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Abstract— Parallel independent component analysis (pICA) is a data-driven method that identifies the maximally in-
dependent components of multiple imaging modalities while simultaneously investigating the strength of their correla-
tions.   Researchers using pICA are given the option to use the suggested model order calculated by the minimum descrip-
tive length (MDL) algorithm, or they can choose their own model order.  To date, there are no suggested guidelines for this 
choice.  To test the sensitivity of pICA to the selection of model order, we applied it to a well-researched brain disorder, 
schizophrenia, looking at the correlations between patterns of grey matter volume (GM) volume and white matter in-
tegrity, measured using fractional anisotropy (FA).   We varied model orders from low to high, and tested the sensitivity to 
disorder effects (cases vs controls), similarity of spatial maps identified across model orders, consolidation or distribution 
effects related to model order selection, and the performance of the minimum descriptive length (MDL) algorithm.  The 
pICA results (multimodal analysis) were also compared to the ICA (unimodal analysis) for each imaging modality.  Across 
model orders, there was consistent sensitivity to disorder effects, and clustered patterns of spatial maps for both the GM 
and FA reflecting those differences.  The MDL-estimated model order captured the majority, but not all, of the spatial 
patterns present in the GM and FA.  There was not the expected consolidation of spatial maps at lower model orders, nor 
the distribution of spatial maps at higher model orders.  The spatial patterns identified in the ICA closely resemble those 
found in the pICA, although lacking the benefit of the optimization algorithm, were not as highly correlated.  This offers 
some insight and guidance for researchers interested in using pICA with regard to selecting model order for their particu-
lar analysis of multiple imaging modalities. 

Index Terms—Diffusion tensor imaging, fusion imaging, grey matter, magnetic resonance imaging, multimodal imag-
ing, parallel independent component analysis, structural imaging, schizophrenia, white matter.  

I. INTRODUCTION 

MULTIMODAL analysis, when applied to magnetic resonance imaging (MRI), offers an opportunity 

to take the understanding of brain function and dysfunction a step further by fusing different modalities of imaging 
data, allowing deeper insights into the relationships between already well-developed bodies of knowledge [1]. As 
yet, these types of analysis are underutilized and deserve more exploration. A multimodal analysis of two different 
image modalities, for example, will search for patterns of interactions, revealing relationships that a single modality 
cannot bring to light.  

There are two main types of multimodal analysis: model-driven and data-driven. Model-driven multimodal analy-
sis uses an a priori hypothesis, requiring a specific question based on previous knowledge of the problem, such as a 
general linear model or dynamic causal modeling.  In contrast,  data-driven multimodal analysis is a relatively hy-
pothesis-free method of investigating neuroimaging that allows exploration of the data without needing a hypothesis 
[2]. Parallel independent component analysis (pICA) can be a hybrid of the two, a semi-blind method that facilitates 
a data-driven whole brain exploration of the relationships between the two imaging modalities, while allowing some 
input from the researchers into the algorithm, including selection of the model order used.  When the MDL is used to  
estimate the number of components from the data, pICA is then a data-driven analysis.  [3]. 

pICA takes an already powerful tool, independent component analysis (ICA), and uses it to identify the maximal-
ly independent components of multiple modalities while simultaneously investigating their correlations [4]. Used in 
conjunction with ICASSO [32], an algorithm designed specifically to improve the stability of estimated components 
for neuroimaging data, pICA can be used to both identify and quantify the relationships between the features, or 
spatial patterns in the brain images. This emphasis on the pattern of interactions also makes it more robust to noise, a 
non-trivial consideration when dealing with neuroimaging [2]. Individual variance between subjects is reflected in 
the loading coefficients of the features. 

Figure 1 outlines the pICA process. Once the components for each modality have been identified, the bridge be-
tween the two data sets is the constraint, which determines the optimal interconnection between them. Two safe-
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guards are used to prevent over/underestimating the existing interrelationships: the dynamic updating of the con-
strained interconnections, allowing them to vary between iterations, and the adaptive learning rates of the terms 
within the cost function, which are updated in parallel. For a more complete description of the algorithm, see [24].  

 

When using ICA, a key issue for researchers is determining the amount of data-reduction that should be applied to 
the images before the analysis, reflected in the choice of component numbers. A default method, the minimum de-
scription length (MDL) algorithm, should suggest an optimal number of components and is provided within the 
software package.  This algorithm has proven useful in decomposing fMRI data (ICA), but to date has not been ex-
plicitly tested on sMRI or DTI, nor has its performance when used with fusion analysis been examined. [19]  We 
undertook to test the effect of model order, or number of components, on the sensitivity to case/control differences 
and the identified spatial patterns. We wanted to see the impact, if any, model order choice had on the consolidation 
and/or distribution of the networks with significant group differences.  We also wanted to compare the performance 
of the MDL to other model orders with regard to its ability to capture the spatial maps identified by the pICA.  We 
ran successive iterations of the pICA using varied numbers of components and constraints to discover how many 
pairs would be significantly correlated, how many would show significant group differences, and how similar the 
spatial maps identified were across differing model orders. We also ran individual ICAs on both the image modali-
ties using source-based morphometry (SBM) at varied model orders to test the similarity of those spatial maps that 
had significant group differences and to compare those to the ones found in the pICA at the MDL suggested model 
order. 

To do this effectively, we chose a well-studied disorder, schizophrenia, and used a well-researched data set (CO-
BRE) [25].  While few have explored the relationship between the grey and white matter changes that characterize 
this disorder, the diffuse, diverse, and wide-spread changes in both neural types are well-documented, and previous 
unimodal research establishes a global association between the reduction in grey matter and white matter integrity 
loss [1,5,6,7]. There have been numerous multimodal analyses investigating various aspects of schizophrenia, in-
cluding a study using joint ICA (jICA) that identified group differences within joint sources of grey and white matter 
volume between healthy controls (HC) and patients with schizophrenia (SZ) [8].  Few have applied pICA to the grey 
matter volume estimates (GM) from the sMRI images and the fractional anisotropy (FA) measurements from the 
DTI images to probe the relationship between the volume of the grey matter and the integrity of the white matter in 
HC compared to SZ. 

II. METHODS 
Subjects 

Figure 1: The parallel independent component 
analysis iteration optimization procedure, when 
complete, finds the link between two multivariate 
patterns and calculates their correlation, creating 
the correlated pairs of FA/GM components [3]. 
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The images were collected from 157 subjects, 82 healthy controls (HC) and 75 subjects with schizophrenia (SZ) 
as part of the COBRE dataset [25]. Two subjects with schizophrenia were removed for poor imaging data. The final 
total was 155, with the HC group having 62 males and 20 females, and the SZ group having 59 males and 15 fe-
males. Both groups ranged from 18-65 years in age. The Structured Clinical Interview for DSM Disorders (SCID) 
was used to gather diagnostic information and subjects were excluded if they had history of substance abuse or de-
pendence within the last 12 months, severe head trauma with more than 5 minutes loss of consciousness, neurologi-
cal disorders, or severe cognitive impairment. All subjects provided informed consent prior to the study. A Welch’s 
two sample t-test and a Pearson’s chi-squared test were used to test for group differences in age and gender respec-
tively using R version 3.5.0. 

Image Collection 
The data were collected on a Siemens 3T Trio TIM scanner at the Mind Research Network, Albuquerque, NM.  
The T1-weighted images for GM were collected in the sagittal plane, interleaved, multi-slice mode in a single 

shot with these parameters:  TR/TE/TI = 2530/[1.64,  3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7 degrees, FOV = 
256x256 mm, matrix 256x256x176, voxel size =1x1x1 mm, number of echos = 5, pixel bandwidth = 650 Hz, total 
scan time = 6 min.  

The dMRI DTI images for FA were collected using 30 gradient directions and 5 b=0, for a total of 72 slices with a 
slice thickness of 2mm (isotroptic resolution of 2x2x2 mm). FOV=256x256 mm, TR/TE=9000 ms/84 ms, encoded 
A-P. Sequence bandwidth was 1562 Hz/Px and echo spacing was 0.72 ms with an EPI factor of 128.  For more in-
formation, see Aine et al [30] 

Image Processing 

dMRI to FA 
An FSL v5.0.10 pipeline was used to preprocess the DTI data [9]. A quality control of the DTI images was done 

using DTIPrep to ensure that a minimum of 25 gradient directions for each subject were free of artifacts [31].  Eddy 
current correction for gradient distortions and head motion were applied to the diffusion-weighted images [10], after 
which a brain extraction tool (BET) was used to remove non-brain tissue from the image [11]. A diffusion tensor 
model was fitted to each voxel with DTIFIT [12], creating the fractional anisotropy images. All subjects' FA data 
were then aligned into a common space using the nonlinear registration tool FNIRT [27,28], which uses a b-spline 
representation of the registration warp field [29]. Leaving the FA unsmoothed and in 1x1x1 MNI152 resolution 
eliminated spurious results due to partial voluming. 

sMRI to GM  

The T1-weighted sMRI images were reoriented and registered to the MNI152 template and resampled to 2mm x 
2mm x 2mm. Using DARTEL in SPM12, a high-dimensional normalization pipeline [16], the non-brain tissues were 
stripped and the grey matter, white matter, and cerebral spinal fluid were segmented, leaving normalized, modulated, 
Jacobian-scaled grey matter images that were then smoothed by an 8mm x 8mm x 8mm Gaussian kernel.  

pICA.  

Parallel ICA was performed using the Fusion ICA Toolbox (FITv2.0a) run in Matlab R2017b. See Figure 1 for 
algorithm details. For the initial iteration, principle components for each modality were estimated using a minimum 
description length in the FIT software (4 FA components and 52 GM components when estimated separately, 12 
when combined) [17]. The descending trend of entropy was allowed to be -0.001 maximally. ICASSO software was 
used to ensure cluster stability by retesting each FastICA 10 times.  

Ten different pICA were run with different model orders, i.e. with the number of components ranging from 11 to 
39 for both features. Each model order was constrained in the number of correlations to roughly half the component 
number. For each pICA, each subject’s data are broken down into common GM and FA spatial patterns (compo-
nents), and the loading coefficients for these components.  

We identified the case/control differences in the loading coefficients for the correlated pairs of GM/FA compo-
nents in each model order using a two-sample t-test. Z-scores of the spatial patterns were thresholded at |z| > 3 to 
identify component clusters. 
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Comparisons Across Model Order 

 Comparisons across model order were made using FSL to examine the consistency of the FA and GM components 
identified with significant group differences.  A correlation analysis was done first, using the absolute values of the 
FA and GM component images and then correlated across model numbers using fslcc.  The results were compiled in 
a heatmap using R version 3.5.0 and clustered to reveal repeating patterns of components across different model 
orders.  A Jaccard Index of similarity was calculated next for each modality to explore the possibility of subsetting 
(consolidation/distribution) of spatial patterns across the model orders.  Fslmaths was used to create images that 
calculated the ratio between the intersection of two components and their union.  A heatmap of the similarity index 
for each modality was created in R.   

Correlation analysis across model orders using the source-based morphology (SBM). 

 SBM is the ICA of each modality in isolation using the gift toolbox (SBM v1.0b).  For both FA and GM, 10 dif-
ferent model orders were tested using parameters identical to the pICA process. A correlation matrix and resulting 
heatmap for each modality was calculated using R, focusing on the spatial maps with significant group differences 
as identified using the gift ANOVA toolbox.  A correlation between the FA and GM spatial maps with significant 
group differences from the MDL recommended number of components for the pICA (12 components) was done in R 
to identify relationships between the two modalities to be compared to the pICA correlated spatial maps. 

III. RESULTS 

pICA Results 
All 10 pICA models were successful at finding significantly correlated pairs of components (multiple comparison 

correction 0.05/number of components per model order, see Supplementary Table 1), as well as component pairs 
with significant group differences. See Table 1. 

Comparisons Across pICA Model Order Results 

In figures 2a and 2b, we see the frequency of correlation coefficients by model order between the spatial maps of 
the FA and GM respectively.  The majority of the model orders for FA had a mean of correlation coefficients around 
0.60, showing a consistent relationship between the spatial maps across model orders.  The frequency distribution 

Model Order Constraints Significantly Corre-
lated Pairs

Pairs with Significant 
Case vs Control 

Difference

Highest r-value of Signif-
icantly Correlated Pairs

11x11 5 5 2 0.73

12x12 6 6 3 0.61

15x15 8 8 4 0.81

17x17 9 9 3 0.86

20x20 10 10 1 0.72

23x23 12 12 5 0.78

28x28 14 14 3 0.75

33x33 17 17 2 0.54

36x36 18 18 5 0.82

39x39 19 17 1 0.42
Table 1: Summary of the pICA iterations: Listed here are the model orders investigated, how many correlation constraints per model order, the 
number of significantly correlated component pairs found (p corrected for multiple comparisons for each model order investigated), how many 
significantly correlated component pairs had significant group differences (two-sample t-test), and the highest correlation value for the signifi-
cant component pairs with significant group differences found by the pICA.
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for the correlation of GM spatial maps showed some inconsistency in their relationships across model orders.  The 
lower model orders (11x11, 12x12, and 15x15) had a mean of correlation coefficients of 0.40, but in the higher 
models orders (17x17 - 39x39), the mean of the correlation coefficients steadily drops from 0.40 to 0.35, showing a 
drop in consistency in the relationship between the spatial maps as the model order increases, as well as a lower con-
sistency in the GM spatial maps across model orders compared to the FA spatial maps.  

Figures 3 and 4 are heat maps showing the results of the correlation analysis between the spatial maps with group 
differences of the pICA components for FA and GM across the 10 different model orders. The GM results showed 
more distinct clusters of related spatial maps than the FA.  The 3 spatial maps of the mdl recommended model order  
represented the main clusters of spatial maps found across model orders in the FA results, but did not represent all 
the spatial map clusterings from the GM. 

 

Figure 2a and b: FA and GM Violin plots respectively, showing the frequency of the correlation indexes per model order. 

Figure 3: Heat map and hierarchical cluster analysis of FA spatial maps with group differences across model orders, thresholded at 0.7. Each 
axis lists the pICA model order number, and the component number. (i.e. 12_6 is from model order 12x12 and it’s the 6th FA component identi-
fied in the 12x12 model order). The branches of the dendrogram represent the dissimilarities between the clusters using their squared Euclidian 
distances.  The majority of the highest correlated pairs (r > 0.90) are in the bottom left corner of the largest cluster. The red underscore high-
lights the relationship of the MDL recommended 12x12 model order.
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  Figures 5 and 6 show a heat map of the results of the Jaccard index for the FA and GM respectively, thresholded 
at 0.0 and higher, highlighting the effect of model order on the amount of subsetting between the spatial maps. 
Overall, the Jaccard index for FA was lower than GM, showing a lesser degree consolidation (overlap) of the spatial 
maps at the lower model orders, and a high degree of distribution (very little overlap) of the spatial maps at the 
higher model orders.  The GM results show a much greater degree of consolidation of the spatial maps overall, with 
more distribution of the spatial maps at the higher model orders. 

  

  

 

Figure 4: Heat map and hierarchical cluster analysis of GM spatial maps with group differences across model orders, thresholded at 0.6. Each axis 
lists the pICA model order number and the component number. (i.e. 36_25 is from model order 36x36 and it’s the 25th GM component from the 
36x36 model order). The branches of the dendrogram represent the dissimilarities between the clusters using their squared Euclidian distances.  The 
majority of the highest correlated pairs (r > 0.90) are in the bottom left corner of the largest cluster. The green underscore highlights the relationship 
of the MDL recommended 12x12 model order.

F i g- ure 5: 
Heatmap of the FA Jaccard Index of Similarity, looking at subsetting between the spatial maps with group differences across model orders. 
Each axis lists the pICA model order number, and the component number. (i.e. 12_6 is from model order 12x12 and it’s the 6th FA component 
identified in the 12x12 model order). The branches of the dendrogram represent the dissimilarities between the clusters using their squared 
Euclidian distances. The higher the Jaccard Index, the more shared information between the spatial maps (overlap). 
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Comparisons Across SBM Model Order Results 
 Figures 7 and 8 show the a heat map of the results of the correlation analysis of the SBM per modality. The GM 
showed more distinct clustering of spatial maps compared to the FA results.  Using the pICA MDL recommendation 
of 12 components, the simplistic correlation analysis of the FA loading coefficients and the GM loading coefficients 
from the SBM returned 3 pairs of correlated FA and GM spatial maps with significant group differences.   
 

 

Figure 6: Heatmap of the GM Jaccard Index of Similarity, looking at subsetting between the spatial maps with group differences across model 
orders. Each axis lists the pICA model order number, and the component number. (i.e. 36_25 is from model order 36x36 and it’s the 25th GM 
component from the 36x36 model order). The branches of the dendrogram represent the dissimilarities between the clusters using their squared 
Euclidian distances. The higher the Jaccard Index, the more shared information between the spatial maps (overlap). 

Figure 7: Heat map and hierarchical cluster analysis 
of the SBM (unimodal) FA spatial maps with group 
differences across model orders, thresholded at 0.7. 
Each axis lists the SBM model order number, and the 
component number. (i.e. FA12_02 is from model 
order 12x12 and it’s the 2nd FA component identi-
fied in the 12x12 model order). The branches of the 
dendrogram represent the dissimilarities between the 
clusters using their squared Euclidian distances.  The 
majority of the highest correlated pairs (r > 0.90) are 
in the bottom left corner of the largest cluster. The 
red underscore highlights the relationship of the 
MDL recommended 12x12 model order.
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Figures 9 compares the spatial maps returned by the SBM and the pICA analysis.  There is a high degree of similari-
ty between the spatial maps from both analyses, although the pICA results had higher correlation coefficients than 
those returned by the simple SBM correlation analysis.   

 

Figure 8: Heat map and hierarchical cluster analysis of the SBM (unimodal) GM spatial maps with group differences across model orders, 
thresholded at 0.6. Each axis lists the pICA model order number and the component number. (i.e. 36_06 is from model order 36x36 and it’s the 
6th GM component from the 36x36 model order). The branches of the dendrogram represent the dissimilarities between the clusters using their 
squared Euclidian distances.  The majority of the highest correlated pairs (r > 0.90) are in the bottom left corner of the largest cluster. The green 
underscore highlights the relationship of the MDL recommended 12x12 model order.

pICA Results: Significantly Corre-
lated Grey and White Matter Spa-

tial Maps

SBM Results: Significantly Correlated 
Grey and White Matter Spatial Maps 

Figure 9: Comparisons of the 12x12 model order results, pICA vs SBM: Side-by-side comparison of the significantly correlated GM and WM 
spatial maps with significant group different found using the pICA and the simple correlation run in R using the SBM results.  Both identified 
very similar brain regions, although the pICA optimization returned higher correlation coefficients.
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IV. DISCUSSION 

A fundamental assumption of ICA is the independent and identically distributed nature of the data. MRI images 
violate that assumption due to the inherent dependence of one voxel to another as well as the further reduction of 
independence once Gaussian smoothing is applied to the images. [17] This can be seen in the difference in the de-
gree of relationship between the spatial maps across model orders for the FA and GM in both the pICA and the SBM 
results.  The FA was less independent (had a higher degree of relatedness) across the model orders, while the GM 
displayed distinct clusters of independent spatial maps across different model orders. The MDL, designed to correct 
for the misestimation of model order caused by sample dependence, did capture most of the spatial patterns returned 
by the pICA and SBM in the GM,  it did not represent them all.   The FA spatial maps were more accurately repre-
sented in the MDL recommended 12x12 model order.  Further experimentation with different Gaussian kernels to 
smooth both the GM and FA could explain the varied performance of the MDL algorithm and improve its accuracy.  

Both the FA and the GM showed the expected consolidation of spatial maps at the lower model orders (higher 
degree of similarity/overlap) and the distribution of the spatial maps at higher model orders (lower degree of similar-
ity/overlap), although the FA had a lower degree of similarity overall compared to the GM.  Again, differences in 
smoothing could account for this and should be explored further.  

The unimodal ICAs of FA and GM identified spatial maps whose loading coefficients showed significant group 
differences that identified similar brain regions as those found in the pICA. The correlation results returned from the 
analysis run in R were lower, highlighting the benefit of the optimization algorithm within the pICA.  While it is 
fairly simple to run a simplified correlation analysis between two modalities, it would be impossible to do this with 
three or more modalities. This is one of the main benefits of the pICA algorithm, that it not only optimizes the corre-
lation between modalities, but that it allows researchers to compare three or more modalities. [24] 

 The pICA was consistently sensitive to case vs controls differences across model orders.  There was no indication 
that lower and higher model orders were more or less correlated with one another.  

V. CONCLUSION 
Researchers considering pICA as an analysis tool combining grey matter volume and fractional anisotropy images 
should use the least amount of smoothing necessary for their particular image modality to maximize the likeli-
hood that the MDL suggested model order is as reflective of all the spatial maps within their data.  The pICA was 
otherwise robust and consistently identified correlated group differences between SZ and HC. 
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