBD gut microbiome6. Controlled microbial associations with simulated 528 
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covariates can then (optionally) be spiked in. Note that although the assumed null distributions in 529 

MMUPHin and SparseDOSSA are the same (zero-inflated log normal), the models of effects for 530 

batch and biological variables are substantially different: MMUPHin assumes exponentiated 531 

effects, while SparseDOSSA assumes re-standardized linear effects. 532 

Specifically, SparseDOSSA models null microbial feature abundances using a zero-inflated log-533 

normal distribution: 534 

𝑙𝑜𝑔(𝑌!#) ∼ 𝑁(𝜇#, 𝜎)#) × 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋#) 535 

This is the same initial distributional assumption as the MMUPHin batch correction model, when 536 

there are no batch or covariates effects. However, for spiked-in associations with metadata (batch, 537 

biological variables, etc.), SparseDOSSA uses a different model. Given a simulated, pre-spiking-538 

in feature count vector 𝑌# with mean 𝜇#9	 and standard error 𝜎#9	, as well as a metadata variable 539 

vector 𝑋 with mean 𝜇; and standard error 𝜎;, the post-spiked-in feature count is set to: 540 

𝑌%#8 = (
(<=

{𝑌!# + 𝜙 × [
>;#?@+AB,-

B+
+ 𝜇#9]}  541 

where 𝜙 is a configurable spike-in strength parameter. By this definition, microbial features post-542 

spike-in have the same mean and approximately the same variance as before, the only difference 543 

being the added association with the metadata variable(s) used. This is to ensure the counts of 544 

the modified feature are not dominated by the values of the target covariate, but instead 545 

distributed similarly to real data. The SparseDOSSA association model thus differs from 546 

MMUPHin’s model in two substantial ways: i) MMUPHin’s associations are defined within the 547 

exponentiated component and are thus better described as a multiplicative effect, whereas 548 

SparseDOSSA’s effects are directly applied on untransformed data, and ii) SparseDOSSA 549 

additionally ensures realistic data generation with the re-standardization procedure. 550 
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Thus, the only component of the SparseDOSSA model that requires fitting to training data is the 551 

aforementioned zero-inflated log-normal null distribution. In our analysis, this was always PRISM6, 552 

while other parameters were specified across a wide range of combinations to simulate different 553 

application scenarios. These include the effect sizes of the associated batch and biological 554 

variables (i.e. the 𝜙 parameter), number of batches, sample sizes, as well as dimensionality (both 555 

the total number of features and the percentage of features randomized to be associated with 556 

batch/biological variables). For each combination of simulation parameters, we performed 20 557 

random replications (i.e. running simulation/evaluation with the same parameters but different 558 

random seeds). Supplemental Table 2 presents the full list of parameter combinations. 559 

Evaluating batch adjustment 560 

For evaluation of MMUPHin’s batch effect adjustment component, we simulated metadata that 561 

included batch (with varying total batch numbers 2, 4, 6, 8), a binary positive control (simulated 562 

“biological” covariate), continuous positive control (“biological”), and negative control (binary, and 563 

guaranteed to be non-associated with microbial features) variables. Microbial abundance data 564 

was simulated to be associated with the batch and the two positive control variables at varying 565 

effect sizes (1, 2, 5, 10 for batch variable and fixed at 10 for positive control variables), but not 566 

with the negative control variable. We additionally varied the number of samples per batch (20 to 567 

simulate multiple-batches in a single study scenario, 100 to simulate meta-analysis with moderate 568 

sized studies and 500 to simulate large meta-analysis), total number of microbial features (n=200 569 

and 1000), as well as the percentage of features associated with metadata (5%, 10%, and 20%) 570 

(Supplemental Table 2). 571 

Performance of batch correction methods was quantified by omnibus associations (PERMANOVA 572 

R2) between the simulated microbial abundance data with the batch and positive control variables, 573 

before and after batch correction. For ComBat15 and our method, batch correction was performed 574 
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with both positive control variables as well as the negative control variable as covariates. 575 

MMUPHin successfully reduced the confounding batch effect, but retained the effect of positive 576 

control variables, and did not inflate the effect of negative control variable (Fig. 2a, Supplemental 577 

Fig. 5). 578 

Evaluating meta-analytic differential abundance testing 579 

We evaluated false positive rates (FPR) in particular for meta-analytic feature association testing, 580 

specifically the null case in which there are no associations between microbial features and 581 

covariates, but false associations can arise in the presence of batch effects with unbalanced 582 

distribution of covariate values across studies (Fig. 2b). For simulation, we generated a binary 583 

covariate unevenly distributed between two “studies” at varying levels of disparity (Supplemental 584 

Table 2). Microbial abundance data was simulated to be associated only with the two studies and 585 

not with the covariate (i.e. study confounded null data), with varying strengths of batch effect (from 586 

0 to 10). The number of samples per batch varied between 100 and 500 to, again, simulate 587 

moderate- and large-sized meta-analysis. Lastly, we varied total number of microbial features and 588 

the percentage of features associated with metadata as above. 589 

FPRs were calculated as the percentage of simulated microbial features with nominal p-values < 590 

0.05 for associations with the exposure variable. Four data normalization and analysis regimes 591 

were evaluated (Fig. 2c, Supplemental Fig. 6): a) naive MaAsLin2 model on the study effect 592 

confounded null data (without explicitly modelling the batches), b) the quantile normalization 593 

procedure, paired with two-tailed Wilcoxon tests, as proposed in 18, c) BDMMA as proposed in 19, 594 

with the default 1,0000 total MCMC sampling and 5,000 burn-in, d) the complete MMUPHin meta-595 

analysis model for the batch corrected data as described above. Note that due to its computational 596 

cost we were only able to evaluate the Dirichlet-multinomial regression model on a subset of 597 

parameter combinations, namely number of samples per batch = 100, number of features = 200, 598 
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and percent of associated microbes = 5%. These parameters roughly agree with those used in 599 

the simulation analysis in the method’s original publication19. 600 

We also evaluated the computational costs of quantile normalization, BDMMA, and MMUPHin 601 

(Supplemental Fig. 6). For this, the same subset of 20 replications (batch effect 0, exposure 602 

imbalance 0, number of samples per batch 100, and number of features 200) were ran through 603 

the three methods under the same computation environment (single core Intel(R) Xeon(R) CPU 604 

E5-2680 v2 @ 2.80GHz).  605 

Evaluating unsupervised discrete structure discovery 606 

To simulate microbial abundance data with known discrete clustering structure, we again used 607 

the simulation model above, with microbial feature associations added both with a discrete “batch” 608 

variable and a discrete clustering variable, at varying number of batches (2, 4, 6, 8), number of 609 

clusters (3, 4, 5, 6), as well as effect size of association (0 to 10 for batch, fixed at 10 for cluster). 610 

For the evaluation of MMUPHin’s unsupervised methods (both here and during continuous 611 

population structure discovery below), we fixed the number of samples per batch at 500, the 612 

number of total features at 1,000, and the percent of associated features at 20%. These were 613 

guided by the fact that the underlying unsupervised methods (clustering, PCA) require larger 614 

sample sizes for good performance even without batch confounding, and are generally only 615 

practical with higher feature dimensions (Supplemental Table 2). 616 

Performance of clustering was evaluated as the percentage of replicates in which the right number 617 

of synthetically defined underlying clusters was identified using prediction strength, across 618 

technical replicates for a fixed combination of simulation parameters. That is, the number of 619 

clusters within a simulation was identified as that which maximized prediction strength. This was 620 

compared to the “truth” (i.e. the known simulation parameter) and counted as a success only if 621 

the two agreed. The percentage of success for a given parameter combination across the 20 622 
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random replications was used as the evaluation metric for model performance. We compared the 623 

performance of clustering before and after MMUPHin batch correction (Fig. 2e, Supplemental 624 

Table 7). Note that batch correction is modelled only using the batch variable and specifically not 625 

including the cluster variable as a covariate in the batch correction model above, as the underlying 626 

cluster structure is unknown in non-synthetic unsupervised analyses settings. 627 

Evaluating unsupervised continuous structure discovery 628 

To simulate microbial abundance data with known continuously variable population structure, we 629 

spiked in feature associations with both a simulated batch covariate (4, 6, 8) and a continuously 630 

varying gradient (uniformly distributed between -1 and 1), at varying number of batches and effect 631 

size of both associations (as above). The number of samples per batch, total number of microbial 632 

features, and the percentage of features associated were fixed at the same values as above 633 

(Supplemental Table 2). 634 

Performance of continuous structure discovery analysis was evaluated as the Spearman 635 

correlation between the known simulated gradient score and the strongest continuously valued 636 

population structure as identified by MMUPHin’s continuous structure discovery method (above). 637 

We again compared the performance of continuous score discovery on the batch confounded and 638 

batch corrected data (Fig. 2g, Supplemental Fig. 8). Note that, as above, batch correction is 639 

again modelled only using the batch variable and does not have any access to the synthetic 640 

continuous gradient, as any underlying continuous population structure is unknown during 641 

unsupervised analyses settings. 642 
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Collection and uniform processing of ten IBD microbiome studies employing 16S rRNA 643 

gene sequencing 644 

Study inclusion and raw sequence data 645 

We curated 10 published 16S rRNA gene sequencing (abbreviated 16S) gut microbiome studies 646 

of IBD for meta-analysis (Table 1, Supplemental Table 1). Demultiplexed raw sequences were 647 

either downloaded from EBI (Jansson-Lamendella and Herfarth) or available locally as previously 648 

generated (other eight studies). Metadata were obtained either directly from the sequence 649 

repository/manuscript (Herfarth, Jasson-Lamendella, HMP2, MucosalIBD, PROTECT, RISK), or 650 

from collaborators (BIDMC-FMT, CS-PRISM, LSS-PRISM, Pouchitis). This resulted in a total of 651 

5,151 samples and 2,179 subjects available prior to processing and quality control. 652 

Metadata curation 653 

We manually curated subject- and sample-specific metadata across studies to ensure 654 

consistency. Variables collected and curated include:  655 

● Disease (CD, UC, control), universally available. 656 

● Type of controls (non-IBD, healthy). Control information was available directly for CS-657 

PRISM, Jansson-Lamendella, and Pouchitis, inferred from study design described in 658 

manuscript for Herfarth, HMP2, MucosalIBD, and RISK (all non-IBD controls), and not 659 

applicable for BIDMC-FMT, LSS-PRISM, and PROTECT (only has IBD subjects). 660 

● Sample type (biopsy, stool), universally available. 661 

● Body site of biopsy sample collection (ileum, colon, rectum), with more detailed 662 

classifications recorded separately in case of need. Mappings for the relevant datasets 663 

are: 664 
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○ CS-PRISM: terminal ileum, neo-ileum, pouch are aggregated as ileum; cecum, 665 

ascending/left-sided colon, transverse colon, descending/right-sided colon, 666 

sigmoid colon were aggregated as colon; rectum classification was kept 667 

unchanged. 668 

○ HMP2: ileum classification kept unchanged; cecum, ascending/right-sided colon, 669 

transverse colon, descending/left-sided colon, and sigmoid colon were aggregated 670 

as colon. 671 

○ MucosalIBD: all terminal ileum samples, aggregated to ileum. 672 

○ Pouchitis: terminal ileum, pouch, pre-pouch ileum aggregated as ileum; sigmoid 673 

colon aggregated to colon. 674 

○ PROTECT: all rectum samples, classification kept unchanged. 675 

○ RISK: terminal ileum was aggregated to ileum; rectum kept unchanged.  676 

● Montreal classifications: 677 

○ Location for CDs (L1, L2, L3, and possible combinations), available for BIDMC-678 

FMT, CS-PRISM, Herfarth, Jansson-Lamendella, LSS-PRISM, and Pouchitis. 679 

○ Behavior for CDs (B1, B2, and B3), available for CS-PRISM, Herfath, Jansson-680 

Lamendella, LSS-PRISM, Pouchitis, and RISK. 681 

○ Extent for UCs (E1, E2, and E3), available for CS-PRISM, Jansson-Lamendella, 682 

LSS-PRISM, Pouchitis, and PROTECT. 683 

● Age at sample collection (in years), available for BIDMC-FMT, CS-PRISM, Herfarth, 684 

HMP2, LSS-PRISM, MucosalIBD, Pouchitis, PROTECT, RISK. 685 

● Age at diagnosis (in years). Directly available for CS-PRISM, HMP2, LSS-PRISM, and 686 

Pouchitis, inferred as baseline age for PROTECT and RISK as these were new-onset 687 

cohorts. 688 

● Race (White, African American, Asian / Pacific Islander, Native American, more than one 689 

race, others). Directly available for CS-PRISM, Herfarth, HMP2, PROTECT, and RISK, 690 
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inferred from manuscript cohort description for Jansson-Lamendella (all Caucasian 691 

cohort). 692 

● Gender (male/female). Available for BIDMC-FMT, CS-PRISM, Herfarth, HMP2, Jansson-693 

Lamendella, LSS-PRISM, MucosalIBD, Pouchitis, PROTECT,  694 

● Treatment variables, including antibiotics, immunosuppressants, steroids, and 5-ASA. 695 

These variables were encoded as yes/no to indicate, approximately, currently receiving 696 

them at the time of sampling. Additional information such as specific medication or delivery 697 

method was recorded separately if available in case of need. We note the potentially 698 

confounding difference in studies’ definitions of treatment: for Pouchitis and PROTECT 699 

authors defined antibiotics as receiving the treatment within the past month (30 days for 700 

Pouchitis, 27 days for PROTECT), whereas for CS-PRISM, HMP2, LSS-PRISM, and RISK 701 

such determination was not possible (antibiotics “yes” was defined as “currently taking”). 702 

Likewise, we had no additional information to determine the time extent for the other three 703 

treatments, beyond that according to metadata/publication, patients were “currently taking” 704 

the treatment at sample collection. 705 

For a comprehensive list of curation mapping schema, please refer to our metadata curation 706 

repository: https://github.com/biobakery/ibd_meta_analysis. 707 

16S amplicon sequence bioinformatics and taxonomic profiling 708 

Sequences were processed, per-cohort, with the published, standardized bioBakery workflow58 709 

using the UPARSE protocol59  (version v9.0.2132-64bit). For all studies, demultiplexed sequences 710 

were truncated at 200bp max length and filtered by maximum expected error of one59. Operational 711 

taxonomic units (OTUs) were clustered at 97% identity and aligned using USEARCH with 97% 712 

identity to the Greengenes database 97% reference OTUs (version 13.8)60 for taxonomy 713 

assignment. The resulting Greengenes identifiers for OTUs were used as basis for matching 714 

features (taxa) among cohorts. 715 
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Quality control 716 

Across samples, a median of 81.51% reads / sample passed quality control filtering and were 717 

successfully assigned to OTUs with Greengenes identifiers (Supplemental Fig. 1). These 8,921 718 

raw OTUs aggregated to a total of 1,122 genera prior to quality control. We retained taxa that 719 

exceeded 5e-5 relative abundance with at least 10% prevalent in at least one study; this criterion 720 

generally removes spurious OTU assignments while retaining rare organisms if confidently 721 

present in at least one study. Lastly, we also removed low read depth samples with less than 722 

3,000 total sequences, which retained 78.34%-100% samples per cohorts (Supplemental Table 723 

1). The final resulting taxonomic profile, used for all further analysis, aggregated into 249 total 724 

genera spanning 4,789 samples (OTUs unclassified under a particular taxonomy level were 725 

aggregated as “unclassified” feature under that taxon, e.g.  “Enterbacteriaceae unclassified” 726 

accumulates all OTUs’ abundances under the family that could not be classified at the genus level. 727 

Data availability 728 

Quality controlled (truncated and filtered) sequences, Greengenes mapped OTU count profiles, 729 

and curated sample metadata are available at the Human Microbial Bioactives Resource Portal 730 

(http://portal.microbiome-bioactives.org). 731 

Applying MMUPHin to IBD gut microbiome meta-analysis 732 

For the resulting collection of microbiome studies, batch and study effects was performed using 733 

MMUPHin on both the genus level feature abundance profiles. For either taxonomic rank, batch 734 

(i.e., sequencing run) effect correction was first performed within individual studies (when 735 

batch/plate information was available, applicable to BIDMC-FMT, CS-PRISM, LSS-PRISM, 736 

MucosalIBD, and RISK). Microbial abundance profiles across all studies were then jointly 737 

corrected for study effects, while modelling disease status (IBD or control), disease (CD or UC), 738 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.31.261214doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.261214
http://creativecommons.org/licenses/by/4.0/


 

 

and sample type (biopsy or stool) as covariates. Reduction of batch and study effects was 739 

evaluated by PERMANOVA R2 (Fig. 3a). 740 

Association analyses 741 

Omnibus testing of microbial composition associations 742 

We used PERMANOVA tests (2,000 permutations) as implemented in the R package vegan37 743 

using Bray-Curtis dissimilarities for all omnibus association tests of overall microbial community 744 

structure with covariates (Fig. 3a). Where appropriate, R2s were calculated conditioning on the 745 

necessary covariates; specifically, CD/UC Montreal classifications were conditional on CD/UC 746 

samples respectively, treatment was conditional on IBD status, biopsy location was conditional 747 

on a sample being a biopsy, and all covariates were conditional on being non-missing. Otherwise, 748 

variables were tested marginally (that is, each as the sole variable in the model). Importantly, to 749 

account for repeated measures within subjects for longitudinal studies, we adopted the blocked 750 

permutation strategy as in 9, where per-sample measurements (sample type, biopsy location, 751 

treatment) were permuted within subjects, and per-subject measurements (disease, 752 

demographics) were permuted along with subjects (but within cohorts, relevant for the all-cohorts 753 

evaluation). For a full list of the model and permutation strategies that this resulted in for our 754 

analysis, please refer to Supplemental Table 3. Finally, per-variable p-values were adjusted with 755 

Benjamini-Hochberg false discovery rate control on a per-study basis. 756 

Per-feature meta-analysis differential abundance testing 757 

To identify microbial features individually significantly associated with one or more covariates, we 758 

applied MMUPHin's differential abundance testing model as described above. Cohorts were first 759 

stratified by sample type (biopsy or stool) and, where appropriate, diseases (CD or UC) prior to 760 

model fitting.  Arcsin square root-transformed genus level taxon abundances were tested for 761 
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covariate associations in individual cohort strata with multivariate linear modelling (linear random 762 

intercept model adopted for longitudinal studies). Covariates used for adjustment include age, 763 

gender, and race for disease variables, and additionally disease status for treatment variables. 764 

Effect sizes across cohort strata were aggregated with a random effects model with restricted 765 

maximum likelihood estimation34. P-values were FDR adjusted across features for each variable. 766 

For the full list of models adopted as well as cohort stratification strategy, please refer to 767 

Supplemental Table 3. Fig. 3b visualizes the aggregated meta-analysis effects; for individual 768 

study results refer to Supplemental Table 4. 769 

Testing for phenotypic severity within CD and UC patients 770 

Meta-analytical testing of features associated with CD behavior and UC extent classifications 771 

were performed with similar models (Supplemental Table 3). Specifically, within each study’s 772 

CD patients, the tests for contrasts B2 versus B1 and B3 versus B1 are performed by 773 

Relative	abundance ∼ 𝛽C + 𝛽(𝐼{subject	is	B2} + additional	covariates (subsetted to B1, B2 CDs) 774 

Relative	abundance ∼ 𝛽C + 𝛽(𝐼{subject	is	B3} + additional	covariates (subsetted to B1, B3 CDs) 775 

The two 𝛽(coefficients, once aggregated with meta-analysis, were reported as the effect sizes 776 

shown in Fig. 4a, along with their FDR corrected q-values (adjusted across features for each 777 

test). 778 

Relative	abundance ∼ 𝛽C + 𝛽(𝐼{subject	is	𝐵2	or	𝐵3} + 𝛽)𝐼{subject	is	𝐵3} + additional	covariates 779 

𝛽) in this model corresponds to the effect of B3 in addition to the overall contrasts between B23 780 

versus B1. The meta-analysis aggregated p-values of these effects were reported as the 781 

differentiation between the most severe and “medium” severity phenotypes (vertical bars 782 

indicating significance in Fig. 4a). Note that FDR adjustment of this effect was performed across 783 

the subset of features with at least either B2 versus B1 or B3 versus B1 effect significant (i.e., the 784 
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subset of features visualized in Fig. 4a). Equivalent models were adopted for contrasts between 785 

extent categories of UC patients. Individual study results for the aggregated effects in Fig. 4a are 786 

in Supplemental Table 5. 787 

Interaction effects testing 788 

To test for interaction effects with sample type and diseases, we fit meta-analysis moderator 789 

models34 on the per cohort strata effects: 790 

𝛽%#6 = 𝛽C# + 𝛽(#𝐼{cohort	strata	𝑖	is	biopsy} + 𝜖!# + 𝑒!# 791 

𝛽%#6 = 𝛽C# + 𝛽(#𝐼{cohort	strata	𝑖	is	CD} + 𝜖!# + 𝑒!# 792 

The moderator effects 𝛽(#  correspond to the interaction effect between the exposure under 793 

evaluation (disease, treatment, etc.) with the moderator variable. Fig. 4b visualizes the two 794 

example features, Dehalobacterium and Enterobacteriacea; al significant interactions as well as 795 

individual study effects are in Supplemental Table 6. 796 

Population structure analyses 797 

Discrete structure discovery 798 

We performed discrete subtype discovery (i.e. “enterotyping”61) in IBD, CD, and UC populations 799 

across studies (longitudinal studies subsetted to baseline samples), using MMUPHin’s discrete 800 

structure discovery component. Only studies with at least 33 samples were considered for 801 

clustering analysis, as this was the sample size in the original enterotype paper26. Specifically, 802 

clustering was performed on Bray-Curtis dissimilarity by the partition-around-medoid method as 803 

implemented in R package cluster; the same method was adopted in previous enterotyping efforts 804 

including the original enterotype paper26,40. Clustering was evaluated with prediction strength and 805 

validated externally with MMUPHin’s generalized prediction strength as described above. Across 806 
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studies, we found no evidence to support a particular number of clusters within IBD, CD, or UC 807 

populations (Fig. 5a, Supplemental Fig. 9), suggesting that the IBD microbiome does not have 808 

discrete clusters. 809 

We additionally extended our clustering evaluation analysis to other dissimilarity metrics (Jaccard, 810 

root Jensen-Shannon divergence) and clustering strength measurements (Calinski-Harabasz 811 

index, average silhouette width), which were also explored in previous efforts40, Importantly, the 812 

original enterotype paper adopted root Jensen-Shannon divergence and Calinski-Harabasz index 813 

for cluster discovery. Across combinations of these additional dissimilarities and clustering 814 

strength metrics, we also found no evidence to support discrete clusters (Supplemental Fig. 9).  815 

Continuous structure discovery 816 

Continuous structure discovery was performed with MMUPHin’s corresponding component. The 817 

four largest studies (CS-PRISM, Pouchitis, PROTECT, RISK) were subsetted to baseline samples 818 

(only relevant for PROTECT), stratified by CD/UC and biopsy/stool sample type, and used as the 819 

training sets for MMUPHin. The minimum variance explained threshold (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2) was set to 820 

default (80%), but we varied the PC similarity (evaluated by absolute cosine coefficient) 821 

cutoff𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 between 0.5 and 0.8 to assess the sensitivity of the two identified PC clusters in 822 

Fig. 5b (corresponding to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 = 0.65). As we show in Supplemental Fig. 11, with a small 823 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3(0.5) PC networks become denser, with the two PC clusters in Fig. 4b forming key 824 

components of two larger clusters; when 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 is large (0.8) the network is sparser, with 825 

only the most highly similar nodes of the two clusters forming smaller communities. We thus 826 

concluded that the two identified clusters in Fig. 5b were not sensitive to the cosine coefficient 827 

threshold, as they were recurrently identified in both smaller and larger cutoff scenarios. 828 
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Continuous structure validation 829 

We validated the consistency of the two clusters’ corresponding continuous scores in all IBD 830 

cohorts, non-IBD and healthy control samples, as well as a randomly permuted mock study (as a 831 

negative control). The reproducibility of each continuous score within a study was defined as the 832 

maximum absolute cosine coefficient between the score’s consensus loading (as provided by 833 

MMUPHin) and the top three principal component loadings discovered independently within that 834 

study. Note that the number of top principal components considered here was set to a fixed value 835 

(three) instead of based on a percent variance cutoff as in the MMUPHin continuous structure 836 

discovery stage. This is because in the two identified clusters in Fig. 5c, the latest included node 837 

was PC3. The randomly permuted study consisted of 473 samples (median validation data sets 838 

sample size) randomly selected from the entire meta-analysis collection, but each sample’s 839 

microbial abundance was independently permuted across features. This was to simulate a 840 

“negative control” dataset where there should be no continuous population structures. 841 

As we show in Supplemental Fig. 12, the dysbiosis score was well validated across studies, 842 

except for healthy control samples and the negative control dataset. The Firmicutes-versus-843 

Bacteroidetes trade-off score, on the other hand, was reasonably well reproduced in all studies 844 

and particularly well-established in healthy samples, but, again, was not significantly detected in 845 

the negative control dataset. 846 

Continuous score assignment 847 

Assignment of continuous scores was straightforward given the two consensus loading vectors 848 

provided by MMUPHin. Within each study, arcsin square root-transformed relative abundances 849 

were centered per-feature, the transformed abundance matrix was then multiplied by each 850 

consensus loading via dot product to generate per-sample continuous scores. These scores were 851 

used for visualization as in Fig. 4d and Supplemental Fig. 10, as well as for testing the difference 852 
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between CD, UC, non-IBD, and healthy control populations as in Supplemental Fig. 13 We 853 

provide the two consensus loadings in Supplemental Table 7; interested researchers can follow 854 

these steps to assign the two continuous scores in other datasets.  855 

  856 
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