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Abstract 

Bone metastases are devastating complications of cancer. They are particularly common in prostate 

cancer, represent incurable disease and are refractory to immunotherapy. We sought to define distinct 

features of the bone marrow microenvironment by analyzing single cells from prostate cancer patients’ 

involved bone, uninvolved bone and distant bone sites as well as bone from cancer-free, orthopedic 

patients and healthy individuals. Metastatic prostate cancer was associated with multifaceted immune 

distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states 

specific to prostate cancer bone metastases. The chemokine CCL20 was notably overexpressed by 

myeloid cells, as was its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice 

with syngeneic prostate bone metastases restored T cell reactivity and significantly prolonged animal 

survival. Comparative high resolution analysis of prostate cancer bone metastasis shows a targeted 

approach for relieving local immunosuppression for therapeutic effect. 
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Introduction 

Prostate cancer frequently metastasizes to bone where, in the castration-resistant setting, 70 to 90% of 

patients have radiographically-detectable skeletal involvement (de Bono et al., 2011; de Bono et al., 

2010; Halabi et al., 2016; Petrylak et al., 2004; Tannock et al., 2004). To date, bone metastases 

represent a generally incurable form of prostate cancer and contribute significantly to disease-specific 

morbidity and mortality (Xiang and Gilkes, 2019). In particular, metastatic involvement of the vertebral 

bodies can result in pathologic fracture and spinal cord compression leading to significant neurologic and 

functional disability, often necessitating urgent or emergent surgical decompression and stabilization. 

Surgical decompression/stabilization and targeted radiation are used selectively. Approved bone-

targeted systemic therapies offer some benefit: zoledronic acid and denosumab delay skeletal morbidity 

but do not improve overall survival (Saad et al., 2004). The radiopharmaceutical radium-223 offers a 

modest improvement in overall survival (Parker et al., 2013).  

 

Spinal bone marrow has long been known to be a primarily hematopoietic organ and represents a unique 

reservoir for several types of immune cells such as macrophages, dendritic cells (DCs), myeloid derived 

suppressor cells (MDSCs), and varied T cell subsets that has the ability to dramatically influence the 

trajectory of malignant disease. The critical role of the innate myeloid immunity in the tumor 

microenvironment goes well beyond its classical role of phagocytosis and antigen presentation. In 

addition to shaping the tumor adaptive immune response, myeloid cells impact response to cancer 

therapy (De Palma and Lewis, 2013; Engblom et al., 2016; Mantovani et al., 2017), promote 

angiogenesis (De Palma et al., 2017; Lewis et al., 2016a) and directly contribute to tumor progression 

and metastasis through the secretion of growth factor and extracellular matrix degrading enzymes 

(Coffelt et al., 2016; Kitamura et al., 2015; Lewis et al., 2016a). Despite this, major roadblocks such as 

our incomplete understanding of myeloid cellular heterogeneity and plasticity in addition to major 

differences between mouse and human myelopoiesis to name few, hinder the efficient translation of 

these findings towards improved disease outcomes.  

 

The immune checkpoint therapies targeting CTLA4 and PD-1/PD-L1 that have proven to be very 

effective against a wide range of tumors, have thus far have been unsuccessful in clinical trials in 

unselected prostate cancer populations (Laccetti and Subudhi, 2017) despite the high abundance of T 

lymphocytes in the tissue. In particular, emerging evidence indicates that patients with bone metastases 

are at a disadvantage when it comes to response to immune checkpoint therapies (Beer et al., 2017). 

This may in part be explained by the unique composition of the bone marrow T cell population. 

Immunosuppressive T regulatory cells (Tregs) are particularly abundant in the marrow space (Zou et al., 
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2004) and display a more activated phenotype (Glatman Zaretsky et al., 2017). In addition, when naïve T 

helper cells (TH) become activated in the bone marrow, the local cytokine environment appears to favor 

the development of TH17 over TH1 responses – a process that has detrimental impact on the success of 

immune checkpoint therapy (Jiao et al., 2019). Altogether, this indicates that there is a clear need for 

new and more effective approaches for our patients with bone metastatic prostate cancer based on a 

better understanding of the immune microenvironment that is permissive of its growth and is a critical 

player in response to therapy.  

 

Though the bone marrow microenvironment is clearly hospitable to prostate cancer, there have been 

multiple longitudinal barriers to gaining a better understanding of the supportive relationships between 

cell types. Bone biopsies present challenges centered on patient discomfort, feasibility, and sample 

quality after decalcification. Imaging biomarkers of bone metastasis response to systemic therapy are 

substantially limited. Preclinical models of prostate cancer metastatic to bone have historically been 

limited as well. Finally, bulk sequencing of tumor tissue has yielded important insights but is limited by its 

inability to characterize sub-populations and specific expression of ligands and receptors of tumor, 

immune, and stromal cells. In current clinical practice, the tumor tissue that is removed surgically in 

cases of spinal cord compression has little diagnostic utility. In this study, we now systematically collect 

this fresh tissue for cell isolation, phenotyping, and expression analysis with droplet-based single-cell 

RNA sequencing to facilitate analysis of rare populations of immune, tumor, and stromal cells in this 

environment. We hypothesize that an improved understanding of immune cell support of malignant cells 

within the bone marrow will identify areas of vulnerability amenable to therapeutic intervention. 

 

Results 

Widespread alteration of the bone marrow by prostate cancer metastasis 

Availability of fresh clinical prostate cancer bone metastatic samples is essential to the study of 

relationships between cancer cells and the marrow microenvironment. Bone sampling by needle biopsy 

can be technically challenging and provides scant quantities of tissue. We therefore developed an inter-

disciplinary workflow to obtain tissue from emergent clinically-indicated surgeries for those rare cases of 

spinal cord compression due to epidural extension of tumor or pathologic fracture of a vertebral body. 

The collection of tissue samples was integrated into the standard workflow of surgery. We collected 

matched sets of tissue fractions from each patient: solid metastatic tissue (Tumor fraction), liquid bone 

marrow at the vertebral level of spinal cord compression (Involved), as well as liquid bone marrow from a 

different vertebral body distant from the tumor site but within the surgical field (Distal) (Fig. 1A, 

Supplementary Table 1). This allowed for a comparison within the same individual, controlling for inter-
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individual variation. All patients had a historic diagnosis of prostate cancer and had standard pathologic 

evaluation to confirm prostate cancer in the bone marrow within tissue sampled at the time of spinal 

decompression surgery (Fig. 1B, S1A). Additionally, each had a preoperative magnetic resonance 

imaging (MRI) of the spine showing obvious evidence of tumor causing spinal cord compression (Fig. 

1C, S1B). Bone marrow samples from patients undergoing hip replacement surgery (Benign) served as a 

non-malignant comparator group. The transcriptional composition of all samples was assessed using 

single-cell RNA-seq (scRNA-seq). The measurements yielded on average of 2,490 cells per sample, 

detecting on average 3952 molecules per cell (Supplementary Table 2). The 10x Chromium V2 protocol 

utilized captures a relatively modest percentage of mRNA molecules in each cell (Ding et al., 2020; 

Mereu, 2020; Wang, 2020). However, its ability to measure thousands of individual cells in each sample 

enables one to distinguish cell subpopulations and more subtle differences associated with changes in 

cellular state through downstream computational analysis (Lambrechts et al., 2018; Peng et al., 2019; 

Zhang et al., 2019).  

 

We used a recently-developed approach to integrate the full collection of samples (Fig. 1D,E) (Barkas et 

al., 2019). Joint analysis revealed a rich repertoire of immune cells and ongoing hematopoiesis with 

HSC/progenitor populations giving rise to B cell, monocyte, and erythroid lineages (Fig. 1F, 

Supplementary Table 3). The T cell population was disconnected (Fig. 1E), which is expected as T cell 

maturation occurs outside of the bone marrow within the thymus. Granulocytes, whose abundance was 

quantified using flow cytometric analysis (Fig. S1D), were absent in the single-cell data, reflecting a 

known cell lineage limitation of the single-cell protocol (Chen et al., 2018). The non-immune 

subpopulations, mostly captured within the Tumor fraction, included endothelial cells, pericytes, 

osteoblasts, osteoclasts as well as the tumor cells themselves (Fig. 1E).  

 

The tumor cells, which were annotated based on expression of key prostate cancer markers (KLK4, 

KLK2, AR) (Fig. 1F), displayed patient-specific chromosome-scale deviations of expression magnitudes 

indicative of the presence of CNVs (Patel et al., 2014; Tirosh et al., 2016) (Fig. S2A), and notable inter-

individual variation of expression patterns. Tumor cells were also detected in some of the Distal fractions, 

reflecting diffuse marrow involvement in certain patients (Fig. S2B,C). Tumor cells exhibited strong 

patient-specific expression differences (Fig. 2A), however, analysis of intra-tumoral heterogeneity 

revealed four major aspects of tumor cell variation that were shared by different patients (Fig. 2B-D, 

S2D-F). Three of the aspects (IC2-4) reflected variation in the metabolic activity related to protein, 

nucleic acid, and ribosomal metabolism. The remaining aspect (IC1), however,  was driven by 

transcription of genes associated with cell differentiation and AP-1 signaling, including IER2, JUNB, and 

SOX4, that have all been shown to facilitate motility and invasion of metastatic cells (Bilir et al., 2016; 
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Hyakusoku et al., 2016; Neeb et al., 2012; Tiwari et al., 2013). This aspect was strongly enriched for 

functions related to vasculature development, epithelial cell differentiation, as well as regulation of 

hematopoietic regulation (Fig. 2E). This AP-1 related aspect of intratumoral variation distinguished 

clearly separated subpopulations within the metastatic tumors of multiple patients (Fig. 2F). 

 

The presence of metastases significantly altered the immune cell composition of the bone marrow. 

Relative to Benign controls, the three cancer fractions showed a striking depletion of B cells and B cell 

progenitors (Fig. 1G, 3B, S1D, S3A). The Tumor fraction had an increase in the proportion of 

macrophages compared to the Involved/Distal fractions (Fig. 1H). As expected, the solid Tumor fraction 

also showed more abundant endothelial, pericyte, osteoblast, and tumor cell populations (Fig. 1H, S3A). 

As analysis of simple cell proportions can be skewed by a single large-scale change, such as depletion 

of a large B cell compartment, we confirmed the shifts mentioned above using a more robust 

compositional data analysis technique (see Methods, Fig. S3D).  

 

Complementary to the shifts in the frequency of cell types, scRNA-seq data also captured the 

transcriptional state permitting an examination of expression differences (see Methods). With the 

exception of the Benign controls, the overall similarity of cell states in different samples reflected patient-

specific signatures (Fig. S3B). The extent of inter-patient differences was smallest for the Benign 

controls, and incrementally increased towards the site of metastasis (Distal to Involved to Tumor fraction) 

(Fig. 3C). This significant increase in the inter-patient variability in cancer, and the Tumor fraction in 

particular, demonstrates the divergent impact of metastasis on the bone marrow across individuals. 

Nevertheless, we find that for most cell types the expression difference between cancer and control 

groups significantly exceeds the magnitude of inter-individual variation within the groups (Fig. S3C), 

underscoring the marked impact of the presence of the metastasis on the transcriptional states of 

different populations. The HSC/progenitor population (Progenitors) was among the most affected. 

Analysis of differentially expressed genes within this heterogeneous population revealed pronounced 

downregulation of cell cycle in the metastatic context, complemented by upregulation of translation and 

immune activation functions (Fig. 3D,E, S3E,F). While the specific signatures of the state differences 

varied, this general pattern of functional impact was mirrored by most other cell types, with many cell 

types also exhibiting upregulation of stress response pathways in the metastatic context (Fig. 3D,E). 

Observing such broad impact of metastasis across different cellular compartments, we focused our 

analysis on the detailed changes affect the two major immune compartments, myeloid and T-cells. For 

this purpose, we excluded two patients (BMET-10 and BMET-11) that had received Radium 223 

treatment (Supplementary Table 1), as the detailed patterns of expression signatures appeared to be 
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distinct. The general trends described above, however, remained consistent with or without the inclusion 

of these two patients.  

 

Inflammatory monocytes and immunosuppressive macrophages in tumors 

The myeloid cells have been implicated in supporting tumor progression in certain cancers (Coffelt et al., 

2016; Lewis et al., 2016b). Focused examination of the myeloid compartment revealed substantial 

population shifts between Benign and malignant fractions (Fig. 4A,B, S4A,B). While Benign controls 

primarily contained resting monocytes, the monocytes of both Involved and Distal fractions expressed 

genes indicative of an activated and proliferative state in cancer patients (Mono-2, myeloid cell 

activation, GO:0002275 P<10-16). Striking changes were observed in the Tumor compartment, driven by 

the appearance of prominent populations of Tumor Inflammatory Monocytes (TIMs), and Tumor 

Associated Macrophages (TAMs) (Fig. 4B-D, S4B,C, Supplementary Table 4), a finding that was 

validated by flow cytometric analysis of independent samples (Fig. 4E, S1D, Fig. S4D).  

 

The TAM population had an expression pattern characteristic of M2 macrophages (Azizi et al., 2018) 

(Fig. 4F,G) which have been shown to suppress anti-tumor immune responses across a broad range of 

tumors (DeNardo and Ruffell, 2019). Accordingly, TAM cells express anti-inflammatory cytokines 

(TGFB1, IL-10, Interleukin 1 receptor antagonist IL1rn) (Sanjabi et al., 2009) as well as factors implicated 

in cancer growth and invasiveness (CCL2, CCL3, CCL4, VEGF,  MMPs) (Bachelder et al., 2002; 

Merchant et al., 2017; Pellikainen et al., 2004) (Fig. 4F). Interestingly, TGFB1 has been recently shown 

to be a molecular mediator for T helper cell polarization toward Th17 in response to immune checkpoint 

therapy in the bone metastatic microenvironment and blocking it in combination with the immune 

checkpoint inhibitors improved survival in a mouse model of prostate cancer (Jiao et al., 2019). Further, a 

recent study by an independent group suggest that exposure to the anti-androgen drug enzaluatamide is 

associated with an increased tumor-intrinsic activation of TGFβ signaling and EMT signature in 

metastatic castration resistant prostate cancer (He, 2020), suggesting that resistance to anti-androgen 

treatment may be induced by TGFB1. In contrast to the TAM immunosuppressive M2-like signature, TIM 

cells had a pro-inflammatory monocyte signature with high expression of pro-inflammatory cytokines 

such as IL1-B and TNF (Fig. 4F,H, S4G) (Becking et al., 2015; Smillie et al., 2019).  

 

The TIM and TAM populations that we observed in primary samples closely paralleled ex vivo effects on 

peripheral blood monocytes of tumor-secreted factors (Vlaicu et al., 2013). The cells expressed 

epidermal growth factor-like ligands (epiregulin (EREG) in TIMs, HB-EGF in TAMs) and a common 

repertoire of interleukin-6-like JAK/STAT3 pathway activators (IL-6, Oncostatin-M (OSM)) (Fig. 4F). Both 

signaling modalities support tumor growth directly as well as indirectly by suppressing the activation of 
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CD8+ T cells, expanding suppressive Treg cells, promoting M2 macrophage polarization and 

differentiating myeloid cells into myeloid derived suppressor cells (MDSCs) (Huynh et al., 2017). TIMs 

and TAMs also expressed inhibitors of the pro-inflammatory nuclear factor-kB pathway (NFKBIA, 

NFKBIZ, TNFAIP3) (Lawrence, 2009) (Fig. 4F). The presence of these TIM and TAM expression 

signatures are associated with significantly worse prognosis for patients across a broad range of cancer 

types (Fig. S4E).  

 

Comparison with published single-cell RNA-seq data shows that cells analogous to TIM and TAM 

subpopulations can also be found in other cancers (Lambrechts et al., 2018; Peng et al., 2019; Zhang et 

al., 2019), with the highest abundance of TIM and TAM-like cells observed in liver and lung cancer, 

respectively (Fig. 5A,B). Their molecular state, however, differs significantly from that observed in our 

data. The TIM population we have identified in the prostate-origin metastasis shows significantly stronger 

inflammatory signature, compared to other examined cancers (Fig. 5C,E). For TAM, the M2 polarization 

observed in the metastatic context was comparable to those seen in other tumors (Fig. 5D), however the 

expression of most cytokines mentioned above differed in the bone metastatic context profiled here (Fig. 

5F). Similarly, both TIM and TAM populations showed prominent nuclear factor-kB signaling signature 

atypical of the other cancers.  As there is currently little data on other metastatic cases, especially in the 

bone, studies of other cancers will be needed to determine to what extent the observed alterations of the 

bone marrow are specific to metastasis of prostate origin. 

 

Expansion of dysfunctional cytotoxic T lymphocyte subpopulation in bone metastases 

Detailed analysis of the lymphocyte compartment revealed the expected subsets, CD4+ T helper (TH) and 

T regulatory (Treg) cells, CD8+ cytotoxic T lymphocytes (CTLs), as well as NK and NKT cells (Fig. 6A, 

Fig. S6A, Supplementary Table 3, 4). The smallest population of CD8+ T cells expressed high levels of 

CCR7, LEF1 and SELL, indicating that these are antigen-inexperienced, naïve cells (Fergusson et al., 

2016; Picker et al., 1993; Willinger et al., 2006) (Fig. S6A). The CTLs could be further subdivided into two 

subtypes: CTL-1 expressing effector T cell genes such as KLRG1, GZMK and other cytotoxicity 

mediators, whereas CTL-2 are characterized by an effector/memory-like transcriptional profile including 

IL7R and KLRB1 (Fig. 6B) (Fergusson et al., 2016; Zhang et al., 2018). We also identified CCR7 

expressing naïve CD4+ cells, whereas the mature T helper cell compartment appeared to be a mix of 

TH1 and TH17 cells (TH1/17) expressing CXCR3 and CCR6 respectively (Fig. S6A)  (Zhang et al., 2018). 

Unfortunately, the data did not provide sufficient resolution to further distinguish these two populations. 
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The relative abundance of the CTL, and TH / TH1/17 populations followed a common pattern, gradually 

increasing from the Distal fraction towards the site of metastasis (Tumor fraction) (Fig. 6C,D), whereas 

other T-cell types were found to be unchanged (e.g. Tregs) or decreased in the Tumor (e.g. naïve T-

cells) (Fig 6C,D, S6B). The abundance of activated effector T cells and Tregs was also high in the 

Benign controls (Fig 6C,D, S6B), likely reflecting the known inflammation in the osteoarthritis patients 

from whom the samples were collected. An additional set of bone marrow samples from healthy 

individuals (Oetjen et al., 2018) revealed significantly lower abundance of these populations, offset by 

higher proportion of CD4+ naïve cells (Fig. 6D). The functional state of these T cell populations was also 

impacted, in particular CTL-2 in the Tumor fraction exhibited reduced cytotoxicity expression signature in 

combination with a pronounced T cell exhaustion signature, characteristic of dysfunctional CTL 

commonly observed in tumors (Lee et al., 1999; Li et al., 2019) (Fig. 6E, S6C-E,I). The level of T cell 

exhaustion observed in the CTL-2 cells of the Tumor fraction was significantly higher than that of the 

Benign controls, highlighting the distinction between sustained benign inflammation and the metastatic 

context. The NK cell population showed a complementary pattern, with high abundance in the Involved 

and Distal samples, but not in Benign and Tumor fractions (Fig. 6C,D) - an observation that was further 

validated by flow cytometric analysis (Fig. 6F, S1E). This suggests that although NK cells can be 

recruited to the general area of the bone metastasis, they may fail to infiltrate the tumor.  

 

Coordination between myeloid and lymphoid compartments 

The observed deficiencies of cytotoxicity in the proximity of the tumor may arise through repressive 

actions by other immune populations (Munn and Bronte, 2016). For instance, we find that the Treg cells, 

which typically act to suppress immune response (Woo et al., 2002), showed increased activity 

signatures at the site of the metastasis (Fig. S6F-H). The complex patterns of immune signaling are also 

likely to involve the myeloid compartment. Indeed, considering variation of TAM and TIM abundance 

among patients (Fig. S4F) we find that increased proportion of TAMs at the site of metastasis is 

correlated with CTL-2 exhaustion (Fig. 6G). Similarly, increased abundance of TIMs coincides with a 

reduction in the CTL-2 cytotoxicity signature (Fig. 6G). While these associations suggest that TIM or 

TAM populations may be directly affecting T lymphocyte state, identifying a specific signaling channel 

through which communication takes place is challenging.  

 

There are currently no effective computational or high-throughput experimental methods for carrying out 

such inference. The space of potential interaction channels is extensive: screening a database of ligand 

and cognate receptors (Efremova et al., 2020) for those expressed in myeloid and T lymphoid 

compartments, respectively, we find 241 potential channels (39 for TAM, 29 for TIM, Fig. 6H, 

Supplementary Table 5). To prioritize likely candidates, we applied additional filtering criteria, requiring 
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up-regulation of the receptor expression in Tumor in comparison to Benign controls, and high levels of 

ligand expression in the corresponding myeloid population, reducing the number of potential channels to 

7 (Fig. 6I). Of the cytokines that were expressed within the TIM and TAM cells of the Tumor fraction, 

CCL20 was one of the most highly expressed (Fig. 4F, 6J, S4G), and its cognate receptor CCR6 was 

predominantly expressed on Treg and TH1/17 cells (Fig. 6K, S7A). Studies of other cancers have 

demonstrated that CCL20 signaling can promote tumor growth, invasiveness and chemoresistance (Lee 

et al., 2017; Lu et al., 2017; Walch-Ruckheim et al., 2015) by recruitment of Tregs and/or TH17 cells 

(Walch-Ruckheim et al., 2015; Wang et al., 2019). CCL20 expression on the protein level was confirmed 

with ELISA using plasma from different bone marrow fractions (Supplementary Table 6). CCL20 has 

been shown to be expressed on primary prostate cancer tumor cells and in stromal fibroblasts within the 

tumor microenvironment (Beider et al., 2009; Walch-Ruckheim et al., 2015). However, in the metastatic 

samples, CCL20 was expressed primarily by the TIM and TAM populations, and was absent from the 

tumor cells (Fig. 6J). Overall, the direct role of the CCL20-CCR6 axis in human prostate bone 

metastases is unclear.  

 

CCL20-CCR6 signaling leads to T lymphocyte exhaustion 

To investigate the impact of CCL20-CCR6 signaling axis in prostate bone metastasis, we developed a 

syngeneic model of prostate bone metastasis, based on the RM1-BM cell line derived from C57BL/6 

RM1 prostate cancer cells (Power et al., 2009; Thompson et al., 1989). These cells were sequentially 

injected into C57BL/6J wild-type mice to generate a highly penetrant bone tropic prostate cancer cell line, 

RM1-BoM3, that induced osteolytic and osteoblastic lesions as shown by micro-computed tomography 

(microCT) and radiography (Fig. S7B-E). Using this model, we demonstrate that the absence of the 

CCR6 receptor improved survival of bone metastases bearing mice when compared to controls (Fig. 

7A,B). Likewise, administration of CCL20 blocking antibody to wild-type mice with prostate cancer bone 

metastasis resulted in a survival advantage in comparison with isotype treated controls (Fig. 7C). Single-

cell analysis on T cells from the bone metastasis isolated from wild-type and CCR6-KO mice showed 

average reduction in Active Tregs and Exhausted CTLs with a concomitant increase in Naive CTLs (Fig. 

7D, S7F).  

 

These results suggest that blockade of the CCR6-CCL20 axis counteracts immunosuppression in the 

bone metastasis tumor microenvironment. In order to further confirm this impact on the CTLs, flow 

cytometric analysis of T cell populations was performed on bone marrow from bone metastasis bearing 

wild-type and CCR6-KO mice as well as tumor naive wild-type mice. This revealed a significant increase 

in the frequencies of both CD4+ TH cells and CD8+ CTLs in the marrow of CCR6-KO mice with prostate 

cancer bone metastasis (Fig. S7I). The infiltrating CD8+ CTLs also appeared to be less exhausted in the 
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CCR6-KO mice as evidenced by reduced cell surface levels of exhaustion markers PD-1 and Lag3 (Fig. 

7E,F). Notably, the CCR6-KO CTLs were found to display a similar exhaustion marker profile as their 

tumor naive counterparts, suggesting that CTL activity is unimpeded in the tumor microenvironment after 

inhibition of CCR6-CCL20 signaling (Fig. 7E,F). To test this, CD8+ CTLs were sorted from wild-type and 

CCR6-KO mice with tumor as well as from tumor naive wild-type mice and stimulated in vitro. After 96 

hours of stimulation, wild-type CTLs proliferated at a significantly lower rate than both tumor naive and 

CCR6-KO cells (Fig. 7G, S7J), indicating that increased expression of exhaustion markers displayed by 

these cells, translates into a reduced functionality as well. 

 

Discussion 

Together, these results provide a high-resolution landscape of the human bone marrow in the context of 

metastatic prostate cancer and show that it is distinctive from either the immune activated state of 

individuals requiring hip replacement for osteoarthritis or of healthy controls. The cancer affected state 

has a broad but now defined set of signature changes in the hematopoietic cells of the bone marrow. 

These include a decrease in the cell cycle status of primitive hematopoietic cells and a decrease in B 

cells and B cell progenitors. The similarity of the Involved and Distal fractions suggests that these 

differences likely reflect systemic changes accompanying cancer. In contrast, increases in 

monocyte/macrophage and the CTL and TH1/17 T cell subpopulations were more evident in the sites of 

tumor involvement. These provided evidence for TIM and TAM populations expressing activated 

signatures and candidate molecules that might affect the T cell populations and the exhaustion signature 

of their transcriptome. By functional validation in a mouse model, we show how one such signaling axis, 

CCL20/CCR6, participates sufficiently in immune suppression that impairing it relieves the exhaustion 

phenotype and changes animal survival. This is particularly important because it raises the general 

prospect that inhibiting activating signals can resolve cancer immune suppression.  

 

Identification of the CCL20/CCR6 axis as relevant for tumor control provides other important information 

with medical translation potential. This axis is implicated in a number of inflammatory and immune 

activated states including autoimmune disease and cutaneous T cell lymphoma. The potential for 

modulating the axis to reduce the activated states of immune cells and tumor cells has been extensively 

explored and led to early stage clinical trials (Getschman et al., 2017; Robert et al., 2017). Specifically, 

anti-CCL20 was advanced to clinical testing with a focus on inflammatory disease (Bouma et al., 2017; 

Laffan et al., 2020). However, the drug did not advance in that setting (Hippe et al., 2020). The data 

presented here suggest that it may have potential, not as a direct suppressor of cancer cell growth as 

proposed previously, but as a means of relieving immune exhaustion (Lee et al., 2017; Lu et al., 2017; 
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Walch-Ruckheim et al., 2015). This would be of importance in the setting of bone metastases and 

prostate bone metastases in particular as these have shown little responsiveness to ‘check-point’ 

blockade (Goswami et al., 2016).  

      

The tumor-specific myeloid populations (TIM and TAM) are the likely sources of the CCL20 ligand in the 

patient samples. CCL20 is expressed by both TIM and TAM populations. In TIM, the expression levels of 

CCL20 are strongly correlated with the overall TIM abundance (Fig. 7H, S7G). The distinctive TIM 

expression signature we identified in prostate bone metastases compared with other cancer types does 

raise the possibility that the CCL20/CCR6 axis is particularly important in prostate cancer. However, 

studies of other cancer metastasis, in the bone and other sites will be needed to deconvolve the 

contributions of tumor-intrinsic properties and the host tissue. It will also be important to consider 

systemic factors like androgen deprivation. Androgen deprivation therapy is universally applied to all 

prostate cancer patients as part of their standard treatment, and will require examination of rare outlier 

cases to define its role versus prostate cancer itself in changing CCL20/CCR6. We hope the data 

presented here will provide a foundational resource for further exploring this and other signaling axes 

and cellular relationships that inhibit immune response or remodel the bone marrow resulting in a tumor-

permissive environment. Defining new approaches to the devastating clinical problem of prostate cancer 

bone metastases is critically needed.   
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the accession number GSE143791 (Reviewer token: mhwvcmwmhtijtaj). Interactive views of the single 

cell datasets, differential expression results, code notebooks, cell annotation and RData objects are 
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Methods 

Patient material 

All human-subjects tissue collection was carried out with institutional review board (IRB) approval (Dana 

Farber/Harvard Cancer Center protocol 13-416 and Partners protocol 2017P000635/PHS). 

 

Surgical approach and collection of tumor and bone marrow specimens  

Tumor specimens 

In each case, the patient was brought to the operating room for clinically indicated decompression and 

stabilization in the setting of spinal cord compression related to metastatic prostate cancer. Each patient 

consented to use of their tissue for research purposes. Bone marrow (e.g. Involved) and tumor samples 

were taken with the patient in the prone position under general anesthesia as the spine was approached 

posteriorly. After the levels of the spine were exposed and identified, a Jamshidi needle was malleted 

directly into the desired vertebral body and a syringe connected to the needle was used to aspirate bone 

marrow immediately upon cannulation. Cannulation of the vertebral body is standard prior to placing 

stabilizing instrumentation into the bone. By placing the Jamshidi needle directly into the bone, this 

ensures that the aspirate from deep within the vertebral body is not diluted by surrounding blood in the 

surgical field or surgical irrigation. The marrow aspirate taken from the vertebral body is then directly 

stored into collection tubes and transferred to the laboratory for further sample preparation. Similar 

technique was utilized for the distant vertebral body level samples (e.g. Distal). During each surgery, 

several vertebral body levels above and below the primary site of spinal cord compression are 

instrumented for stabilization. As such, there is access to numerous vertebral body levels through a 

single surgical approach. After the vertebral body marrow had been collected and the spine 

instrumented, the spinal cord is decompressed through a laminectomy. Epidural tumor that is 

circumferentially surrounding and compressing the spinal cord is taken directly from the field and 

transferred to the laboratory for further processing. Specimens were also submitted to pathology for 

standard confirmation of diagnosis of metastatic prostate cancer.  

 

Animals 

CCR6-KO mouse models were developed by Deltagen, Inc and ordered from The Jackson Laboratory 

and (B6.129P2-Ccr6tm1Dgen/J, #005793) and compared to age and gender match control mice C57BL6/J 

mice (#000664). All mice were maintained in pathogen-free conditions and all procedures were approved 

by the institutional Animal Care and Use Committee of Massachusetts General Hospital. 
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Mice with signs of bone metastasis, as shown by bioluminescence imaging, were included in the      

survival study during which the health condition of the mice was scored. We adapted this scoring method 

from Nunamaker et al., to refine the endpoint for mice bearing bone metastasis to minimize the pain and 

distress associated with bone metastasis progression (Nunamaker et al., 2013). For each category, mice 

are scored from 0 to 3: Body posture, eye appearance and activity level. Mice with a score at 3 in one of 

the categories or a cumulative score >6 are euthanized. The health was assessed by the animal facility 

veterinarian and the lead investigator for the specific experiment. The main cause of euthanasia were 

eye lesions due to metastatic burden in the mandible. In addition, some of the mice developed leg 

paralysis. Otherwise, a general poor body condition was observed in moribund mice. Only mice showing 

signs of metastatic tumors in the bones by bioluminescence imaging were included in the survival 

studies. For inclusion of mice for survival studies, we image mice with bioluminescence imaging at week 

1, 2 and 3, to ensure that the mice that are included in the study were continuing showing exponential 

growth. 

 

Development of syngeneic prostate bone metastases cell line: 

The RM1-BoM1 cell line was obtained from the Power laboratory (Power et al., 2009) and was 

established from the parental prostate cancer mouse model RM1 (RAS and c-Myc oncogenes were 

overexpressed in normal epithelial prostate cell and injected in syngeneic mice to form tumors) (Power et 

al., 2009). We enriched RM1-BoM1 cells negative for GFP and transduced with Tdtomato (LeGO-T2, 

Addgene #27342) and luciferase (pENTR-LUC, Addgene, #17473). We injected 2.105 RM1-BoM1 cells 

into the left ventricle of C57Bl/6 mice and monitored bone metastases development by sequential 

bioluminescence imaging. Bone metastatic cells were harvested and selected for the Luciferase and 

Tdtomato expression. We used the mouse as a bioreactor and repeated a second round of injection and 

isolation of bone metastases cells in order to establish the RM1-BoM3 bone metastatic cells. The RM1-

BoM3 sells were maintained in DMEM (Corning, 15-013-CV) complemented with 10% FBS (GIBCO by 

Life Technologies, A31605-01) and 1% Penicillin-Streptomycin (GIBCO by Life Technologies, 15140-

122). 

 

In-vivo Bioluminescence imaging 

Mice were anesthetized by isoflurane inhalation with 2% O2 and 4.5mg/mouse of D-luciferin K salt (RR 

labs Inc., San Diego) was administered by intraperitoneal injection. After 5 minutes, mice are imaged 

using a SPECTRAL Ami X allowing to detect the localization of the cancer cells in the mice and to 

measure the luciferase activity. 
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CCL20 blocking antibody treatment 

C57BL6/J male mice (#000664) received an intraperitoneal injection of 45𝝁g anti-CCL20 blocking 

antibody (R&D Systems clone 114908) or rat IgG isotype control antibody (R&D Systems, clone 43414) 

1 day prior to intracardiac injection of RM1-BoM3 prostate cancer bone metastasis cells. The 

administration of blocking antibody and isotype control then continued on a twice-weekly basis until the 

end of the experiment. 

 

Sample preparation 

Dissociation of tissues into single cells 

All samples were collected in Media 199 supplemented with 2% (v/v) FBS. Single cell suspensions of the 

tumors were obtained by cutting the tumor in to small pieces (1mm3) followed by enzymatic dissociation 

for 45 minutes at 37°C with shaking at 120 rpm using Collagenase I, Collagenase II, Collagenase III, 

Collagenase IV (all at a concentration of 1 mg/ml) and Dispase (2mg/ml) in the presence of RNase 

inhibitors (RNasin (Promega) and RNase OUT (Invitrogen). Erythrocytes were subsequently removed by 

ACK Lysing buffer (Quality Biological) and cells resuspended in Media 199 supplemented with 2% (v/v) 

FBS for further analysis. 

 

ELISA measurement 

CCL20 protein levels measured in plasma collected from bone marrow of bone-metastatic prostate 

cancer patients (Involved, Distal) and from bone marrow of patients undergoing hip replacement 

surgeries (benign BM) using a commercially available enzyme-linked immunosorbent assay (ELISA kit 

R&D Systems, Minneapolis, USA) according to the manufacturer’s protocol. Absorbance was measured 

with Synergy HTX multi-mode reader (Bio-Tek). 

 

Bone marrow processing 

Bone marrow samples were filtered using 70 micron filter then centrifuged at 600 g for 7 minutes at 4°C. 

Plasma were collected followed by erythrocytes removal using ACK Lysing buffer (Quality Biological). 

Cells were resuspended in Media 199 supplemented with 2% (v/v) FBS for further analysis. 

 

FACS sorting of human samples for single-cell RNA-sequencing 

Single cells from tumor and bone marrow samples subjected to RBC lysis were surface stained with anti-

CD235-PE (Biolegend) for 30 min at 4°C. Cells were washed twice with 2% FBS-PBS (v/v) followed by 

DAPI staining (1 ug/ml). Flow sorting for live and non-erythroid cells (DAPI-neg/CD235-neg) was 
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performed on a BD FACS Aria III equipped with a 100um nozzle (BD Biosciences, San Jose, CA) 

instrument. All flow cytometry data were analyzed using FlowJo software (Treestar, San Carlos, CA).  

 

FACS sorting of murine samples 

In order to obtain bone marrow T cells and myeloid cells for single-cell RNA-sequencing from tumor 

bearing mice, RBCs were lysed and samples were subsequently incubated with anti-mouse Fc block (BD 

Pharmingen, 553142) for 10 minutes at 4°C. This was followed by surface staining for CD11b (myeloid 

cells) and CD3e (T lymphocytes) for 30 minutes at 4°C. The samples were then washed with 2% FBS-

PBS (v/v) followed by resuspension in 2% FBS-PBS with 0.1𝝁g 7-AAD. Flow sorting for live myeloid and 

T cells (7AAD- CD11b+ or CD3e+) was performed on a BD FACS Aria III equipped with a 70𝝁m nozzle. 

 For evaluation of CTL proliferation response in mice with bone metastasis, bone marrow was 

stained with 3𝝁M CellTrace CFSE (Thermo Fisher Scientific) in accordance with the manufacturer’s 

instructions. This was followed by a 10 min incubation with anti-mouse Fc block and a 30 minute cell 

surface staining with anti-mouse CD4-APC/Cy7 and CD8-PE/Cy7 (Both from Biolegend). CFSE labeled 

CD8+ CTLs were subsequently sorted on a BD FACS Aria III (BD Biosciences, San Jose, CA)  equipped 

with a 70𝝁m nozzle.      

 

FACS analysis 

Independent samples from patients with prostate bone metastases were used for FACS analysis. Cells 

from human bone marrow and tumor samples were surface stained with lymphoid, myeloid and 

hematopoietic stem and progenitor antibody panels after blocking with anti human fc block (BD 

Pharmingen 564219) for 10 minutes at room temperature (Supplementary Table 7) for 30 min at 4°C. 

Cells were washed twice with 2% FBS-PBS (v/v). Samples that were to eventually be fixed and 

permeabilized were stained with LIVE/DEAD fixable viability dye (Thermo Fisher Scientific, Waltham, 

MA). For the intracellular staining, to determine Treg infiltration, cells stained with lymphoid surface 

markers were fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences, San Jose, CA) for 20 min 

at 4°C. Cells were then washed twice with 1× Perm/Wash buffer (BD Biosciences, San Jose, CA) and 

incubated overnight at 4°C with anti-FoxP3-PE. On the following day, cells were washed twice in 

Perm/Wash buffer and resuspended in 2% FBS-PBS (v/v) for analysis. 

 

For analysis of CTL exhaustion in bone metastasis bearing mice, bone marrow cells were blocked with 

anti-mouse Fc block (BD Pharmingen, 553142) followed by surface staining with the murine T cell 

exhaustion panel  (Supplementary Table 7) for 30 min at 4°C. Cells were washed with 2% FBS-PBS (v/v) 

followed by resuspension in 2% FBS-PBS with 0.1𝝁g 7-AAD. 
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Flow cytometry was performed on a BD FACS Aria III (BD Biosciences, San Jose, CA) instrument. All 

flow cytometry data were analyzed using FlowJo software (Treestar, San Carlos, CA) and Prism 

software. Statistical analyses were performed as indicated and P values of ≤0.05 considered significant. 

 

Healthy bone marrow data 

To provide an additional comparison to the samples from cancer patients and patients with benign 

inflammation that were collected as part of this study, we have also analyzed single-cell RNA-seq data 

for healthy individuals published by Oetjen et al. (Oetjen et al., 2018) The data was downloaded from 

GEO (GSE120221, GSE120446). 

 

Massively parallel single cell RNA-sequencing 

Single cells were encapsulated into emulsion droplets using Chromium Controller (10x Genomics). 

scRNA-seq libraries were constructed using Chromium Single Cell 3’ v2 Reagent Kit according to the 

manufacturer’s protocol. Briefly, post sorting sample volume was decreased and cells were examined 

under a microscope and counted with a hemocytometer. Cells were then loaded in each channel with a 

target output of ~4,000 cells. Reverse transcription and library preparation was done on C1000 Touch 

Thermal cycler with 96-Deep Well Reaction Module (Bio-Rad). Amplified cDNA and final libraries were 

evaluated on an Agilent BioAnalyzer using a High Sensitivity DNA Kit (Agilent Technologies). Individual 

libraries were diluted to 4nM and pooled for sequencing. Pools were sequenced with 75 cycle run kits 

(26bp Read1, 8bp Index1 and 55bp Read2) on the NextSeq 500 Sequencing System (Illumina) to ~70-

80% saturation level. 

 

Analysis  

Quality control and preprocessing of single-cell RNA-seq data.  

FASTQ files were processed with the CellRanger software (10x Genomics, Inc., version 2.0). Human 

genome hg19 was used as the reference genome (10x Genomics, Inc.) to generate the matrix files 

containing cell barcodes and transcript counts. Only cells with total UMI exceeding 600 were included in 

the downstream analysis. Statistics on the sequencing results are available in Supplementary Table 2. 

Samples were initially analyzed using Pagoda2 (https://github.com/hms-dbmi/pagoda2) for quality control 

and data exploration.  

 

Joint clustering and cell annotation 
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We used Conos (https://github.com/hms-dbmi/conos) to integrate multiple scRNA-seq datasets together 

and to align our data with other public scRNA-seq data, closely following the Conos tutorial. Sample pre-

processing was performed using default pagoda2 settings (“basicP2proc()” function). The integration was 

performed using Conos with k = 30, kself = 15, CPCA space, nPC=50, and n.odgenes=500, with an 

angular distance measure. Louvain clustering was used to build to determine joint cell clusters across the 

entire dataset collection. The annotation of clusters was performed manually based on the marker genes, 

with some clusters being assigned same label. One positioned between T and B lymphocytes was 

determined to represent doublets and was omitted from the analysis. As an additional check the 

annotation was compared with published scRNA-seq data from healthy bone marrow (Oetjen et al., 

2018). To do so, the raw count matrix was downloaded, and integrated into the joint graph using the 

same Conos settings. Conos label transfer was used to examine the correspondence of the annotation 

mapping. A 2D embedding (Fig. 1E) was generated using largeVis using default settings. To create a 

more detailed annotation of the T lymphocytes, we extracted all myeloid and all T cell populations (CD8+ 

T cells, CD4+ T cells, NK and NKT cells), and realigned separately using Conos. Leiden community 

detection method (as implemented in Conos) was used to determine refined joint clusters, providing 

higher resolution than the initial analysis. To generate an embedding for the T cell populations (Fig. 6A), 

a largeVis embedding was first generated in 13 dimensions using default parameters, and then reduced 

to a 2D embedding using t-SNE (using default perplexity value of 50). Analogous procedure was 

performed for the myeloid cells, however the myeloid subpopulations were visualized using the original 

2D embedding that was generated for the entire dataset (Fig. 1E).  

    

Analysis of cell proportions and compositional data analysis 

Statistical significance of proportion differences (Fig. 3B, S3A) was evaluated using Wilcoxon rank sum 

test, using 1000 bootstrap resampling rounds to report p-values at the 99% reproducibility power (i.e. 

reporting 0.99th quantile of the sampled p-values). The p-values in the figures were reported using the 

following symbols: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

As an alternative to the simple proportion tests, we also used compositional data analysis (Pawlowsky-

Glahn and Buccianti, 2011) to analyze the differences between Tumor/Involved and Benign samples 

(Fig. S3D). The CoDA avoids the non-independence of cell type fractions (in each sample they sum up to 

one). Isometric log-ratio (ilr) transformation was first applied, which allows to work with (n-1) independent 

artificial variables (ilr coordinates/variables) instead of cell type fractions constrained in the n-dimensional 

Simplex space.  Each ilr variable is a linear combination of logarithms of cell type fractions. The set of (n-

1) ilr coordinates forms the Euclidean space, where standard methods to discriminate groups of samples 

are permitted. To separate groups of samples (e.g., Benign and Tumor) in the ilr-space, the canonical 
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discriminant analysis was applied (using candisc package). The first canonical coordinate is a linear 

combination of log-fractions and represents a weighted contrast (balance) between cell types of positive 

and negative contributions to the linear combination. The loadings of different cell types on the first 

canonical coordinate were taken to be the separating coefficients (x axis, Fig. S3D). To evaluate the 

robustness and statistical significance of the separating coefficients, we performed random cell 

subsampling, repeating the procedure above 1000 sampling rounds. In each subsampling round, 500 

cells were randomly sampled from each dataset to account for limited detection rates of cell types across 

datasets. Furthermore, to account for inter-patient variability, in each sampling round we performed 

bootstrap sampling of the datasets. Then the ilr calculation and subsequent procedures were repeated, 

and the separating coefficients resulting from different sampling rounds were shown on Fig. S3D as 

boxplots. 

 

Analysis of expression distances 

Expression differences between matching subpopulations (Fig. 3C, S3B) were determined by first 

estimating “mini-bulk” (or meta-cell) RNA-seq measurements for each subpopulation in each sample. 

Briefly, in each dataset, the molecules from all cells belonging to a given subpopulation were summed for 

each gene (i.e. forgetting cellular barcodes). The distance between the resulting high-coverage RNA-seq 

vectors was calculated using Jensen-Shannon divergence (JS). Expression distances between samples 

(Fig. 3C, S3B) were determined as a normalized weighted sum of JS divergence distances across all cell 

subpopulations contained in both samples, with the weight equal to the subpopulation proportion 

(measured as a minimal proportion that the given cell subpopulation represents among the two samples 

being compared). 

 

Cell-specific magnitude of expression shifts between fractions 𝑿𝑿 and 𝒀𝒀 for the individual cell types 

(Fig. S3C) was determined by normalizing between-fraction distances by the mean within-fraction 

distance. Specifically, for samples 𝑖, 𝑗 such that 𝑖 ∈ 𝑿𝑿 and 𝑗 ∈ 𝒀𝒀, standardized distance 

𝑠!" = 𝑑!"
!!"!,!∈𝑿 ! !!"!,!∈𝒀
! !|𝒀|

!! !!"!,!∈𝑿 ! !!"!,!∈𝒀
! !|𝒀|

!!
 , where 𝑑!" is the angular distance of the log-

normalized mini-bulk molecule counts for the samples i and j. The boxplots in Fig. S3C show the 𝑠!" 

values for the different classes of sample pairs. A minimal number of 10 cells (of the selected cell type) 

were required for a sample to be included in the comparison. 

 

InferCNV analysis (Figure S2A) 
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To characterize copy number aberrations from the single cell RNA-seq data, inferCNV (Patel et al., 2014) 

(https://github.com/broadinstitute/inferCNV) was used. The raw count matrices for the measured tumor 

cells were extracted from the Conos object. For control cells, we have used normal epithelial prostate 

cells from three healthy prostate samples, published by Henry et al. (Henry et al., 2018)  The count 

matrices for the control data were downloaded from GEO under the accession number GSE120716. For 

each of the three patients we randomly selected 300 epithelial cells to serve as a control. The following 

inferCNV parameters were used: denoise=TRUE, cutoff=0.1. 

 

Analysis of intra-tumoral heterogeneity (Figures 2, S2). 

Only samples with more than 10 annotated tumor cells were considered in the analysis. The datasets 

were normalized using pagoda2 (trim=0, min.n.odgenes=1000, nPcs=3). To examine to what extent the 

first principal component (PC) of each datasets separates cells in other datasets, the cells of each 

sample were projected onto the first PC of each of the samples (Fig. S2F). Size-normalized log counts 

were used for the projection, without taking into account the dataset-specific variance normalization. 

Tumor cell datasets were integrated using Conos (k=10, k.self=5, ncomps=10, metric=’L2’, 

n.odgenes=1000), and a joint largeVis embedding was obtained for visualization. Cell clusters were 

determined using Leiden community detection algorithm with resolution of 0.6.  

  

Expression signature scores  

To account for the complex gene expression patterns in M2 tumor associated macrophage, monocytes 

differentiation to macrophage, Treg activity, CD8+ T cell dysfunction and cytotoxicity, The signature 

scores were estimated as average expression values of the genes in a given set. Specifically, we first 

calculated signature score for each cell as an average normalized (for cell size) gene expression 

magnitudes, then the signature score for each sample was computed as the mean across all cells. All 

signature gene modules are listed in the Supplementary Table 4. The M2 signature genes were from 

Aziz et al. (Azizi et al., 2018). CD8+ T cell cytotoxicity were measured by expression of CD8A, CD8B, 

GZMA, GZMM, GZMB, GZMK, GZMB, PRF1 (Rooney et al., 2015). The CD8+ T cell dysfunction genes 

were taken from Li et al. (Li et al., 2019). To define gene signature of monocytes to macrophage 

differentiation, we took top 100 differentially expressed genes based on published in vitro studies of 

monocytes to macrophage differentiation (Liu et al., 2008; Martinez et al., 2006). For this, the microarray 

data was analyzed by using affy (Liu et al., 2008) R package, and the differentially expressed genes 

were identified using limma (Martinez et al., 2006) R package. The statistical significance was assessed 

using Wilcoxon rank-sum test. To ensure robustness of the result, two types of bootstrap resampling 

were performed: i) resampling cells, and ii) resampling genes. 1000 bootstrap resampling rounds were 
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formed for each scenario, and a p-value corresponding to the 99% reproducibility power was reported in 

the figures using the following symbols: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

 

 

Differentially expressed genes 

Differential expression (DE) and marker gene detection was performed using Wilcoxon rank sum test, 

implemented by the getDifferentialGenes() function from Conos R package. The genes were considered 

differentially expressed if the p-value determined Z score was greater than 3. Since the genes were used 

primarily for pathway enrichment analysis, the Z score was not corrected for multiple hypothesis testing. 

The getDifferentialGenes() function was used to identify differences between similar subpopulations 

(CTL-1 vs. CTL-2; Mono1 vs. Mono2 vs. Mono3).  

 

For differential expression analysis between sample fractions (for example Tumor Treg vs. Benign Treg), 

getPerCellTypeDE() function in Conos was utilized. As described previously, it first forms “mini-bulk” (or 

meta-cell) RNA-seq measurements by combining all molecules measured for each gene in each 

subpopulation in each sample. This results in a collection of bulk-like RNA-seq samples, and the 

differential expression problem is then reformulated as a standard bulk RNA-seq differential expression 

problem DESeq2 to compare these “bulk-like” meta-cell samples, using appropriate design models (i.e. 

Tumor vs. Benign factor on samples). This approach is suitable for the comping groups of patient 

samples, as it focuses on the inter-individual variability (variability between patients) as opposed to cell-

to-cell variability within each sample which is much smaller. At the same time, the overall depth of the 

“mini-bulk” profiles enable to estimate the uncertainty of each the expression magnitudes (i.e. the 

samples with large number of cells will result in mini-bulk profiles of greater depth). Preliminary 

benchmarking shows that such ‘mini-bulk’ approach is effective for differential expression testing 

(Crowell, 2020). A minimal number of 10 cells (of the selected cell type) were required for a sample to be 

included in the comparison. The DESeq2 analyses were ran using “~fraction” model. For paired tests 

(within individual), “~patient+fraction” model was used. The p-values were translated into Z scores, with 

positive scores corresponding to upregulation, negative to downregulation. Several additional tests were 

implemented in additional to the mini-bulk based tests described above: i) a Wilcoxon rank sum test 

across mini-bulk samples (wZ); ii) Wilcoxon rank sum test on samples with cells resampled using 

bootstrap sampling (100 sampling rounds), reporting the Z score at 90% reproducibility power (bwZ); and 

iii) Wilcoxon rank sum test across single-cell expression matrix (i.e. without collapsing cells into “mini-
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bulk” samples) (cwZ). These tests are included in the interactive differential expression tables on the 

author’s website. 

 

Comparative analysis with public cancer datasets (Figure 5)  

To compare the profile of myeloid and T lymphocyte populations observed in our bone marrow study with 

the immune microenvironment of other cancer types, we used Conos (with k = 30, kself = 10 CPCA 

rotation space and an angular distance measure) to perform a joint alignment of myeloid cells from 

benign bone marrow (Oetjen et al., 2018), prostate cancer bone metastasis, pancreatic cancer, lung 

cancer (Lambrechts et al., 2018) and liver cancer (Zhang et al., 2019) samples. Bone marrow cell 

annotations were propagated to other cancer types using propagateLabels() function in Conos. For 

myeloid cells, we measured the cell proportion of TIM and TAM across cancer types, compared 

monocyte inflammatory signature score for the TIM-like cells, and the M2 macrophage score for the 

TAM-like. Select marker genes were shown in the heatmaps (Fig. 5E,F).  For comparison of the T 

lymphocyte states, only study containing matched (adjacent) normal control samples were analyzed. 

Joint alignment and label propagation were then performed in the same way as for monocytes. We then 

evaluated T cells exhaustion scores in CTLs, observing the expected increase in exhaustion signature 

between the tumor and adjacent normal samples, despite variable base-level expression level of 

between the tissues (Fig. S6I).  

 

Ligand and Receptor analysis (Figure 6H,I) 

To screen for potential channels of communications between different cell types, we looked at 

expression of previously annotated reciprocal ligand-receptor pairs. The annotated list containing 1307 

pairs of well-annotated receptors and ligands was downloaded from CellPhoneDB (Vento-Tormo et al., 

2018).. Both ligands and corresponding receptors were required to be detected in more than 10% of the 

cells of a given type. Initial filtering reveled 241 ligand-receptor pairs between myeloid cell and T cells. 

(Fig. 6H, Supplementary Table 5).  Further filtering for ligand-receptor channels potentially connecting 

TIM/TAM with T cell populations was performed by requiring ligands to be upregulated in TIM or TAM 

cells (compared to other myeloid cells, Zscore >5), and requiring the corresponding receptor to be 

upregulated (log fold change >0) in T cells in Tumor compared to Benign (Fig. S6I, Supplementary Table 

5). Differentially expressed genes were identified using Wilcoxon rank sum test, implemented by the 

getDifferentialGenes function in Conos. 

 

Survival analysis on bulk data (Figure S4E) 
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To test if a given gene signature is associated with differential survival of cancer patients (Cancer 

Genome Atlas Research et al., 2013) (Fig. S4E), we first calculated average expression of the signature 

in each cancer type based on the bulk RNA-seq data. The bulk patient samples were then stratified into 

two groups, based on average signature expression, separating patients with top 25% of scores and 

bottom 25%. A standard Kaplan-Meier survival analysis was then used to determine the association of 

these groups with survival rate. Kaplan-Meier survival analysis in Fig. 7C,D and Fig. S4E were performed 

using the survival R package. 

 

 

 

Gene ontology and gene set enrichment analysis (Figures 3D,E  S3E,F).  

clusterProfiler package was used to evaluate enrichment of the GO BP categories in the sets of top 300 

up- and down-regulated genes separately. The set of all expressed genes was used as a background. 

The categories with adjusted p-value of enrichment below 0.05 were then clustered into 20 clusters 

based on the similarity of the participating genes (i.e. the genes out of the 300 genes being tested that 

fall within each category, using binary distance measure). The clusters were named according to the 

most significantly enriched category, shortening some names to fit the plot. 
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