ADDITIONAL FILE 1

Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes

Authors: Carrie A. Whittle ${ }^{1}$, Arpita Kulkarni ${ }^{1}$, Nina Chung ${ }^{1}$, Cassandra G. Extavour ${ }^{1,2}$

1. Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge MA 02138, USA
2. Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge MA

Table. S1. The RNA-seq datasets for each of the male and female tissue types under study for G. bimaculatus. The number of reads (single-end) before and after trimming with BBduk (https://jgi.doe.gov/data-andtools/bbtools) is shown. The data are available at the Short Read Archive (SRA) under the project identifier PRJNA564136 (study ID SRP220521, released upon publication). See also [1].

Sex	Tissues	Sample Name	No. Reads	
Before				
Male 1	Accessory gland	After trimming	trimming	
	Brain	AK-28_S6.R1	$8,519,999$	$8,455,381$
	Somatic reproductive system	AK-25_S3.R1	$10,927,264$	$10,543,501$
	Testes	SHC-18_S14.R1	$32,497,283$	$32,430,843$
	Ventral nerve cord	SHC-17_S13.R1	$19,928,912$	$19,751,731$
		AK-26_S4.R1	$11,488,521$	$11,140,299$
Male 2	Accessory gland	AK-35_S13.R1	$15,110,718$	$14,973,668$
	Brain	AK-32_S10.R1	$18,039,328$	$17,850,399$
	Somatic reproductive system	AK-31_S9.R1	$11,993,680$	$11,702,596$
	Testes	AK-30_S8.R1	$13,672,147$	$13,529,248$
	Ventral nerve cord	AK-33_S11.R1	$11,677,747$	$11,445,159$
Female 1	Brain	AK-39_S17.R1	$13,920,966$	$13,750,206$
	Ovary	AK-37_S15.R1	$21,725,208$	$21,128,416$
	Somatic reproductive system	AK-38_S16.R1	$13,870,827$	$13,718,497$
	Ventral nerve cord	AK-40_S18.R1	$12,599,661$	$12,341,413$
Female 2	Brain	AK-45_S23.R1	$19,312,301$	$19,036,974$
	Ovary	AK-43_S21.R1	$27,627,122$	$27,049,583$
	Somatic reproductive system	AK-44_S22.R1	$11,688,814$	$11,539,571$
	Ventral nerve cord	AK-46_S24.R1	$13,591,143$	$13,143,568$

Table S 2 . The $\triangle \mathrm{RSCU}$ for each of the nine tissues under study using genes with Top 5 one-tissue status per tissue type (versus genes with the lowest 5% expression level per tissue type). ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.001$. Note that the nongonadal tissues had fewer genes with Top 5 One-tissue $\operatorname{expression~than~those~with~}$ gonadal expression, particularly for the brain, and thus inherently had lower power of t-tests. However, the largest \triangle RSCU per amino acid for each of the nine tissues is underlined and in bold face for all tissues irrespective of shown P value to show the tendency for high congruency among tissues. Codons reported previously as optimal codons using a pooled embryo/ovary EST dataset (Emb/Ov) are shown with an " X " [2]. N values for the Top 5 One-tissue genes are as follows: ovary (274), testis (270), female somatic reproductive system (67), male somatic reproductive system (104), female brain (24), male brain (22), female ventral nerve cord (32), male ventral nerve cord (33), and male accessory gland (162).

Amino Acid	Codon	Organism wide	P	Ovary	P	Testis	P	Fem somatic reproductive system	P	Male somatic reproductive system	P	Female brain	P	Male brain	P	Fem ventral nerve cord	P	Male ventral nerve cord	P	Male Acc. Gland	P
Ala	GCT	$\underline{+0.871}$	**	+0.879	**	$\underline{+0.914}$	**	$\underline{+0.723}$	**	$\underline{+0.249}$	*	$\underline{+0.483}$	*	$\underline{+0.663}$	*	$\underline{+0.339}$	*	$\underline{+0.376}$	**	+0.773	**
Ala	GCC	-0.344	**	-0.584	**	-0.650	**	-0.375	**	+0.002		-0.154		-0.299	*	-0.158		-0.182	*	-0.510	**
Ala	GCA	+0.518	**	+0.756	**	+0.836	**	+0.416	**	+0.140		+0.342	**	+0.370	*	+0.147	*	+0.292	**	+0.536	**
Ala	GCG	-1.039	**	-1.041	**	-1.104	**	-0.750	**	-0.378	*	-0.652	**	-0.714	*	-0.304	*	-0.465	**	-0.839	**
Arg	CGT	+0.463	**	+0.387	**	+0.437	**	+0.442	**	+0.041		$\underline{+0.490}$		+0.111		+0.101		-0.025		+0.236	**
Arg	CGC	-1.053	**	-1.552	**	-1.658	**	-0.801	**	-0.299		-0.537		-0.548		-0.597	*	-0.780	*	-1.295	**
Arg	CGA	+0.185	**	+0.183	*	+0.364	**	+0.137	*	+0.027		+0.431		+0.102		+0.081		+0.343	*	+0.279	*
Arg	CGG	-0.548	**	-0.520	**	-0.575	**	-0.379	**	-0.216	*	-0.349	*	-0.464	*	-0.005		-0.226		-0.453	**
Arg	AGA	$\underline{+0.881}$	**	+1.296	**	+1.296	**	$\underline{+0.645}$	**	$\underline{+0.370}$	*	+0.190		+0.392		$\underline{+0.361}$	*	$\underline{+0.538}$	*	+1.123	**
Arg	AGG	+0.047		+0.203	**	+0.159	**	-0.014		+0.105		-0.197		$\underline{+0.436}$		-0.092		+0.187		+0.057	
Asn	AAT	$\underline{+0.416}$	**	+0.661	**	$\underline{+0.713}$	**	$\underline{+0.340}$	*	$\underline{+0.086}$		$\underline{+0.306}$		$\underline{+0.262}$		$\underline{+0.226}$		$\underline{+0.252}$		+0.610	*
Asn	AAC	-0.244	**	-0.552	**	-0.594	**	-0.213	*	+0.021		-0.176		-0.307		-0.096		-0.297	*	-0.500	
Asp	GAT	$\underline{+0.520}$	**	$\underline{+0.695}$	**	$\underline{+0.801}$	**	$\underline{+0.513}$	**	$\underline{+0.132}$		$\underline{+0.333}$		$\underline{+0.156}$		$\underline{\mathbf{+ 0 . 3 8 0}}$	*	$\underline{+0.366}$	*	+0.588	**
Asp	GAC	-0.482	**	-0.669	**	-0.761	**	-0.465	**	-0.161	*	-0.285		-0.199		-0.333	*	-0.374	*	-0.563	**
Cys	TGT	$\underline{+0.368}$	**	$\underline{+0.659}$	**	$\underline{+0.698}$	**	$\underline{+0.346}$	**	$\underline{+0.155}$	*	$\underline{+0.201}$	*	$\underline{+0.217}$		$\underline{+0.390}$	*	$\underline{+0.182}$	*	$\underline{+0.504}$	**
Cys	TGC	-0.365	**	-0.594	**	-0.552	**	-0.284	**	-0.118		-0.207		-0.245		-0.236	*	-0.142		-0.461	**
Gln	CAA	$\underline{+0.254}$	**	+0.496	**	$\underline{+0.535}$	**	$\underline{+0.276}$	**	$\underline{+0.057}$		$\underline{+0.101}$		-0.048		$\underline{+0.093}$		$\underline{+0.101}$		+0.404	**
Gln	CAG	-0.218	**	-0.447	**	-0.492	**	-0.224	**	-0.062		-0.048		$\underline{+0.098}$		-0.094		-0.226	*	-0.371	*
Glu	GAA	$\underline{+0.496}$	**	$\underline{+0.649}$	**	$\underline{+0.722}$	**	$\underline{+0.334}$	**	$\underline{+0.146}$	*	$\underline{+0.277}$	*	$\underline{+0.215}$	*	$\underline{+0.209}$	*	$\underline{+0.145}$		$\underline{+0.550}$	**
Glu	GAG	-0.480	**	-0.621	**	-0.695	**	-0.311	**	-0.142	*	-0.337	*	-0.284	*	-0.183	*	-0.238	*	-0.527	**
Gly	GGT	$\underline{+0.610}$	**	+0.662	**	+0.647	**	$\underline{+0.485}$	**	+0.152		+0.350	*	$\underline{+0.504}$	*	$\underline{+0.243}$	*	+0.176	*	$\underline{+0.586}$	**

Gly	GGC	-0.709	**	-1.067	**	-1.109	**	-0.606	**	-0.139		-0.657	**	-0.431		-0.374		-0.395	**	-0.864	**
Gly	GGA	+0.483	**	$\underline{+0.714}$	**	$\underline{+0.775}$	**	+0.367	**	$\underline{+0.311}$	*	$\underline{+0.437}$	*	-0.097		+0.251		$\underline{+0.441}$	*	+0.573	*
Gly	GGG	-0.383	**	-0.320	**	-0.298	**	-0.229	*	-0.307	*	-0.104		+0.049		-0.091		-0.190		-0.278	
His	CAT	$\underline{+0.511}$	**	$\underline{+0.712}$	**	$\underline{+0.724}$	**	$\underline{+0.434}$	**	$\underline{+0.261}$	*	+0.192		$\underline{+0.205}$		$\underline{\mathbf{+ 0 . 1 6 0}}$		$\underline{+0.405}$	*	$\underline{+0.560}$	**
His	CAC	-0.452	**	-0.682	**	-0.646	**	-0.332	**	-0.168		-0.307		-0.342		-0.028		-0.266		-0.568	**
lle	ATT	$\underline{+0.603}$	**	$\underline{+0.658}$	**	$\underline{+0.731}$	**	$\underline{+0.496}$	**	$\underline{+0.207}$		$\underline{+0.595}$	*	$\underline{+0.403}$		+0.181		$\underline{+0.284}$		$\underline{+0.587}$	**
lle	ATC	-0.452	**	-0.839	**	-0.944	**	-0.480	**	-0.081		-0.482	*	-0.351		-0.278		-0.191		-0.709	**
lle	ATA	+0.045		+0.318	**	+0.392	**	+0.062		-0.015		-0.071		-0.024		$\underline{+0.265}$		-0.100		+0.263	
Leu	TTA	$\underline{+0.537}$	**	$\underline{+0.843}$	**	$\underline{+0.930}$	**	$\underline{+0.454}$	**	$\underline{+0.166}$	*	$\underline{+0.519}$	*	$\underline{+0.257}$		+0.112		$\underline{+0.449}$	*	$\underline{+0.663}$	**
Leu	TTG	+0.383	**	+0.585	**	+0.553	**	$+0.324$		+0.102		+0.077		+0.059		+0.127		+0.130		+0.560	
Leu	CTT	+0.409	**	+0.524	**	+0.557	**	+0.414	**	+0.041		+0.284		+0.195		$\underline{+0.417}$	*	+0.192	*	+0.436	**
Leu	CTC	-0.629	**	-0.804	**	-0.778	**	-0.492	**	-0.112		-0.358		-0.304		-0.213		-0.254		-0.625	**
Leu	CTA	+0.007		+0.144	**	+0.159	**	+0.086	*	-0.008		+0.058		+0.066		-0.064		-0.065		+0.145	*
Leu	CTG	-0.692	**	-1.280	**	-1.409	**	-0.778	**	-0.180		-0.576		-0.264		-0.370		-0.628	*	-1.169	**
Lys	AAA	$\underline{+0.263}$	**	$\underline{+0.488}$	**	$\underline{+0.565}$	**	$\underline{+0.247}$		$\underline{\mathbf{+ 0 . 0 5 9}}$		$\underline{+0.133}$		$\underline{+0.221}$		$\underline{+0.184}$		$\underline{+0.069}$		$\underline{+0.482}$	
Lys	AAG	-0.160	**	-0.421	**	-0.505	**	-0.203	*	+0.015	*	-0.224		-0.139		-0.173		-0.159		-0.413	*
Phe	TTT	$\underline{+0.407}$	**	$\underline{+0.666}$	**	$\underline{+0.707}$	**	$\underline{+0.350}$	**	$\underline{+0.152}$	*	+0.332	*	$\underline{+0.309}$	*	$\underline{+0.332}$	*	$\underline{+0.146}$	*	$\underline{+0.513}$	**
Phe	TTC	-0.265	**	-0.584	**	-0.614	**	-0.277	**	-0.049	*	-0.221	*	-0.203	*	-0.290	*	-0.154		-0.415	**
Pro	CCT	$\underline{+0.749}$	**	$\underline{+0.737}$	**	+0.828	**	$\underline{+0.788}$	**	$\underline{+0.279}$	*	+0.351		$\underline{+0.364}$		$\underline{+0.452}$	*	$\underline{+0.418}$	*	+0.615	**
Pro	CCC	-0.359	**	-0.600	**	-0.659	**	-0.504	**	-0.019		-0.292		-0.178		-0.289	*	-0.366	*	-0.580	**
Pro	CCA	+0.483	**	+0.732	**	$\underline{+0.873}$	**	+0.497	**	+0.165	*	$\underline{+0.517}$	*	+0.226		+0.266	*	+0.330	*	$\underline{+0.683}$	**
Pro	CCG	-0.843	**	-0.900	**	-0.998	**	-0.727	**	-0.371	*	-0.521	*	-0.537	*	-0.367	*	-0.562	**	-0.700	**
Ser	TCT	$\underline{\mathbf{+ 0 . 7 3 1}}$	**	+0.691	**	+0.770	**	+0.379	*	+0.148		+0.102		$\underline{+0.530}$		+0.141		+0.271		$\underline{+0.610}$	*
Ser	TCC	-0.208	**	-0.484	**	-0.554	**	-0.326		+0.039		-0.082		-0.452	*	-0.305	*	-0.264		-0.479	
Ser	TCA	+0.493	**	+0.708	**	$\underline{+0.855}$	**	$\underline{+0.568}$	**	$\underline{+0.350}$	*	$\underline{+0.498}$	*	+0.223		$\underline{+0.457}$	*	$\underline{+0.326}$	*	+0.595	**
Ser	TCG	-0.723	**	-0.843	**	-0.925	**	-0.551	**	-0.406	*	-0.683	**	-0.357		-0.460	*	-0.498	**	-0.696	**
Ser	AGT	+0.325	**	$\underline{+0.716}$	**	+0.630	**	+0.387	*	+0.058		+0.436	*	+0.327		+0.212		+0.424		+0.600	*
Ser	AGC	-0.619	**	-0.773	**	-0.763	**	-0.443	**	-0.176		-0.258		-0.259		-0.026	*	-0.243		-0.619	**
Thr	ACT	$\underline{+0.644}$	**	+0.724	**	+0.797	**	+0.452	**	$\underline{+0.222}$	*	+0.323	*	$\underline{+0.510}$	*	$\underline{+0.447}$	*	$\underline{+0.324}$		$\underline{+0.633}$	**
Thr	ACC	-0.223	**	-0.487	**	-0.547	**	-0.262	**	+0.050		-0.110		-0.337		-0.213		-0.106		-0.346	*
Thr	ACA	+0.493	**	$\underline{+0.783}$	**	+0.868	**	$\underline{+0.469}$	**	+0.163	*	$\underline{+0.586}$	**	+0.150		+0.304	*	+0.205	*	+0.629	**
Thr	ACG	-0.873	**	-0.997	**	-1.077	**	-0.624	**	-0.439	*	-0.758	*	-0.288		-0.501	*	-0.498	**	-0.906	**

Tyr	TAT	$\underline{+0.430}$	**	$\underline{+0.671}$	**	$\underline{+0.668}$	**	$\underline{+0.442}$	**	$\underline{+0.203}$	*	$\underline{+0.214}$		$\underline{+0.295}$		$\underline{+0.302}$	*	$\underline{+0.306}$		+0.554	**
Tyr	TAC	-0.186	**	-0.466	**	-0.477	**	-0.229	*	-0.009		-0.156		-0.064		-0.268	*	-0.181		-0.441	*
Val	GTT	$\underline{+0.600}$	**	$\underline{+0.787}$	**	$\underline{+0.788}$	**	$\underline{+0.474}$	**	$\underline{+0.104}$		+0.252	*	$\underline{+0.313}$	*	+0.073		$\underline{+0.288}$		+0.709	**
Val	GTC	-0.394	**	-0.474	**	-0.535	**	-0.361	**	-0.037		-0.136		+0.040		-0.336	*	-0.199		-0.377	**
Val	GTA	+0.314	**	+0.435	**	+0.493	**	$+0.247$	**	+0.112	*	$\underline{+0.302}$	*	+0.255		$\underline{+0.196}$	*	+0.138	*	+0.347	**
Val	GTG	-0.484	**	-0.725	**	-0.741	**	-0.340	**	-0.197	*	-0.397	*	-0.587		-0.039		-0.329	*	-0.661	**

Table S3. Top predicted GO functional groups for organism-wide highly expressed genes (top 5% expression levels when averaged FPKM across all nine tissues) with elevated use (RSCU ≥ 1.5) of wobble codons. Results are also shown with elevated use of the same wobble codons for genes with the top 5% expression within the ovaries and testes and not in any other tissues (Top50netissue). The clusters with the greatest enrichment (abundance) scores are shown per category. P-values are derived from a modified Fisher's test, where lower values indicate greater enrichment. Data is from DAVID software [3] using those G. bimaculatus genes with D. melanogaster orthologs (BLASTX e $<10^{-6}$ [4]).

GGT Gly	Organism wide				
			GAT Asp		
Cluster 1	Enrichment Score: 11.12	P value	Cluster 1	Enrichment Score: 8.77	P value
	cytoplasmic translation	$2.20 \mathrm{E}-21$		cytoplasmic translation	$3.80 \mathrm{E}-16$
	Ribosomal protein	$4.10 \mathrm{E}-18$		Ribosomal protein	$1.70 \mathrm{E}-14$
Cluster 2	Enrichment Score: 8.77		Cluster 2	Enrichment Score: 5.56	
	Mitochondrion inner membrane	$4.20 \mathrm{E}-11$		Mitochondrion	$1.20 \mathrm{E}-09$
	Mitochondrion	$4.80 \mathrm{E}-10$		Mitochondrion inner membrane	$2.00 \mathrm{E}-05$
Cluster 3	Enrichment Score: 5.36		Cluster 3	Enrichment Score: 4.89	
	Mitochondrion	$4.80 \mathrm{E}-10$		Mitochondrion	1.20E-09
	Transit peptide	$1.50 \mathrm{E}-05$		Transit peptide	$2.70 \mathrm{E}-04$
CAT His			TAT Tyr		
Cluster 1	Enrichment Score: 9.8	P value	Cluster 1	Enrichment Score: 5.78	P value
	cytoplasmic translation	$1.60 \mathrm{E}-19$		Mitochondrion inner membrane	$6.80 \mathrm{E}-12$
	Ribosomal protein	$1.70 \mathrm{E}-16$		Oxidative phosphorylation	$6.40 \mathrm{E}-08$
Cluster 2	Enrichment Score: 8.61		Cluster 2	Enrichment Score: 3.24	
	Mitochondrion	$3.10 \mathrm{E}-11$		Electron transport	$9.90 \mathrm{E}-05$
	Mitochondrion inner membrane	$1.00 \mathrm{E}-09$		respiratory chain	$9.20 \mathrm{E}-04$
Cluster 3	Enrichment Score: 6.72		Cluster 3	Enrichment Score: 2.98	
	Oxidative phosphorylation	$6.40 \mathrm{E}-11$		cytoplasmic translation	$1.50 \mathrm{E}-07$
	Oxidoreductase	$4.00 \mathrm{E}-10$		ribosome	$4.50 \mathrm{E}-05$
			Top5 ${ }^{\text {One-tissue Ovaries }}$		
GGT Gly			GAT Asp		
Cluster 1	Enrichment Score: 1.93	P value	Cluster 1	Enrichment Score: 2.35	P value
	Helicase	$3.50 \mathrm{E}-04$		eggshell chorion gene amplification	$1.30 \mathrm{E}-05$
	DNA/RNA helicase, DEAD/DEAH box type, N terminal	$3.50 \mathrm{E}-03$		Cell cycle	5.80E-02
	P-loop containing nucleoside triphosphate hydrolase	$1.10 \mathrm{E}-02$		Cell division	$1.20 \mathrm{E}-01$
	ATP-binding	$5.50 \mathrm{E}-02$	Cluster 2	Enrichment Score: 1.78	
Cluster 2	Enrichment Score: 1.38			eggshell chorion gene amplification	$1.30 \mathrm{E}-05$
	nuclear pore	$1.10 \mathrm{E}-02$		DNA binding	$4.00 \mathrm{E}-01$
	protein transporter activity	$2.70 \mathrm{E}-02$	Cluster 3	Enrichment Score: 1.43	
Cluster 3	Enrichment Score: 1.1			Protein transport	$2.90 \mathrm{E}-03$
	Nucleus	8.20E-03		neurotransmitter secretion	$2.50 \mathrm{E}-02$
CAT His			TAT Tyr		
Cluster 1	Enrichment Score: 1.45	P value	Cluster 1	Enrichment Score: 1.99	P value
	Zinc	$1.00 \mathrm{E}-02$		RNA secondary structure unwinding	$2.80 \mathrm{E}-04$
	Metal-binding	$5.40 \mathrm{E}-02$		RNA helicase, DEAD-box type, Q motif	$5.00 \mathrm{E}-04$
Cluster 2	Enrichment Score: 1.2			ATP-dependent RNA helicase activity	$1.30 \mathrm{E}-03$
	Protein transport	$1.90 \mathrm{E}-02$		Nucleotide-binding	$2.60 \mathrm{E}-02$
	Transport	$1.10 \mathrm{E}-01$		Hydrolase	$3.40 \mathrm{E}-01$
Cluster 3	Enrichment Score: 1.04		Cluster 2	Enrichment Score: 1.23	
	ubiquitin-protein transferase activity	$1.40 \mathrm{E}-02$		WD40	$3.20 \mathrm{E}-02$
	Zinc-finger	$2.00 \mathrm{E}-02$		WD40/YVTN repeat-like-containing domain	$8.80 \mathrm{E}-02$
	protein polyubiquitination	$8.50 \mathrm{E}-02$	Cluster 3	Enrichment Score: 1.16	
	Zinc finger, RING/FYVE/PHD-type	$2.70 \mathrm{E}-01$		ATP-binding	$8.20 \mathrm{E}-03$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \multicolumn{4}{|c|}{Top5 ${ }_{\text {One-tissue }}$}

\hline \multicolumn{2}{|l|}{GGT Gly} \& \& GAT Asp \& \&

\hline \multirow[t]{6}{*}{Cluster 1} \& Enrichment Score: 1.72 \& P value \& \multirow[t]{5}{*}{Cluster 1} \& Enrichment Score: 2.26 \& P value

\hline \& protein import into nucleus \& $4.80 \mathrm{E}-03$ \& \& Ubl conjugation pathway thiol-dependent ubiquitin-specific protease \& $1.50 \mathrm{E}-03$

\hline \& Armadillo-type fold \& $8.90 \mathrm{E}-03$ \& \& activity \& $3.30 \mathrm{E}-03$

\hline \& Armadillo-like helical \& $1.20 \mathrm{E}-02$ \& \& protein deubiquitination \& $3.40 \mathrm{E}-03$

\hline \& protein transporter activity \& $1.30 \mathrm{E}-02$ \& \& Protease \& $5.60 \mathrm{E}-02$

\hline \& cytosol \& $3.70 \mathrm{E}-01$ \& Cluster 2 \& Enrichment Score: 1.56 \&

\hline \multirow[t]{3}{*}{Cluster 2} \& Enrichment Score: 0.91 \& \& \& Zinc finger, RING/FYVE/PHD-type \& $8.80 \mathrm{E}-03$

\hline \& Mitochondrion inner membrane \& $4.00 \mathrm{E}-02$ \& \& Metal-binding \& $1.90 \mathrm{E}-02$

\hline \& transmembrane region \& $3.20 \mathrm{E}-01$ \& Cluster 3 \& Enrichment Score: 0.88 \&

\hline \multirow[t]{3}{*}{Cluster 3} \& Enrichment Score: 0.67 \& \& \& Mitosis \& $8.20 \mathrm{E}-02$

\hline \& Transmembrane helix \& $1.90 \mathrm{E}-01$ \& \& \multirow[t]{2}{*}{Cell cycle} \& \multirow[t]{2}{*}{$2.50 \mathrm{E}-01$}

\hline \& Membrane \& $2.00 \mathrm{E}-01$ \& \& \&

\hline \multicolumn{3}{|l|}{CAT His} \& \multicolumn{3}{|l|}{TAT Tyr}

\hline \multirow[t]{4}{*}{Cluster 1} \& Enrichment Score: 2 \& \multirow[t]{2}{*}{P value} \& \multirow[t]{3}{*}{Cluster 1} \& Enrichment Score: 1.63 \& \multirow[t]{4}{*}{P value

$1.20 \mathrm{E}-02$
$2.30 \mathrm{E}-02$}

\hline \& Dual specificity phosphatase, subgroup, catalytic domain \& \& \& Cell cycle \&

\hline \& protein tyrosine/serine/threonine phosphatase activity \& $6.50 \mathrm{E}-03$ \& \& Mitosis \&

\hline \& protein dephosphorylation \& $1.20 \mathrm{E}-01$ \& Cluster 2 \& Enrichment Score: 0.95 \&

\hline \multirow[t]{5}{*}{Cluster 2} \& Enrichment Score: 1.68 \& \& \& G-protein beta WD-40 repeat \& $2.40 \mathrm{E}-02$

\hline \& Zinc \& $3.10 \mathrm{E}-03$ \& \& WD40/YVTN repeat-like-containing domain \& $2.30 \mathrm{E}-01$

\hline \& Metal-binding \& $1.70 \mathrm{E}-02$ \& \multirow[t]{7}{*}{Cluster 3} \& Enrichment Score: 0.88 \&

\hline \& Ubl conjugation pathway \& $2.90 \mathrm{E}-02$ \& \& ZnF_C2H2 \& $8.20 \mathrm{E}-02$

\hline \& Enrichment Score: 1.57 \& \& \& \multirow[t]{5}{*}{domain} \& \multirow[t]{5}{*}{$2.50 \mathrm{E}-01$}

\hline \multirow{4}{*}{Cluster 3} \& zinc ion binding \& $1.10 \mathrm{E}-02$ \& \& \&

\hline \& Zinc finger, RING/FYVE/PHD-type \& $1.40 \mathrm{E}-02$ \& \& \&

\hline \& ubiquitin-protein transferase activity \& $3.30 \mathrm{E}-02$ \& \& \&

\hline \& protein ubiquitination \& $5.70 \mathrm{E}-02$ \& \& \&

\hline
\end{tabular}

Table S4. The size/complexity scores, hydropathy, and protein folding characteristics for each of the 20 amino acids. These data were used for analysis of amino acid usage [5-7].

Amino acid	S / C score	Hydrophobic score	Folding property
Gly	1	-0.4	breaker
Ala	4.76	1.8	alpha
Val	12.28	4.2	beta
Ile	16.04	4.5	beta
Leu	16.04	3.8	alpha
Ser	17.86	-0.8	breaker
Thr	21.62	-0.7	beta
Lys	30.14	-3.9	alpha
Pro	31.8	-1.6	breaker
Asp	32.72	-3.5	breaker
Asn	33.72	-3.5	breaker
Glu	36.48	-3.5	alpha
Gln	37.48	-3.5	alpha
Phe	44	2.8	alpha
Arg	56.34	-4.5	alpha
Tyr	57	-1.3	beta
Cys	57.16	2.5	beta
His	58.7	-3.2	alpha
Met	64.68	1.9	alpha
Trp	73	-0.9	beta

Table S5. The average amino acid use of the Top5one-tissue genes in G. bimaculatus (frequency) for each of nine tissue types. Genes had to be in the top 5% of only one tissue type and no other tissues. Differences between male- and female-paired tissues are shown. **Indicates $\mathrm{P}<0.05$ using at-test between males and females for each tissue, ${ }^{*}$ indicates $\mathrm{P}<0.1$ and thus is a putative difference. Values for male accessory glands are also shown. The percent differences (Diff.) is indicated for females versus males (female demoninator). The largest three statistically signficant values per tissue are in bold.

Table S6. The Spearman Ranked correlations of the average amino acid frequency for genes with Top 5 one-tissue status in G. bimaculatus. Data were used from Table S5 determine correlations across all 20 amino acids between pairs of female and pairs of male tissues. ** Indicates $\mathrm{P}<0.001$.

Female tissues (R-values)							Male tissues (R-values)								
Female tissues	Gonad	P	SRS	P	Brain	P	Male tissues	Gonad	P	SRS	P	Brain	P	VNC	P
Somatic reproductive system	0.948	**					Somatic reproductive system	0.894	**						
Brain	0.907	**	0.958	**			Brain	0.884	**	0.95	**				
Ventral nerve cord	0.904	**	0.957	**	0.956	**	Ventral nerve cord	0.861	**	0.973	**	0.938	**		
							Male Accessory glands	0.87	**	0.964	**	0.925	**	0.977	**

Notes: $\mathrm{SRS}=$ somatic reproductive system, $\mathrm{VNC}=$ ventral nerve cord.

Fig. S1. The relationship between amino acid usage (percent per gene, averaged across all genes) and size/complexity (S / C) score across all 15,539 annotated genes in G. bimaculatus. Spearman's R and P values are shown.

Text File S1

Biased Gene Conversion

A possible factor that could contribute to a differences in AT3 content between low and high expressed genes, used here to define optimal codons (Table 1), is biased gene conversion (BGC) [8]. For instance, it has been reported that errors during DNA repair can lead to enhanced GC content of genes, due to favoring of GC insertions in mismatch repair of strand breaks resulting from meiotic recombination, that can ultimately enhance GC content [9-12]. In humans BGC conversion was found to be more common in lowly than highly expressed genes in the germ cells during meiosis, which was interpreted as reflecting greater crossing-over events in genes exhibiting low expression (or, inhibition of crossing-over events in genes with high expression) [13, 14]. Thus, the high AT3 (or low GC3) of organism-wide highly expressed genes observed here in G. bimaculatus in Table 1 could possibly result from lower BGC (as the organism-wide lowly expressed genes had <1 FPKM (or absent expression) in the male and in the female gonads containing the meiotic cells. Such genes thus may be prone to more frequent crossing over than highly expressed genes, which could cause lower and higher AT3 respectively). Further, BGC may be expected to enhance both the GC3 and GC-I content in the lowly expressed genes [13, 15], which may be consistent with a positive correlation for AT-I and AT3 to gene expression level (that infers higher GC content at lower expression, see main text). Thus, we do not exclude a role of BGC in contributing to the background nucleotide composition, and in partially shaping codon use in protein-coding genes in G. bimaculatus, particularly in the GC content of lowly expressed gonadal genes, as has been suggested in some mammals [13]. Crucially however, the fact that we found nearly identical AT3 optimal codons across all nine distinct tissue types, including those highly versus lowly expressed genes from male and female meiotic tissues (testis, ovary), and for all other seven studied tissues wherein meiosis does not occur (Additional file 1: Table S 2), suggests BGC is not the primary factor shaping optimal codon use (or, in other words, not causing the AT3 differences between high and low expression classes). Rather, optimal codon use in highly expressed genes is likely substantially shaped by selection, with a comparatively minor role of mutational bias (Fig. 1).

References

1. Whittle CA, Kulkarni A, Extavour CG: Sex-biased genes expressed in the cricket brain evolve rapidly. BioRxiv 2020, www.biorxiv.org/content/10.1101/2020.07.07.192039v1
2. Whittle CA, Extavour CG: Codon and amino acid usage are shaped by selection across divergent model organisms of the Pancrustacea. G3: Genes, Genomes, Genetics 2015, 5(11):2307-2321.
3. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 1997, 25(17):3389-3402.
5. Sabbia V, Piovani R, Naya H, Rodriguez-Maseda H, Romero H, Musto H: Trends of amino acid usage in the proteins from the human genome. Journal of Biomolecular Structure and Dynamics 2007, 25(1):55-59.
6. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982, 157(1):105-132.
7. Dufton MJ: Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? Journal of Theoretical Biology 1997, 187(2):165-173.
8. Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glemin S, Bierne N, Duret L: Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Molecular Biology and Evolution 2018, 35(5):1092-1103.
9. Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P: Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biology 2005, 6(8):R67.
10. de Proce SM, Zeng K, Betancourt AJ, Charlesworth B: Selection on codon usage and base composition in Drosophila americana. Biology Letters 2012, 8(1):82-85.
11. Zeng K, Charlesworth B: Studying patterns of recent evolution at synonymous sites and intronic sites in Drosophila melanogaster. Journal of Molecular Evolution 2010, 70(1):116-128.
12. Marais G: Biased gene conversion: implications for genome and sex evolution. Trends in Genetics 2003, 19(6):330-338.
13. Pouyet F, Mouchiroud D, Duret L, Semon M: Recombination, meiotic expression and human codon usage. eLife 2017, 6.
14. McVicker G , Green P : Genomic signatures of germline gene expression. Genome Research 2010, 20(11):1503-1511.
15. Chamary JV, Hurst LD: Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Molecular Biology and Evolution 2004, 21(6):1014-1023.
