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 2 

Abstract 27 

 28 

Background and Purpose: The presence of a paramagnetic rim around a white matter lesion 29 

has recently been shown to be a hallmark of a particular pathological type of multiple sclerosis 30 

(MS) lesion. Increased prevalence of these paramagnetic rim lesions (PRLs) is associated with a 31 

more severe disease course in MS. The identification of these lesions is time-consuming to 32 

perform manually. We present a method to automatically detect PRLs on 3T T2*-phase images. 33 

 34 

Methods: T1-weighted, T2-FLAIR, and T2*-phase MRI of the brain were collected at 3T for 19 35 

subjects with MS. The images were then processed with lesion segmentation, lesion center 36 

detection, lesion labelling, and lesion-level radiomic feature extraction. A total of 877 lesions 37 

were identified, 118 (13%) of which contained a paramagnetic rim. We divided our data into a 38 

training set (15 patients, 673 lesions) and a testing set (4 patients, 204 lesions). We fit a random 39 

forest classification model on the training set and assessed our ability to classify lesions as PRL 40 

on the test set. 41 

 42 

Results: The number of PRLs per subject identified via our automated lesion labelling method 43 

was highly correlated with the gold standard count of PRLs per subject, r = 0.91 (95% CI [0.79, 44 

0.97]). The classification algorithm using radiomic features can classify a lesion as PRL or not 45 

with an area under the curve of 0.80 (95% CI [0.67, 0.86]). 46 

 47 

Conclusion: This study develops a fully automated technique for the detection of paramagnetic 48 

rim lesions using standard T1 and FLAIR sequences and a T2*phase sequence obtained on 3T 49 

MR images.  50 

 51 

Keywords: magnetic resonance imaging; multiple sclerosis; chronic active lesions; paramagnetic 52 

rim lesions 53 

 54 

Highlights: 55 
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 3 

• A fully automated method for both the identification and classification of paramagnetic 56 

rim lesions is proposed. 57 

• Radiomic features in conjunction with machine learning algorithms can accurately 58 

classify paramagnetic rim lesions. 59 

• Challenges for classification are largely driven by heterogeneity between lesions, 60 

including equivocal rim signatures and lesion location.  61 
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Introduction 62 

 63 

Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous 64 

system whose hallmark is lesions in the brain and spinal cord (1). These lesions can be detected 65 

in vivo with magnetic resonance imaging (MRI) and are often quantified as total lesion volume 66 

and lesion count, both of which can be used as measures of disease burden and to track disease 67 

progression (2). Imaging biomarkers such as these are commonly used in the clinic and as 68 

surrogate endpoints in clinical trials (3,4). However, other known biological processes of MS are 69 

left uncaptured.  70 

 71 

Chronic active lesions, which are a subset of MS lesions that are more prevalent in patients with 72 

more severe disease (5–7), have imaging and histopathology findings suggestive of ongoing 73 

tissue damage (8–10) and have until recently only been detectable by histopathology. These 74 

lesions have been variously termed chronic active, slowly expanding, or smoldering lesions. At 75 

an estimated prevalence of 10-15% of all MS lesions, this type of lesion is sufficiently common 76 

and deleterious to warrant considerable efforts for biomarker development (6,8,9,11). On T2*-77 

phase MRI contrast, they are identifiable by curvilinear hypointensity along the edge of the 78 

lesion that corresponds with of iron laden phagocytic cells observed on histopathological 79 

specimens (8,9,12). These lesions have been variously termed chronic active, slowly expanding, 80 

or smoldering lesions. Here, we refer to these lesions as paramagnetic rim lesions (PRLs). 81 

 82 

When first observed on MRI, the rim of a PRL was only visible on scans from ultra-high-field 83 

strength (7T) magnets (13–16). Recently, PRLs have been shown to be identifiable on the more 84 

commonly available high-field strength (3T) MRI scans as well, albeit with lower inter- and intra-85 

rater reliability (17). This development strengthens their viability as a target on clinical MRI 86 

protocols, particularly because the sequences studied can be acquired with high spatial 87 

resolution in less than 4 minutes (18). Previous studies of the PRLs have noted the geometric 88 

nature of the rim and worked to identify the rim on the quantitative susceptibility mapping 89 

(QSM) contrast as well (19–21).  90 
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 91 

Because visually inspecting every MS lesion for the presence of a paramagnetic rim is difficult, 92 

time consuming, and prone to inter- and intra-rater variability, an automated method for 93 

identifying PRLs would improve efficiency and facilitate translation of this imaging biomarker 94 

into larger research studies and clinical practice. One way to identify PRLs is through 95 

quantification of visual patterns that objectively characterize these data, which can be 96 

accomplished through radiomics. Radiomics is an emerging field of research that encompasses 97 

the extraction of quantitative features from biomedical images that may reflect underlying 98 

pathophysiology (22). It has been shown to be a useful tool in the analysis of chest CT scans 99 

(23,24) and MR images (25,26). Studies have shown that radiomic features are often useful 100 

predictors of, or are associated with, known hallmarks of disease, although they have not been 101 

used extensively in the MS literature. Here, we use radiomic features along with a random 102 

forest classification model, which can flexibly model high dimensional data. Our method is fully 103 

automated and uses a T2*-phase volume with isometric voxels and high spatial resolution that 104 

is acquired in a clinically feasible acquisition time at 3T (18).  105 

 106 

 107 

Materials and Methods 108 

 109 

Study population: 110 

We studied 19 subjects with MS who were scanned under an institutional review board–111 

approved natural history protocol at the National Institutes of Health (NIH). Subjects’ age at the 112 

time of scanning ranged from 20 to 66 years, with a mean age of 45 years (sd = 12) (Table 1).  113 

 114 
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Table 1: Demographics of Study Sample 

Demographics   

N 19 

Age (mean (SD)) 45 (12) 

Male (%) 8 (42) 

Phenotype (%) 
 

   Primary Progressive MS 3 (16) 

   Relapsing-Remitting MS 11 (58) 

   Secondary Progressive MS 5 (26) 

Disease duration in years (mean (SD)) 14.6 (9.1) 

EDSS (median (range)) 2.5 (1.0—7.0) 

Treatment  

   untreated 5 (26) 

   glatiramer acetate 1 (5) 

   interferon beta-1a 4 (21) 

   dimethyl fumarate 6 (32) 

   fingolimod 1 (5) 

   natalizumab 1 (5) 

   rituximab 1 (5) 

 115 

Written informed consent was obtained from all participants. Data from this study can be 116 

shared upon reasonable request and completion of a Data Transfer Agreement with the 117 

National Institutes of Health. 118 

 119 

MR Imaging acquisition: 120 

All subjects were imaged on a Siemens Magnetom Skyra (Siemens, Erlangen, Germany) 3T 121 

scanner, using a body transmit coil and a 32-channel receive array coil, at the National 122 

Institutes of Health in Bethesda, Maryland. Imaging acquisition included the following 123 

sequences: 124 
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• a whole-brain 3D T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence 125 

(repetition time, TR = 4800 ms; echo time, TE = 354 ms; inversion time, TI = 1800 ms; flip 126 

angle, FA = 120°; acquisition time, TA = 6 minutes 30 seconds; 256 axial slices; 1mm 127 

isometric voxel resolution);  128 

• a whole-brain 3D T1-weighted magnetization-prepared rapid gradient echo (T1) sequence 129 

(TR = 7.8 ms; TE = 3 ms; FA = 18°; TA = 3 minutes 35 seconds; 256 sagittal slices; 1mm 130 

isometric voxel resolution), and 131 

• a 3D segmented echo-planar imaging (EPI) sequence with whole-brain coverage providing 132 

T2* magnitude and phase contrasts (TR = 64 ms; TE = 35 ms; flip angle, FA = 10°; TA = 5 133 

minutes 46 seconds; 251 sagittal slices; 0.65mm isometric voxel resolution). 134 

Additional standard MRI sequences, including a postcontrast 3D T1-weighted MPRAGE 135 

sequence for the identification of gadolinium-enhancing lesions, were also acquired. 136 

 137 

Manual paramagnetic rim lesion assessment:  138 

Supratentorial non-gadolinium enhancing MS lesions were visually inspected for the presence 139 

of a paramagnetic rim on T2* magnitude and unwrapped phase images by a neurologist with 14 140 

years of experience in neuroimaging science (5,13,17). As previously described (27), a PRL is 141 

identified when a hypointense signal on phase images is observed surrounding the periphery of 142 

the lesion, while being either hyper- or isointense in its inner portion. 143 

 144 

Image preprocessing: 145 

Phase images were unwrapped and filtered as previously described (13). T1, FLAIR, and phase 146 

images were then preprocessed using the fslr R package (28), an R wrapper for the FSL software 147 

(29,30). Images were visualized with ITK-SNAP (31). The T2* magnitude contrast was not used 148 

in this method.  149 

 150 

We first applied the N4 inhomogeneity correction algorithm (32). We then rigidly registered 151 

both the T1 and the FLAIR images to the T2*-phase image space, resampling to 0.65 mm 152 

isometric resolution and using a mutual information cost function and nearest neighbor 153 
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 8 

interpolation. We used multi-atlas skull stripping (MASS) to identify cerebral tissue in the 154 

images in T1 space (33). In two cases, MASS yielded poorly skull-stripped images based on 155 

visual inspection. For those two cases, we instead used the FSL brain extraction tool for skull-156 

stripping (29). As a final step, we performed WhiteStripe intensity normalization on the 157 

otherwise preprocessed T1, FLAIR, and phase images (34). 158 

 159 

Lesion labelling: 160 

Our lesion labelling method relies on access to maps that represent voxel-wise probabilities of 161 

being a lesion, so we chose the automatic lesion segmentation method MIMoSA both for its 162 

ability to integrate multimodal information and for its ability to provide voxel-level probability 163 

maps (35). Manual lesion segmentation was conducted by a research assistant with 1 year of 164 

experience, who was trained by a board-certified neurologist with extensive expertise in 165 

neuroimmunology and MRI.  166 

 167 

We trained the MIMoSA algorithm (36) with the manual segmentations as a gold standard and 168 

the T1 and FLAIR images as input. We implemented a leave-one-out cross-validation approach, 169 

where data from all but one subject was used to train a MIMoSA model, and that model was 170 

subsequently applied to the remaining subject. This was done for every subject in our cohort. 171 

When parallelized across 8 cores of a CPU of an Intel(R) Xeon(R) E5-2699 v4 @ 2.20GHz 172 

processor in a high-performance computing environment, training a single model on 19 173 

subjects took approximately 6 hours.  174 

 175 

From each k-fold model, we extracted probability maps that contain voxel-wise probabilities of 176 

being a white matter lesion. We then binarized these probability maps into lesion segmentation 177 

maps via a subject-specific estimated optimal threshold that was identified out of a user-178 

provided range of possible thresholds and then chosen based on amount of overlap with a gold-179 

standard lesion segmentation as measured by a Sørensen-Dice coefficient (37). Because our 180 

lesion segmentation masks did not always cover the entire area of a lesion, we then dilated the 181 
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masks by one voxel in each direction to increase the likelihood of detecting the paramagnetic 182 

rim signal, which occurs on the boundary of lesions. 183 

 184 

After lesion segmentation masks were obtained, we used the lesion probability maps as input 185 

to a center detection method (38) to identify distinct lesions based on the texture of the lesion 186 

tissue. We then used a nearest-neighbor approach to classify the remainder of the lesion 187 

segmentation map into those identified lesions (Figure 1). At this point, we assigned PRL status 188 

to the identified lesions based on the presence of any overlap with the manual PRL labels 189 

described previously.  190 

 191 

Figure 1 192 

 193 
A visualization of the steps of the method for five different lesions. Each column corresponds to 194 

a different part of the method, and each row corresponds to a different lesion of interest. In the 195 
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 10 

last column, lesions classified as PRLs are visualized as green, and lesions classified as not PRLs 196 

are visualized as red. Subfigure A shows a lesion that was both identified as a PRL and classified 197 

as a PRL, i.e. a true positive. Subfigure B shows a lesion that was identified as not a PRL but 198 

classified as a PRL, i.e. a false positive. Correspondingly, subfigure C shows a false negative 199 

lesion, and subfigure D shows a true negative lesion. Subfigure E shows a lesion that was 200 

automatically labelled as a single lesion but is actually a confluence of lesions.  201 

 202 

 203 

Due to failures in the lesion labelling process, a subset of abnormalities automatically identified 204 

by our method might, to a manual rater, be considered clusters of confluent lesions. Because 205 

we did not have access to manual segmentations of distinct lesions, we instead relied on a 206 

combination of our lesion labelling method and connected components analysis to label lesions 207 

as confluent. Specifically, if connected components only identified one cluster where our lesion 208 

labelling method identified more than one lesion, we labelled the constituent lesions as 209 

confluent.  210 

 211 

Radiomics image analysis: 212 

For lesions that were identified with our automatic pipeline, we conducted a radiomics analysis 213 

to characterize each lesion with intensity-based statistics only on the phase contrast (39,40). 214 

These include 44 features that summarize the intensities in an individual lesion with measures 215 

that can be described in 3 general ways: statistics that describe the average and spread of the 216 

intensities, statistics that describe the shape of the distribution of intensities, and statistics that 217 

describe the diversity of intensities (40). For example, features like the mean, defined as 218 
!
"
∑ 𝑥%"
%&! , and interquartile range, defined as 𝑎𝑏𝑠(𝑥+,% − 𝑥/,%), are included in the first group, 219 

where 𝑥% represents intensity value at voxel 𝑖. Features like variance, defined as 220 

!
"
∑ 3𝑥% − 𝑚𝑒𝑎𝑛(𝑥)7

/"
%&! , and skew, defined as 

8
9
∑ 3:;<=>?"(:)7

@9
;A8

BC(:)@
, are included in the second 221 

group, and features like energy, defined as ∑ 𝑥%/"
%&! , uniformity, defined as ∑ 𝑝(𝑥%)/"

%&! , and 222 

entropy, defined as ∑ −𝑝(𝑥%) log/ 𝑝(𝑥%)"
%&! , are included in the third group. A full list and 223 
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detailed equations for each of the first-order radiomic features can be found in the 224 

supplemental material of (40).  225 

 226 

Prediction model: 227 

The radiomic features were used as candidate predictors in our subsequent prediction 228 

modelling for classification of lesions as either being PRL or not. Class labels for each lesion 229 

were previously assigned during the lesion labelling step. We split our dataset into a training set 230 

and test set by subject, randomly assigning lesions from 15 subjects into the training set and 231 

assigning lesions from the remaining 4 subjects into the test set, approximating an 80/20 split. 232 

Both sets were examined to ensure that at least 100 lesions were present in each group.  233 

 234 

Because PRLs were of a minority class (approximately 13% of the lesions were classified as 235 

being a PRL), we used Synthetic Minority Oversampling TEchnique (SMOTE) to synthetically 236 

balance our data (41). With SMOTE, we oversampled the minority class, the PRLs, by the 237 

reciprocal of the percentage of PRLs present in the dataset, and we did not undersample the 238 

majority class. We then trained a random forest classifier, chosen for its ability to flexibly model 239 

a large number of features, with 10-fold cross-validation using the R package caret (42,43). We 240 

summarized performance results using 0.5 as a threshold where applicable. We also derived 241 

empirical confidence intervals for those measurements by randomly reassigning the training 242 

and test set and repeating the above process 1000 times. We assessed variable importance in 243 

the random forest as the percent increase in mean-squared error for a model with the variable 244 

over a model with a permuted version of that variable. We then scaled that measure for 245 

comparability across variables. 246 

 247 

  248 
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Post-hoc analysis: 249 

An additional board-certified neurologist (MS) with extensive expertise in neuroimmunology 250 

and MRI, who was not involved in the generation of the manual PRL labels, examined each 251 

misclassified lesion. We rated lesions on a 5-point scale, where 1 indicated definitely not a PRL, 252 

2 indicated probably not a PRL, 3 indicated uncertain, 4 indicated probably a PRL, and 5 253 

indicated definitely a PRL. Some lesions were automatically labelled as one lesion but were 254 

actually a confluence of lesions (Figure 1). We assigned manual ratings to these confluent 255 

clusters based on the presence of at least one PRL. We also assessed the method’s performance 256 

only for lesions that were not part of a confluent cluster. 257 

 258 

 259 

Results  260 

 261 

The final dataset included a total of 877 lesions in 19 subjects identified by our automated 262 

lesion labelling method, 118 (13%) of which we found to be PRLs by overlap with the manual 263 

annotation. The average number of lesions per subject was 46.2 (sd = 19.8), and the average 264 

number of PRLs per subject was 6.2 (sd = 4.0). Table 2 summarizes by subject the total number 265 

of lesions identified from our lesion labelling method, the number of PRLs identified from our 266 

lesion labelling method, and the number of PRLs identified by a manual rater. The number of 267 

identified PRLs by our method was highly correlated with the gold standard count of PRLs, r = 268 

0.91 (95% CI [0.79, 0.97]) (Figure 2). 269 

 270 
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 13 

Figure 2 271 

 272 
Subfigure A shows the gold standard count of PRLs against the number of PRLs identified via 273 

our lesion identification method, r = 0.91 (0.79, 0.97). Subfigure B shows the ROC curve after 274 

classification, AUC = 0.80 (0.67, 0.86).  275 

 276 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.276238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276238
http://creativecommons.org/licenses/by-nc/4.0/


 14 

Table 2: Lesion Counts by Subject 277 

Subject ID Automated 

Total Lesion 

Count 

Automated 

PRL Count 

Manual PRL 

Count 

1 83 9 9 

2 35 3 5 

3 31 5 6 

4 22 3 7 

5 40 9 10 

6 69 18 28 

7 14 3 7 

8 54 8 9 

9 42 3 7 

10 52 11 12 

11 27 4 4 

12 72 4 4 

13 40 3 5 

14 28 5 5 

15 39 11 11 

16 78 4 4 

17 36 5 5 

18 47 7 8 

19 68 3 3 

The table summarizes the total number of lesions identified per subject, the number of 278 

identified paramagnetic rim lesions (PRL) by our lesion labelling method, and the number of 279 

PRLs identified by a manual rater. 280 

 281 

 282 
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 15 

We trained a random forest classification model using PRL status from the lesion labelling 283 

method as the label. In the iteration that we used to derive performance measures, there were 284 

673 lesions in the training set, 88 of which were PRLs, and 204 lesions in the testing set, 30 of 285 

which were PRLs. We were able to classify lesions as PRL or not with an AUC of 0.80 (95% CI 286 

[0.67, 0.86]). Using 0.5 as a probability threshold, 150 lesions were accurately classified as not 287 

PRL, 24 lesions were false positives, 13 were false negatives, and 17 were classified correctly as 288 

PRL (Table 3). A breakdown of the classification results for the test set lesions by subject is also 289 

provided in Table 3, from which we can see that variability in classification accuracy does not 290 

seem to be driven by poor performance in a minority of subjects but rather by heterogeneity in 291 

the lesions themselves.  292 

 293 
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Table 3: Summary of Classification Performance Measures 294 

Contingency Table 

  Reference 

Prediction Rim Negative Rim Positive 

Rim Negative 150 13 

Rim Positive 24 17 

Performance Measures 

Accuracy 0.82 (0.71, 0.86) 

Positive Predictive Value 0.41 (0.16, 0.53) 

Negative Predictive Value 0.92 (0.87, 0.97) 

False Positive Rate 0.14 (0.08, 0.27) 

False Negative Rate 0.43 (0.22, 0.72) 

Sensitivity 0.57 (0.29, 0.74) 

Specificity 0.86 (0.72, 0.92) 

Testing Set Lesion Classification Count by Subject 

Subject True 

Negative 

False Negative False 

Positive 

True 

Positive 

1 70 4 4 5 

4 18 2 1 1 

11 30 5 11 6 

20 32 2 8 5 

The table summarizes the performance measures we observed for the classification of lesions 295 

as PRLs or not. 296 

 297 

 298 

We also examined the results of the method for lesions that were not part of a confluent 299 

cluster. A total of 62 lesions in the test set were not confluent, and we were able to classify 300 

them with an AUC of 0.91. Using 0.5 as a probability threshold, 50 lesions were accurately 301 

classified as not PRL, 4 were false positive, 2 were false negative, and 6 were accurately 302 
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classified as PRL (Table 4). We provide a summary of additional performance measures in Table 303 

4. 304 

 305 

Table 4: Summary of Classification Performance Measures, Excluding Confluent Lesions 306 

Contingency Table 

  Reference 

Prediction Rim Negative Rim Positive 

Rim Negative 50 4 

Rim Positive 2 6 

Performance Measures 

Accuracy 0.90 

Positive Predictive Value 0.75 

Negative Predictive Value 0.92 

False Positive Rate 0.04 

False Negative Rate 0.40 

Sensitivity 0.60 

Specificity 0.96 

The table summarizes the performance measures we observed for the classification of lesions 307 

after exclusion of lesions in confluent clusters. 308 

 309 

 310 

A visualization of lesions that were true positive, false positive, false negative, and true negative 311 

respectively is provided in Figure 1. From subfigure B, where we see the method illustrated for 312 

a lesion that was identified as a not a PRL but classified as a PRL, we can see that 313 

hypointensities can manifest around a lesion even when they cannot be rated as a rim. 314 

Conversely, from subfigure C, which shows a lesion that was identified as a PRL but classified as 315 

not a PRL, we can see that despite the presence of hypointensities that are visible to the eye, 316 

certain PRLs may not display a signal strong enough to be captured by radiomic features.  317 

 318 
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The random forest identified uniformity, entropy, and energy as the most important radiomic 319 

features in classifying lesions, which are all radiomic features that aim to describe the diversity 320 

of the data points. (Figure 3). Other radiomic features that were important were mode, 321 

kurtosis, skew, geometric mean, and quantile features. Entropy and uniformity were both 322 

higher in lesions that were not PRL, and energy was higher in lesions that were PRL. 323 

 324 

Figure 3 325 

 326 
The variables identified as the most important by our model for determining the presence of 327 

PRLs were entropy, uniformity, and energy. Here, we measure variable importance as the 328 

percent increase in mean squared error for the model with the variable over the model with a 329 

permuted version of that variable, scaled for comparability across variables. Boxplots of 330 

entropy, uniformity, and energy on the lesions from the test set show that PRLs and non-PRLs 331 
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seem to differ on those measures, supporting the theory that they are important for 332 

distinguishing the two kinds of lesions.  333 

 334 

 335 

A second expert manually rated the 37 lesions that were misclassified by the model. The rater 336 

deemed that 3 lesions included too much artifact to assess PRL status, and 18 lesions were 337 

confluent lesions. Of the lesions not part of a confluent cluster, 10 were false positive lesions 338 

and 6 were false negative lesions. Of those 10 false positive lesions, 2 of these lesions were 339 

rated as definitely a PRL, 2 were rated as probably a PRL, 4 were rated as probably not a PRL, 340 

and 2 were rated as definitely not a PRL. For the 6 false negative lesions that were not 341 

confluent, 5 were rated as definitely a PRL and 1 was rated as definitely not a PRL.  342 

 343 

As for confluent clusters, 11 were deemed false positives and 7 were false negatives. These 344 

were rated according to the presence of at least one PRL in each confluent cluster. Of the 11 345 

false positive lesions, 4 were rated as definitely not a PRL, 3 were rated as probably a PRL, and 4 346 

were rated as definitely a PRL. Of the 7 false negative lesions, 2 were rated as probably a PRL 347 

and 5 were rated as definitely a PRL. Note that the confluence defined here was as judged by 348 

the manual rater. This differs from but complements the confluence definition employed for 349 

the primary test set analysis, which was the definition based on the automated analysis used to 350 

derive the performance measures reported in Table 4. 351 

 352 

 353 

Discussion 354 

 355 

Preliminary studies have shown that the existence of a paramagnetic rim around an MS lesion is 356 

an important biomarker with possible clinical implications, shown to be indicative of chronic 357 

inflammation, associated with heightened disability, and resistant to current disease-modifying 358 

treatments (5). However, paramagnetic rims are time-consuming to identify manually, even by 359 

highly trained experts (17). In this paper, we developed a fully automatic method for the 360 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.08.31.276238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276238
http://creativecommons.org/licenses/by-nc/4.0/


 20 

detection of the paramagnetic rim on a 3T MRI using a submillimeter isometric, clinically 361 

feasible, segmented-EPI sequence (17,18). Automation of PRL identification that relies on 362 

objective assessment will aid larger scaled studies assessing this promising imaging biomarker 363 

in MS.  364 

 365 

The proposed method relies on radiomics for automated PRL identification and classification. 366 

Radiomic features have been used previously in other contexts, but none were used specifically 367 

to classify PRLs. The radiomic features that were the most important in this context aimed to 368 

measure the variability of intensity within a lesion (entropy and uniformity) or quantify the 369 

magnitudes of the intensities themselves (energy).  370 

 371 

Both entropy and uniformity are measures based on the probability of observing a particular 372 

intensity within a lesion. Because we did not bin the voxel intensities, this probability of 373 

observing a particular intensity is fairly low, which is reflected in the observed range of 374 

uniformity in this study. Uniformity is a direct measure of homogeneity of the intensities within 375 

a lesion. We expect uniformity to be lower for PRLs due to the presence of both intensities 376 

representing normal appearing tissue and hypointensities from the paramagnetic rim. Lesions 377 

that are not PRLs do not appear with any distinct signature on the phase image, leading to a 378 

higher uniformity.  379 

 380 

Entropy takes the probability of observing a particular intensity within a lesion and transforms it 381 

such that the measure reflects the amount of variation observed. Because of the 382 

aforementioned lack of binning, entropy here more accurately reflects lesion size in that given 383 

our more homogenous set of probabilities, a smaller probability of observing a given intensity 384 

results in a smaller measure of entropy, and larger lesions yield a smaller probability of 385 

observing a given intensity. In this dataset, PRLs tend to have smaller values of entropy, 386 

possibly reflecting a larger size. 387 

 388 
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Energy is a measure of the magnitude of intensities within a lesion. Here, PRLs manifest with 389 

higher energy because of the way the phase image was created and the subsequent range of 390 

the intensities. Hypointensities on the phase image used in this study represent more extreme 391 

negative values instead of values closer to 0, with more extreme hypointensities resulting in 392 

more extreme energy values.  393 

 394 

Many of the lesions that the model misclassified were confluent lesions that were labelled as a 395 

single lesion. While the percentages of confluent lesions among correctly classified lesions was 396 

66%, the percentage of confluent lesions among incorrectly classified lesions was 84%, 397 

suggesting that confluence negatively influences the model’s ability to classify lesions as PRL or 398 

not. We provide an example of one of these confluent lesions in Figure 1, Subfigure E. In this 399 

lesion, although one of the encompassed lesions contained a clear rim signal, the larger of the 400 

two does not. Because the majority of the voxels included in the confluent lesion belong to the 401 

encompassed one without a rim signal, the first-order radiomic features extracted from this 402 

confluent lesion reflected that signal. 403 

 404 

Artifact made it difficult for a manual rater to rate some of the lesions; our model typically 405 

(perhaps incorrectly) rated these as PRL. Of the “false positive” lesions, as determined by the 406 

initial PRL manual delineations, while half of those were separately rated as definitely or 407 

probably not a PRL, half were rated as definitely or probably a PRL. We also note that for the 408 

false positives, around half of the manual ratings were between 2 and 4 on a 5-point scale 409 

indicating that even for an expert rater, a large portion of these lesions were difficult to classify. 410 

Of the false negative lesions, almost all were rated as definitely a PRL. 411 

  412 

We dilated our lesion segmentation map to increase the likelihood that a rim signal would be 413 

included in a lesion label. Because of this artificial augmentation, periventricular lesions and 414 

lesions closer to the cortex could be difficult to classify due to inclusion of non-lesional phase-415 

hypointensities in a lesion map, such as ventricles or cortical tissue.  416 

 417 
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These issues could be addressed by taking a more nuanced approach to modelling the 418 

probability of having a rim. Here, we treated the identification of PRLs as a binary classification 419 

problem, invoking a random forest to predict if a given lesion was a PRL or not. However, the 420 

identification of PRLs can be difficult because of the myriad of factors that drive the clarity and 421 

strength of a rim signature, some of which are technical and some of which reflect biological 422 

processes. As noted in Figure 1, while some lesions exhibit a rim unequivocally, other lesions 423 

exhibit a more equivocal signature. This renders the task of rating lesions as PRL or not difficult, 424 

both for manual raters and automated classifiers. In fact, previous research has shown that 425 

intra- and interrater reliability for paramagnetic rim evaluation are substantial but not perfect, 426 

with a Cohen 𝜅 of 0.77 and 0.71 respectively (17). A future, more nuanced approach could treat 427 

the presence of a rim as a continuous measure instead of a binary classification. This would 428 

likely more accurately reflect underlying biological processes as well, as the amount of iron-429 

containing phagocytes at the edge of a lesion can vary across lesions (8). 430 

 431 

Limitations: 432 

A major limitation to current assessments of paramagnetic rims is that no international 433 

consensus exists on criteria for determining this imaging signature. This limitation may hinder 434 

the application of the proposed methodology to new studies in which differing definitions of 435 

paramagnetic rims may be desired based on local practices. While signal-to-noise ratio is higher 436 

on a 7T MR image, allowing for higher inter- and intra-rater reliability, they remain low across 437 

contrast types on 3T (17). However, our study relies on techniques that perform well on 3T 438 

images, so extensions to 7T would require additional validation.  439 

 440 

In addition, PRLs are a less common type of lesion. In the current study, 13% of the lesions that 441 

were identified had rims. Because they are a rare event, classical machine learning models may 442 

need to be adjusted in order to classify them with appropriate consideration. In the current 443 

study, we employed SMOTE to artificially balance our training data. Other machine learning 444 

methods may benefit more from other solutions.  445 

 446 
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Conclusion 447 

 448 

This study introduces a fully automated method for the identification and classification of 449 

paramagnetic rim lesions relying solely on 3T MR images, which are commonly available in a 450 

clinical setting. Automation of this process is important for the continued development of the 451 

scientific community’s knowledge around these lesions and their implications for disease 452 

burden. 453 

 454 
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