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Abstract 

Cellular regeneration, which relies on extensive restructuring of cytoplasmic materials, is an 

essential process to restore tissues and organs lost during aging, degenerative diseases and in-

jury. At early stages of Drosophila spermatogenesis, when cellular constituents are intensely 

remodeled, there are two different populations of stem cells, the somatic stem cells and the 

germline stem cells (GSCs). GSCs divide by asymmetric division to give rise two distinct 

daughter cells. One of them will leave the stem cells' niche and differentiate into spermatogonial 

cells (SCs). Both aging and cellular stress can lead to the loss of GSCs. Lost GSCs can be 

restored by dedifferentiation of SCs into functional GSCs. In other tissues, macrophages pro-

vide specific conditions for cellular transformation. Here we examined the potential role of im-

mune surveillance cells called hemocytes during dedifferentiation of SGs into GSCs. We found 

an elevated number of hemocytes during this dedifferentiation process. Immune depletion of 

hemocytes decreased the regeneration capacity of germline. We also show that autophagy, 

which plays a pivotal role in cellular differentiation by eliminating unwanted, superfluous parts 

of the cytoplasm, becomes upregulated in dedifferentiating SCs upon JAK-STAT signaling 

emitted by hemocytes. Furthermore, these immune cells regulate expression of Omi/HtrA2, a 

key regulator of apoptosis in early spermatogenesis. Together, we suggest that hemocytes have 

important functions in the dedifferentiation process of GSCs. 
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Introduction 

Regeneration is a cellular process by which cells lost during aging, injury and various cellular 

insults can be effectively restored to maintain tissue functioning. The regeneration process is 

based on cell fate transformation mediated by remodeling of cellular constituents1. Cellular 

regeneration can be achieved by three distinct major mechanisms: 1) dedifferentiation of a ter-

minally differentiated somatic cell into an unspecialized blastemal cell having the capacity to 

further proliferate and the daughter cells differentiate into the lost terminally differentiated cell 

type, 2) direct transdifferentiation of a specialized somatic cell into another specialized cell 

type, and 3) reprogramming from local somatic stem cells. During dedifferentiation, the af-

fected specialized somatic cell regains its potency to differentiate into a cell type that charac-

terizes the original lineage when differentiating into the blastema2. A tractable tissue model for 

studying dedifferentiation is represented by the zebrafish caudal fin, which can effectively be 

regenerated followed by amputation within a week. At the site of amputation, unipotent pro-

genitor cells are generated which constitute the blastema (a mesenchymal cell mass serving the 

source of the regenerating tissue)3. 

According to the literature, macrophages, which are specific immune cells, play an important 

role in tissue regeneration mediated by dedifferentiation. For example, these cells participate in 

the regeneration process of zebrafish caudal fin and amphibian limb4,5. It was also shown that 

residual macrophages affect the proliferation of somatic stem cells. For further studying the role 

of macrophages in tissue regeneration by dedifferentiation, the Drosophila testis may also serve 

as an ideal in vivo model system, since the Drosophila melanogaster male germline stem cell 

niche is one of the best characterised stem cell system6,7. In the fruit fly, specific immune cells 

called hemocytes involve plasmatocytes, lamellatocytes and crystal cells8. Plasmatocytes are 

the dominating hematocyte population during all developmental stages, and capable of phago-

cyting. Regarding their function, these cells are most similar to mammalian macrophages. Plas-

mocytes, together with crystal cells, generate the von Willebrand factor, also called hemolectin 

(Hml), which we used here as a marker for detecting these cells in the regeneration process9. 

Hemocytes also function to eliminate apoptotic bodies of spermatogonial origin through phag-

ocytosis10. Plasmocytes are able to emit a ligand, Upd3 protein, which serves as a ligand for the 

JAK-STAT signaling pathway11. Hence, hemocytes play a role not only in humoral immune 

response but also in processes associated with JAK-STAT signaling12. It has been demonstrated 

that during proliferation of Drosophila intestinal stem cells (ISCs) hemocytes produce Upd 
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ligands and Dpp (Decapantaplegic), thereby affecting both JAK-STAT and BMP (bone mor-

phogenetic factor) signaling13. According to results provided by Van de Bor and colleagues, 

hemocytes participate in shaping and maintaining the microenvironment of female GSCs, and 

regulating their number and differentiation by producing signaling factors and cell adhesion 

molecules14. 

The number of GSCs can be lowered in response to certain insults such as stress and aging. The 

lost cells can be restored by dedifferentiation of SGs under favorable conditions15. In the apical 

part of the Drosophila testis, Hub serves as a regulatory center for the stem cell niche that 

consists of somatic origin, postmitotic cells. Hub binds to GSCs and somatic cyst stem cells 

(CySCs) through cell adhesion molecules, and the coordinated operation of the three cell pop-

ulations is required for the continuous production of sperms. In this region, Hub produces Upd 

ligand for JAK-STAT signaling, hence primordial germ cells found only at the apical part of 

the gonad can adapt GSC fate, and bind directly to Hub16.  

We performed experiments on the Drosophila testis, which is an ideal model for studying the 

regeneration process via dedifferentiation because GSC regeneration can be activated under 

laboratory conditions. In a transgenic fly strain. bam driven by a heat inducible promoter ec-

topically expresses the main germline regeneration factor Bam (bag of marbles)17. Bam is thus 

expressed in GSCs and induces their leaving the germ line niche and differentiation into SGs. 

By finishing ectopic expression of Bam, dedifferentiation of SGs into GSCs can be activated. 

These newly produced GSCs then initiate to divide asymmetrically and generate daughter cells 

that eventually create sperms. This process is termed as the regeneration of early spermatogen-

esis18. To assay the process, we applied an immunohistochemical method that indicates hub 

cells by red (anti-FasciclinIII) and germline cells by green (anti-Vasa) signals (Fig. 1). GSCs 

bind to hub by cell adhesion molecules which are indicated by white dotted lines. Conditions 

are as follows: control (maintained at 25°C), bam overexpressing, and 6- and 24 hour-regener-

ation. 

Figure 1. Dedifferenetiation of GSCs in the Drosophila testis. The process is based on hs-
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bam, bamGal4 expression system,in which Bam serves as the germline differentiation factor. 

Under normal condition Bam is blocked in the GSCs, while using our expression system ectopic 

expression promotes differentiation in the germline. Termination of ectopic expression makes 

regeneration of the germ stem cells possible. We examined regeneration after 6 hours and 24 

hours after termination. Dotted lines indicate GSCs. Anti-FasciclinII (red) shows hub, anti-

VASA (green) indicates germline cells.  

Objectives 

Our aim was to uncover novel cellular and molecular factors required for GSC regeneration in 

the Drosophila testis. We also examined whether hemocytes have a role in this process because 

our preliminary results have indicated that inhibiting hemocyte functions decreasess the number 

of GSCs. We monitored a mitochondrial serine-protease involved in cell death during spermat-

ogenesis, Omi/HtrA19 

Results 

We previously examined lysosomal degradation during germline regeneration in the Drosoph-

ila testis. These experiments revealed large, multipodial cellular structures that are characteris-

tics of hemocytes (Fig. 2).  

 

Figure 2. Hemocytes are found in the Drosophila testis. A, C, Specific podial structures of 

hemocytes are visible. These structure are capable of surrounding debris of apoptotic spermat-

ogonial cells and their phagocytosis. B, Hemolectin (Hml-GFP) labels hemocytes (a fluores-

cent image). Hemocytes indicated by dotted lines and yellow arrows are recruited during the 

regeneration process and can phagocyte SGs. 

 

It was previously described that residual macrophages can be found in the Drosophila testis and 

these are identified as hemocytes20.We confirmed the presence of these immune cells in the 

testis by using hemocyte-specific cell adhesion markers such as hemolectin (Hml)21. Applying 
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a Hml-GFP transgene, we observed that hemocytes are recruited to the site GSC regeneration 

(Fig. S1).  We also wondered whether inhibiting hemocyte function affects the regeneration 

capacity of GSCs. For that, germline cells were indicated by anti-Vasa (green), while hub cells 

were labeled by anti-FasciclinIII (red) staining (Fig. 2). Elimination of immune cells was es-

tablished by overexpressing a proapoptotic gene, reaper (rpr)22. According to our results, in the 

absence of hemocyte function GSC regeneration becomes compromised (Fig. 3).  

 

Figure 3. Hemocytes participate in GSC regeneration. A, Control bam overexpression (HS) 

and 24-hour regeneration in control vs. repair overexpression (UAS-rpr) genetic backgrounds. 

Both HS and UAS-rpr lead to defects in the regeneration process. GSCs indicated by dotted 

lines directly bind to hub. Anti-Vasa (green) staining indicates germline cells, anti-FasciclinIII 

(red) staining shows hub cells. B, Statistical analysis of immune histochemical results. Control 

vs. immune-depleted animals were compared. A significant difference (**: P<0.001) is seen at 

24 h regeneration. NS: non-significant. ±S.D. indicates standard deviation. 

It was shown that hemocytes regulates processes via JAK-STAT signaling23. This prompted us 

to analyze their potential function in GSC regeneration. The expression of chinmo serving as a 

target gene for JAK-STAT signaling was examined by RT-qPCR24. Relative mRNA levels were 

found to gradually increase during the regeneration process (Fig. 4).  
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Figure 4. The expression of chinmo, a target gene for JAK-STAT signaling, progressively 

increases during GSC regeneration. During regeneration we examined increased expression 

level of chinmo (JAK/STAT target gene) by qPCR.  

According to our results JAK-STAT signaling is active during GSC regeneration. We next 

asked whether hemocytes contribute to the activation of the signaling pathway in this process. 

Upd1 and Udp3 genes encode ligands for JAK-STAT signaling and were downregulated by 

RNA interference specifically in immune cells using HmlGal4 (hemocyte-specific) driver. Us-

ing immunohistochemistry, we showed that Upd1 and Upd3 deficiency interferes with the re-

generation capacity of GSCs (Fig. 5).  

 

Figure 5. Dedifferenetiation of SGs into GSCs relies on JAK-STAT signaling emitted by he-

mocytes. A, Anti-FasciclinIII staining (red) indicates hub cells, while anti-Vasa stining (green) 

labels germline cells. SG dedifferentiation is lowered in genetic backgrounds defective for 

Upd1 and Upd3 (these ligands transmit JAK-STAT signaling). B, Statistical analysis of GSC 

number during the dedifferentiation process in different (control vs. regeneration conditions) 

genetic backgrounds. In case of upd1-RNAi, *: p<0.05, in case of upd3-RNAi, **: p<0.001. 

±S.D. indicates mean deviations.  

When an immune-depleted environment was induced, a TUNEL assay was applied to uncover 

increases levels of cell death, which occurred exclusively during the regeneration process (Fig. 

6). Similar results were obtained when we inhibited the JAK-STAT signaling pathway. This 

Both HS and UAS-rpr lead to defects in the regeneration process. GSCs indicated by dotted  

suggests a link between the number of apoptotic SGs and JAK-STAT signaling. In the absence 

of hemocytes, there was no increase in apoptosis even under normal condition. Similar to that, 

there was no TUNEL-positive structure during the normal regeneration process (control). How-
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ever, when hemocytes were eliminated, the number of TUNEL-positive cells increased signif-

icantly under regeneration-inducing conditions, indicating higher levels of apoptotic cell death. 

Similar results were obtained when upd3 was specifically silenced in hemocytes. Together, 

these results suggest that hemocytes contribute to the regeneration process and their absence 

leads to the activation of caspase-independent apoptosis.  

 

 

Figure 6. upd3 downregulation in hemocytes increases the number of TUNEL-positive struc-

tures during the dedifferentiation process. A, TUNEL staining indicates an increase in the 

number of TUNEL-positive cells under regeneration-inducing conditions. This indicates an in-

crease in apoptotic cell death. Red stars indicate the apical end of the testis. B, Changes in the 

number of TUNEL-positive structures under control (the first two columns) and regeneration-

inducing (the second two columns) conditions, and in normal (blue) and immune-depleted 

(UAS-rpr, orange) states. During regeneration, a significant increase can be observed in the 

number of TUNEL-positive structures (**: p<0.01). ±S.D. indicates standard deviations.  

The multifunctional hemocytes participate in the removal of apoptotic corpses of SG 

origin, in which Omi/HtrA2 plays a key role25.   

We could uncover a link between Omi and JAK-STAT signaling; stat92e encodes a transcrip-

tion factor for JAK-STAT signaling and its downregulation in the germline resulted in enhanced 

levels of omi expression (Fig. 7). 
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Figure 7. omi expression in the germline is repressed by JAK-STAT signaling. A, Expression 

levels of omi are determined by RT-qPCR. Control vs. stat92e (serving as a transcription factor 

for JAK-STAT signaling) deficient backgrounds were compared. stat92e was downregulated in 

SGs. omi expression increases when stat92e is downregulated. B, Comparing relative tran-

script levels of omi in control (blue) vs. stat92e defective (brown) backgrounds. 

During GSC regeneration, omi/HtrA2 expression was changed as revealed by a semi-qPCR 

analysis (Fig. 8). At the beginning of regeneration (0-2 h after induction), omi expression be-

came lowered, while it was increased after 24 h of regeneration (Fig. 8). 

Figure 8. omi expression changes at different stages of regeneration. A, Semi-qPCR analysis 

showing that omi expression decreases at early stages of regeneration, while becomes in-

creased followed by 24 h of regeneration. Actin5C was as an internal control. B, Relative 

amounts of omi transcripts were determined by RT-qPCR. Control vs. 24 h regeneration were 

compared. 

Then, we examined the potential role of omi in GSC regeneration, by using fluorescent micros-

copy. We found that inhibiting omi transcription in the germline blocks the dedifferentiation 

process. Based on these results, Omi is required for the regeneration of GSCs (Fig. 9).  
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Figure 9. Downregulation of omi in the germline interferes with GSC regeneration. A, Dedi-

ifferentiation of SGs into GSCs in control vs. Omi defective backgrounds. Immunhistochemistry 

was applied: anti-Vasa indicates germline cells, while anti-FasciclinIII shows hub cells. B, 

Diagram showing the number of GSCs during the regeneration process. After 24 h, a significant 

level of difference was observed (**: p<0.005). Blue indicates control, green labels Omi-de-

pleted states. bars indicate ±S.D. 

 

Using a TUNEL assay, we tested changes in programmed cell death in Omi defective back-

ground. The results showed that omi downregulation leads to an increase in the number of cells 

undergoing apoptosis (Fig. 10). However, the increase was evident under both normal and re-

generation-inducing conditions, but the latter was more significant as compared with the former 

condition.  

 

Figure 10. omi downregulation increases the number of TUNEL-positive structures during 

GSC regeneration. A, TUNEL assay showing that Omi depletion elevates the number of 
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TUNEL-positive structures both under normal and regeneration-inducing conditions. B, How-

ever, the increase was more significant under the regeneration-inducing conditions. *: p<0.05; 

**: p<0.005; ***: p<0.001; bars indicate ±S.D. 

During regeneration of GSCs, we performed a LysoTracker Red staining and could observed 

an increased level of acidic compartments, which indicates elevated autophagic activity (Fig. 

S2). These results may result from two processes. Either autophagy became hyperactivated or 

a later stage of the process was inhibited, causing the accumulation of early autophagic struc-

tures (phagophores and autophagosomes). To distinguish between the two alternatives, we 

quantify Ref(2)P levels, which orthologous to mammalian p6226. Ref(2)P/p62 serves as a sub-

strate for autophagy, so its levels inversely correlate with autophagyic activity. We found that 

when omi is downregulated under normal conditions, Ref(2)2/P62 levels decrease significantly 

(Fig. 11). However, Omi deficiency significantly increased the number of Ref(2)P/p62-positive 

structures under regeneration-inducing conditions (Fig. 11). These results show that during 

GSC regeneration Omi is required for the activation of the autophagic process. In the Drosoph-

ila male germline, decreased levels of autophagy may lead to an increased apoptotic response 

(Figs. 10 and 11)27.  

 

Figure 11. Silencing omi represses the process of autophagy. A, We applied anti-Ref(2)P 

(green) mark that is known as a substrate of autophagy, which made it possible to observe that 

silencing omi repressed autophagy. While under regeneration conditions Ref(2)P positive dots 

increased. B, Diagram showing the coverage of Ref(2)P positive particles under normal (blue) 

and regeneration (green) conditions. Bars indicate ±S.D. 
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Conlusions 

During the dedifferentiation process, hemocytes play multifunctional roles. First, these cells are 

capable of inducing signaling pathways required for the dedifferentiation of SGs into GSCs. 

Upd1 and Upd3 function as ligands for JAK-STAT signaling, and our results obtained here 

indicate that they are omitted by hemocytes. Thus, JAK-STAT signaling is activated in SGs by 

hemocytes. Upds can transmit through either Cyst cells (in which JAK-STAT signaling be-

comes activated to cause Upd expression toward SGs) or directly reach SGs. It is possible that 

at this time Cyst cells do not surround dedifferentiating germline cells.  

 

During regeneration, JAK-STAT signaling may play a dual role in SGs. First, it may activate 

autophagy, which is required for cytoplasmic remodeling of SGs undergoing dedifferentiation. 

Second, the pathway may inhibit apoptosis through repressing a mitochondrial serine protease, 

HrtA2. In the presence of JAK-STAT signaling Omi expression becomes lowered, and its low 

levels are required for regeneration. Omi may play an important role in maintaining the balance 

between autophagy and programmed cell death (Fig. 12). Together, results obtained by this 

study may contribute to a better understanding of mechanisms underlying tissue regeneration, 

and its regulation by immune cells. 

 

Figure 12. Multiple functions of immune cells in tissue regeneration. Hemocytes are able to 

transmit ligands of signaling pathways to germline cells. Such a pathway is represented by 

JAK-STAT signaling, which may have a dual role in the Drosophila male testis. First, it main-

tains the number of GSCs. On the other hand, it induces dedifferentiation of SGs into GSCs. 

The signaling pathway also acts as a relay of whether dedifferentiation occurs through autoph-

agy, or caspase-independent apoptosis occurs through Omi.  
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Materials and Methods 

Drosophila strains and their maintenance 
For the maintenance of the used frutifly strains the compliants and characterications of the food 

were published in the article below.28 

Strains that were provided by Bloomington Drosophila Stock Center-ből (BDSC):  

w[1118] (#5905), P{w[+mC]=hs-bam.O}18d, w[1118] (#24636),  y[1] w[67c23]; 

P{y[+mDint2] w[BR.E.BR]=SUPor-P}crq[KG01679]/CyO (#14900), w[*];y[1] sc[*] v[1] 

sev[21]; P{y[+t7.7] v[+t1.8]=TRiP.HMC03843}attP40 (#55165), y[1] sc[*] v[1] sev[21]; 

P{y[+t7.7] v[+t1.8]=TRiP.HMS01328}attP2 (#34340), w[1118]; P{w[+mC]=Hml-

GAL4.Delta}3 (#30141), y[1] sc[*] v[1] sev[21]; P{y[+t7.7] 

v[+t1.8]=TRiP.HMS01244}attP2 (#34899), y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=TRiP.HMS00035}attP2 (#33637),  y[1] sc[*] v[1] sev[21]; P{y[+t7.7] 

v[+t1.8]=TRiP.HMS00545}attP2 (#33680), w[1118]; P{w[+mC]=Hml-GAL4.Delta}3 

(#30141), y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.HMC03230}attP40 (#51483), y[1] v[1]; 

P{y[+t7.7] v[+t1.8]=TRiP.HMC03230}attP40 (#51483) 

amosTft/CyO; BamGal4 was provided by Sinka Rita (University of Szeged, Department of Ge-

netics),  

 All other lines were established for this study  

 

Protocol of Dedifferentiation 
We performed experiments on the Drosophila testis in order to observe regeneration via 

dedifferentiation because GSC regeneration can be activated under laboratory conditions. 

Based on the hs-bam, bamGal4 expression system, bam is driven by a heat inducible promoter 

(Hsp70) ectopically expresses the main germline regeneration factor Bam (bag of marbles)17.  

Under normal conditions, bam is silenced in the germ line. Due to ectopic expression of bam, 

it is expressed in GSCs and makes differentiation possible. By finishing ectopic expression of 

Bam, dedifferentiation of SGs (and GBs) into GSCs can be activated. This process is termed as 

the regeneration of early spermatogenesis. After the termination of ectopic expression re-

covering GSCs is possible by only spermatogonial dedifferentiation7. 

 

Regeneration protocol step by step: 

Fruitflies were maintained at 25°C unless they were used to the regeneration protocol 

Day 1: 3x30 min heat shock by applying 37°C water bath. In between the water baths at least 2 

hours needs to be elapsed and maintained at 29°C 

Day 2: Besides the water baths fruitflies are maintained at 32°C 

Day3: The fruitflies are taken back to the 29°C termostate. 

Applied control groups: 

Fruitflies were maintained at 25°C temperature in a termostate. 

2 regeneration groups were used according to how many hours are passed after terminating the 

ectopic expression of bam: 

1) 24h: After 3 days of heatshock then keeping them at 25°C temperature for 24 hours  

2) 6h: Same as 24h but keeping them at 25°C temperature for 6 hours 

3) bam overexpression (HS): maintaining this group at 29°C for 3 days. Maintaining a high 

level of bam expression, thus preventing regeneration. 
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Immunohistochemistry  
We used the following staining protocol for the labeling of germline cells and GSCs.29 

First antibodies:  

anti-VASA: DSHB, (mouse, 1: 50), anti-FasciclinIII: DSHB, (rat,: 1: 25) 

Secondary antibody:  

anti-rat: Life Technologies #A21210, Alexa Fluor 488, (rabbit, 1:500), anti-mouse: Life Technologies 

#T862, Texas Red, (goat, 1:500). 

 

Fluorescent microscopy 
A fluoreszcens képek készítése: 

Images were captured with Zeiss Axioimager Z2 upright epifluorescent microscope equipped 

with ApoTome2 semi-confocal upright. We used the following softcovers: ZEN 3.1  

Images were captured with Zeiss Axioimager Z2 upright epifluorescent microscope equipped 

with ApoTome2 semi-confocal upright. We used the following._programs for evaluation of 

images: ZEN 3.1 (blue edition) and Fiji ImageJ 1.8.0_77. 

 

Electron Microscopy  
Electron microscopy images were taken with JEOL (1011; JELOL, Tokyo Japan) transmission 

electron microscope equipped with Olypmos Morada digital camera, and we used iTEM soft-

ware 30 

We used the following solution during fixation:  

2,4 ml 16% formaldehyde (final concentration: 3,2) 

480 µl 25% glutaraldehyde (1%) 

0,12 g sucrose 

0,00435 g CaCl2  

Na- cacodylate 0,1M 7,4pH 

 

qPCR reaction and applied primeres 
1. RNA isolation and cDNA synthesis 

The whole amount of RNA was extracted from 20 testes using TRI reagent (Sigma, T9424), 

then purifying RNA was conducted by Directzol RNA MiniPrep kit-tel (Zymo Research, 

R2050) and was performed as described in manufacturer’s protocol. The single strand cDNA 

synthesis was provided by RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, 

K1622).  

2. Real-time quantitative PCR 

o Using LightCycler 96 System (Roche, FastStart Essential DNA Green Master, 06402712001) 

 under the circumstances of denaturation: 10 minutes at 95°C; then 45 amplification cycles (10 

sec,95°C; 10 sec, 58°C and 20 sec, 72°C). Primers used for the amplification: 

• As controll: Actin5C: forward – 5’- GGA TAC TCC CGA CAC - 3’; reverse – 5’- GAG CAG 

CAA CTT CGT CA - 3’ 

• chinmo: forward – 5’ - AGC AGT TCT GCC TCA AAT GG 3’; reverse – 5’- AGA TCG 

GCG AAC TTC TTT GA - 3’ 

• socs36e: forward – 5’ - TCG TCG AGT ATT GCG AAG TG - 3’; reverse 5’- CTG CTC CCA 

TTG AAA GTG CT - 3’ 

• Omi/HtrA2: forward – 5’ – CTT TGC GCA TAC AGG TGA AC – 3’; reverse – 5’CGC 

TGC GTT GAA CTG ATT AC – 3’ 
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• mRpL11: forward – 5’ – CAC CAA CAC ATT TCG CTT TG – 3’; reverse – 5’ – TTC CCG 

CAG GTA TAT TCG TC – 3’ 

 

PCR products were detected by a fluorescent, DNA-binding (double strand) SYBR Green dye 

(Roche FastStart Essential DNA Green Master 11560300). 

Verifying the specificity of the reaction of qPCR was provided by analyzing the melting curves. 

By normalizing the values of the PCR threshold cycles, it was possible to identify the average 

of relative mRNA level. 

 

TUNEL – assay 
After the pre-fixation protocol, we followed the manufacturer's instructions.31 We used the fol-

lowing materials during TUNEL-assay: ApopTag kit(Chemicon/Millpore, Billerica, MA, USA, 

S7105, S7106, S7107).  

Testicles were fixed in 4% formaldehyde (diluted with PBS) for 20 minutes and washed 3 times 

in cold methanol. We incubated samples in -20°C cold methanol for 24 hours.  

 

Statistics 
We used the RStudio (Version 1.2.5033) program for statistical analysis.. 

Lilliefors test were used to know that the distribution of samples examined is normal or not. If 

it was normal, F test was performed to compare two variances. If the variances were equal, two-

sample Student’s t-test was used otherwise t-test for unequal variances was applied. If the distri-

bution of a sample is not normal, Mann-Whitney U test was performed  
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