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Abstract 

Being able to accurately perceive the emotion expressed by the facial or verbal expression from 

others is critical to successful social interaction. However, only few studies examined the 

multimodal interactions on speech emotion, and there is no consistence in studies on the speech 

emotion perception. It remains unclear, how the speech emotion of different valence is 

perceived on the multimodal stimuli by our human brain. In this paper, we conducted a 

functional magnetic resonance imaging (fMRI) study with an event-related design, using 

dynamic facial expressions and emotional speech stimuli to express different emotions, in order 

to explore the perception mechanism of speech emotion in audio-visual modality. The 

representational similarity analysis (RSA), whole-brain searchlight analysis, and conjunction 

analysis of emotion were used to interpret the representation of speech emotion in different 

aspects. Significantly, a weighted RSA approach was creatively proposed to evaluate the 

contribution of each candidate model to the best fitted model. The results of weighted RSA 

indicated that the fitted models were superior to all candidate models and the weights could be 

used to explain the representation of ROIs. The bilateral amygdala has been shown to be 

associated with the processing of both positive and negative emotions except neutral emotion. 

It is indicated that the left posterior insula and the left anterior superior temporal gyrus (STG) 

play important roles in the perception of multimodal speech emotion. 

keywords: emotion perception, fMRI, representational similarity analysis, speech emotion, 

whole-brain searchlight 
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Introduction 

In daily communication, the processing of emotion perception is multimodal. We can know the 

emotion state of speakers not only through facial expressions, but also from body movements, 

voice rhythms and other information. Successful social interactions require an accurate 

understanding of others’ emotions, intentions and thoughts. In particular, emotion expression 

provides critical information about the emotion state or surroundings of the expresser. These 

signals can help guide behavior and even have survival values in some situations. Therefore, 

being able to accurately perceive the emotions of others from their facial expressions and voice 

messages is very important in social interactions. Previous studies on emotion perception 

usually use unimodal stimuli, mainly focusing on emotion perception and recognition of facial 

or auditory stimuli. Although few studies focused on the representation of audio-visual 

emotions, instrumental sounds and emotional music were mostly collected as the auditory 

stimuli. Compared to music or instrumental sounds, affective speech is closer to normal social 

interactions. However, researches on speech emotion are limited, and their findings were 

inconsistent. Therefore, it remains unclear how speech emotion is perceived in the brain with 

multimodal stimuli. 

One specific network on the unimodal emotion processing is observed by lots of 

researches. In terms of visual modality, studies have shown that the fusiform gyrus, right 

superior temporal sulcus, inferior frontal gyrus and amygdala were significantly more activated 

by emotional facial expressions than neutral ones (Kesler-West et al. 2001). One latest study on 

emotion perception test using static facial expressions found that the emotion assessment test 

was associated with the functional connectivity strength from the fusiform gyrus to the frontal 

lobe and insula, indicating the role of these brain regions in the emotion perception test (Bae et 

al. 2019). Other studies using static facial emotion stimuli have found that the amygdala plays 

a significant role in emotion processing (Fitzgerald et al. 2006; Kugel et al. 2008). One of our 

previous studies suggested that the left central posterior gyrus could abstractly represent 

emotion expressed by face, body and whole person regardless of modality information (Cao et 

al. 2018). With dynamic facial expression stimuli, a neural network including the right 

amygdala, left globus pallidum and medial prefrontal cortex were observed to be more activated   

when an angry or happy face than a neutral one was viewed (MORIOKA et al. 2010). For the 

auditory modality, increased activations were found in the amygdala, hippocampus, and 

temporal pole when listening to unpleasant music compared to pleasant music (Koelsch et al. 

2006) . Moreover, one study have used different musical instruments to express different types 
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of emotions and found that the insula could identify specific emotion categories ignoring the 

type of musical instruments being played (Sachs et al. 2018). In order to get closer to the daily 

communication environment, more studies adopted emotion rhythms as stimuli, and found that 

bilateral superior temporal gyrus and sulcus might be involved in the processing of emotion 

rhythm information (Leitman et al. 2010; Dara 2012; Ethofer et al. 2012). These studies often 

focused on unimodal and didn’t involve in the multimodal interactions of emotion even though 

they pointed out the role of some brain regions in emotion processing. It remain unclear how 

the emotion information is perceived by human brain in response to multimodal stimuli. 

Many studies have used combined visual and auditory emotion information to further 

explore the mechanism of cross-modality representation of emotions. For the audio-visual 

integration of emotion, a large number of studies showed that the superior temporal gyrus and 

superior temporal sulcus played an important role in the integration and control of audio-visual 

emotion information (Kreifelts et al. 2007; Robins et al. 2009; Park et al. 2010; Müller et al. 

2012; Hagan et al. 2013). However, little research has been conducted on emotion perception 

in audio-visual modality. The brain regions that had a greater activation have been explored by 

emotional stimuli in audio-visual modality versus neutral, suggesting that bilateral superior 

temporal gyrus showed a significant effect in emotion perception (Robins et al. 2009). 

Moreover, multi-sensory emotion perception was believed to be represented by enhanced 

activation of brain regions revealed by multi-sensory integration, mainly including the superior 

temporal gyrus and superior temporal sulcus (Jessen and Kotz 2015). A recent study using meta-

analysis of 18 neuroimaging studies identified a core audio-visual emotion processing network, 

including the right posterior superior temporal gyrus, the left anterior superior temporal gyrus, 

the right amygdala and the thalamus (Gao et al. 2019). The important role of the right superior 

temporal gyrus in facial perception of different emotion valence was further reinforced by 

examining the neural mechanism of emotion perception in visual and auditory modalities via 

the multivoxel pattern analysis (Zhang et al. 2019). These studies have expanded our 

understanding of emotional speech perception. However, the exact neural network involved in 

speech emotion perception was not consistent, and which brain regions might be involved in 

multimodal affective speech perception remained to be verified. 

Traditional univariate approaches have been used in a series of neuroimaging studies to 

explore the representation mechanisms of multimodal affective information, such as the 

generalized linear model (GLM). By modeling and analyzing the experimental conditions, the 

GLM can obtain the activation information of each voxel, and use statistical analysis to report 

the significantly activated voxel, which is likely to cause the loss of fine-grained pattern 
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information (Haynes and Rees 2006; Norman et al. 2006). Currently, more advanced methods, 

such as multivoxel pattern analysis (MVPA) and representational similarity analysis (RSA), 

make it possible to analyze the activation pattern information throughout the whole-brain level. 

RSA is a computational method for multi-channel measures of neural activity proposed by 

Kriegeskorte et al., university of Cambridge, which can bridge the complexity of activation 

patterns between different brain-activity measurements and between subjects and species 

(Kriegeskorte et al. 2008). Compared with the univariate encoding models that predict each 

response channel separately, RSA focuses on the study of representational geometry, making 

the findings more intuitive (Xue et al. 2010; Devereux et al. 2013; Nili et al. 2014; Bracci et al. 

2015). This study used hypothesis-driven RSA to analyze the correlation between neural 

representations in specific brain regions and models by constructing abstract emotion models. 

Most previous studies used RSA to compute the relationship between the representation of brain 

regions and a single model. In order to take all models into consideration, we creatively 

proposed a weighted RSA method, using weighted linear combinations of all abstract emotion 

models to construct the best fitted models of specific brain regions, so as to evaluate the 

contribution of each candidate model in the optimal model. 

Previous studies have found that the amygdala is involved in emotion perception in visual 

or auditory modality (Fitzgerald et al. 2006; Koelsch et al. 2006; MORIOKA et al. 2010). 

Numerous studies have revealed the role of the superior temporal gyrus in multimodal affective 

perception and integration (Robins et al. 2009; Leitman et al. 2010; Park et al. 2010; Jeong et 

al. 2011; Müller et al. 2012; Hagan et al. 2013; Jessen and Kotz 2015; Gao et al. 2019; Zhang 

et al. 2019). The insula has been pointed out to be involved in the perception and experience of 

emotions (Duerden et al. 2013), and the insula cortex have been confirmed to be necessary and 

sufficient platform for human emotions , which was actually the only neural source of emotion 

experience (Damasio et al. 2013). In addition, some studies have revealed that the inferior 

parietal lobule might be related to the cross-modal decoding of emotion, indicating that it might 

also be involved in emotion perception (Kim et al. 2017). In this study, we took the amygdala 

(AMG), insula, inferior parietal lobule (IPL) and superior temporal gyrus (STG) as regions of 

interest (ROI) to further investigate their role in cross-modal interactions. Based on findings in 

the literature on unimodal emotion perception and recent studies on dynamic audio-visual 

emotional cues, it is hypothesized that the insula and STG are involved in perception of speech 

emotion in audio-visual modality. 

Previous studies have revealed the processing mechanism of emotion in facial expressions, 

music or instruments. However, it is still unclear how the speech emotion is perceived in visual 
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and auditory modalities. In this study, we made an event-related design to explore the brain 

regions capable of perceiving emotional and neutral stimuli in all modalities, when participants 

experience five stimuli (anger, sad, neutral and joy) expressed in three modalities (visual, 

auditory and audio-visual). After modeling the data using GLM, RSA based on ROIs was used 

to examine the correlation between abstract emotion models and neural representation patterns 

in specific brain regions. Then a novel weighted RSA was proposed to evaluate the contribution 

of each candidate model to the best fitted model. Moreover, the searchlight-based RSA was 

conducted to further explore the brain region that was significantly associated with a specific 

model. Finally, the conjunction analysis of emotion was used to further determine the candidate 

areas involved in emotion perception. We hope to prove our experiment with variety of 

advanced approaches in different aspects in order to provide evidence for the perception 

mechanism of multimodal speech emotion in human brain. 

Materials and Methods 

Participants 

Twenty-five healthy volunteers were recruited in this study (ten females mean age 23.3 ± 1.40 

years, range from 21 to 26 years). All subjects were right-handed, had normal or corrected-to-

normal vision, and had no history of neurological or psychiatric problems. For the data quality 

control, nine subjects were excluded for further analysis. This study was carried out in 

accordance with the recommendations of Institutional Review Board (IRB) of Tianjin Key 

Laboratory of Cognitive Computing and Application, Tianjin University. All subjects gave 

written informed consent in accordance with the Declaration of Helsinki. After the experiment, 

all subjects will be paid accordingly. 

Experiment Stimuli 

The stimuli in this study came from Geneva Multimodal Emotion Portrayals (GEMEP) 

(Bänziger et al. 2011), which is a video dataset, performed and recorded by 10 professional 

actors (5 males and 5 females). The stimuli adopted in the experiment included anger, sad, 

neutral and joy emotions, and each emotion had five short sentences. These sentences were 

expressed by two actors (one male, one female) with facial expressions, in a total of 40 video 

clips (4 emotions × 5 sentences × 2 actors). The Adobe Premiere Pro CC 2014 was used to 

separate the picture track and audio track of the video, and extract the dynamic facial expression 
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and sound of each video respectively, with duration of 2 seconds, for the single visual or 

auditory stimuli. The audio-visual condition reintegrated the clipped dynamic pictures and 

sounds to present visual and auditory emotional information at the same time. 

Procedure 

The fMRI experiment contained three runs, which were emotion recognition tasks of facial 

expressions, emotional rhythm as well as consistent audio-visual emotion. Among them, the 

first run was emotion recognition of dynamic facial expression, which was designed to 

recognize emotions through facial expressions regardless of audio information. The second run 

was designed to identify the emotions by the speech rhythm ignoring the picture information. 

The third run was the consistent study of audio-visual emotion, in which the same emotion was 

used as the visual and auditory modalities. The three runs were similar, with different stimulus 

materials. Fig. 1 showed the design exemplar of the first run. 

An event-related design was used in this experiment. There was a fixed interval of 10s at 

the beginning and end of each run.  Each run had 40 trials, including 10 trails for each 

condition of anger, sad, neutral and joy. In each trial, the stimuli displayed for 2 seconds, and 

the inter stimulus interval was 4 to 6 seconds with an average interval of 5 seconds. In each run, 

the order of the stimuli was pseudo-randomly.  

 

Fig 1. The design of the first run. The beginning displayed a black cross for 9s and a white cross for 

1s. Then a sequence of stimuli was presented, each consisting of a stimulus for 2s and an emotion 

recognition (anger, sad, neutral and joy) as well as an interval for 4 to 6 seconds. The number of stimuli 
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was 40 (4 emotions × 10 trials for each emotion), and there was a fixed interval for 10s in the end. 

Data Acquisition 

The imaging data was collected at Tianjin Huanhu Hospital using a 3.0T Siemens magnetic 

resonance scanner and an eight-channel head coil. Functional images were acquired by an echo-

planar imaging (EPI) sequence, with the parameters as follows: TR (repetition time) = 2000 ms, 

TE (echo time) = 30 ms, voxel size = 3.1 × 3.1 × 4.0 mm3, slices = 33, slices gap = 0.6 mm, 

slices thickness = 4.0 mm, FA = 90 degree, FOV = 200 × 200 mm2. In addition, a high-resolution 

anatomical image (T1-weighted image) was acquired using a three-dimensional magnetization-

prepared rapid-acquisition gradient echo (3D MPRAGE) sequence, with the following 

parameters: TR = 1900 ms, TE = 2.52 ms, TI = 1100 ms, FA = 9 degree, Voxel size = 1 × 1 × 1 

mm3, FOV = 256 × 256 mm2. During the experiment, foam pads were used to reduce head 

movements and ear plugs were used to reduce scanner noises. A high-resolution stereo 3D glass 

of VisualStim Digital MRI Compatible fMRI system was required for visual stimuli required 

to wear and the electrostatic headphones were used for the auditory stimuli. 

Data Analysis 

Data preprocessing 

Data preprocessing was performed using the SPM12 toolkit 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in Matlab software (The Math Works). The 

first five volumes of the functional data corresponding to the baseline of each run were 

discarded in order to eliminate the effect of unstable signal of the scanner at the beginning of 

experiment. The T1-weighted image was segmented into white matter, gray matter and 

cerebrospinal fluid (CSF). Functional images were mapped to the Montreal Neurological 

Institute (MNI) space after the operation of slice timing, realign and co-register. The standard 

of head movement is that the horizontal movement is less than 2mm and the rotation angle is 

less than 1.5 degree. All of the subjects met the standard in the experiment. Then the T1-

weighted image was co-registered to the mean functional images for further normalization. 

Subsequently, the functional data were smoothed with a 6-mm full-width at half-maximum 

(FWHM) Gaussian filter aiming to improve the signal to noise ratio. 
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Generalized Linear Model (GLM) 

After data preprocessing, the generalized linear model (GLM) was conducted to model the data 

of each subject. GLM is based on the assumption that the experimental data on each voxel 

(represented by Y) is a linear combination (represented by  β ) of unknown parameters 

(represented by x). The unknown parameters include the interested part (12 stimulus conditions, 

3 modalities × 4 emotions), the uninterested part (6 head motion parameters) and residual 

(represented by �). The general form of GLM is as follows: 

 

Y =  ���� + ���� + ⋯ + ���� + � 

 

After modeling, the statistical analysis of experimental data was transformed into 

statistical inference of parameter beta, and the restricted maximum likelihood method was used 

to fit out the value of the parameter beta to minimize the sum of error. 

Representational Similarity Analysis (RSA) 

RSA can use the abstract models to interpret the representation of specific brain regions. Using 

the beta values obtained from GLM, RSA can calculate the correlation between the activation 

patterns of different stimulus conditions in specific brain regions, and then acquire the 

dissimilarity between different conditions, so as to obtain the representation dissimilarity 

matrices (RDMs) of brain regions. Meanwhile, the RDMs of specific model can be constructed 

using hypothetically driven RSA. Computing the correlation between the neural representation 

RDM of a specific brain region and the model RDMs can estimate whether the brain region 

contains the information expressed by the model. In this study, a computational framework was 

proposed with the RSA Toolbox from the aspect of ROIs and an exploratory "searchlight" 

analysis was designed to analyze the representation pattern of speech emotion in the human 

brain. 

RSA based on ROIs 

The steps of the RSA based on ROIs were as follows: 

First, construct the neural representation RDMs. For a specific brain region, the beta values 

of all voxels for each stimulus condition obtained by GLM were extracted and expanded to a 

matrix of 12 × n (where 12 is the number of stimulus conditions and n is the number of voxels 
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in the brain region). Then, for all voxels in this ROI, the Pearson correlation coefficients 

between each two conditions were calculated, and the dissimilarity values (1 minus Pearson 

correlation coefficients) were acquired. Thus, the data RDM of the brain region was constructed. 

Next, construct the candidate model RDMs. In this study, we constructed five emotion 

models (anger, sad, neutral, joy, and negative) and three modality models (visual, audio, and 

audio-visual) for the candidate model analysis. In the emotion models, the dissimilarity values 

between different modalities of the same emotion were set to 0 (for example, excited facial 

expressions and excited audio rhythm), and the dissimilarity degrees between other conditions 

were set to 1. The dissimilarity values between different emotions of the same modality were 

set to 0 (for example, excited facial expressions and sad facial expressions) and other parts of 

the RDMs were set to 1 in the modality models. The negative emotion model regarded anger 

and sadness as the same kind of emotion. Since the dissimilarity degrees on the diagonal were 

independent of the hypothesis, they were set to NaN and were excluded from the subsequent 

analysis. 

Finally, make the statistical inference. For each ROI of each subject, the Kendal rank 

correlation coefficients between the data RDM and the RDMs of each model were calculated. 

In the group analysis, subjects were treated as random effects. The Kendall rank correlation 

coefficients were submitted to the unilateral Wilcoxon sign rank test to evaluate the 

contributions of the candidate models in explaining the neural representation patterns of a 

specific brain region. 

Weighted RSA 

To examine the contribution of the candidate models, we creatively proposed an approach of 

weighted RSA. The weighted linear sum of the 8 candidate models was used to fit one optimal 

model, and the mean square error between the optimal model and neural representation RDM 

of the brain region was minimized. By analyzing the weight of each candidate model in the 

fitted model, the contribution of the model could be estimated. 

The detailed construction process of the weighted optimal model is as follows (Fig. 2). 

For the neural representation RDM of a specific brain region, it was expanded into a column 

vector with 144 elements, each of which represents a stimulus pair. For each element in the 

vector, the label was determined according to the criteria: if the value was less than 0.4, it was 

labelled as 0; the value greater than 0.6 was labelled as 2; if it was between 0.4 and 0.6, label it 

as 1. The Label vector corresponding to the element vector could be obtained. The function of 

the Label vector was to sort the elements with similar dissimilarity degrees to the same category 
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and apply it to the generation of the optimal model. Then, the RDMs of the candidate models 

and a confound model were expanded to a matrix of 144 × 9. One of the row vectors of the 

matrix called “temp data” was extracted, and the label of the element in the data vector 

corresponding to that row could be obtained (for example, the label was 2). The row vectors in 

the matrix whose label were the same as the “temp data” were composed to a new matrix. Then 

a weight vector was initialized. In order to minimize the mean square error between the data 

vector and the column vector that was obtained by the product of the new matrix and the weight 

vector, continuous iterations were needed. A fitted element could be obtained by multiplying 

the temp data and the weight vector. By repeating the process for all stimulus pairs, the fitted 

vector could be acquired and the fitted model RDM could be obtained by transforming the 

vector to a square matrix. 

 

Fig 2. The construction process of weighted optimal model. There were three kinds of main 

procedures. First, the data RDM of a brain region was transformed to a vector and the Label vector could 

be obtained according to the criteria. Second, the candidate models were expanded to a matrix and the 

rows that had the same label with the temp data were combined to a new matrix. The weight vector could 

be obtained by minimizing the mean square error between the data vector and the product of the new 

matrix and the weight vector. Finally, multiplying the temp data and weight vector and repeating the 

process, the fitted model could be obtained by transforming the fitted vector to a square matrix. 

Searchlight analysis 

Brain regions that were significantly correlated with candidate models could be obtained in the 

whole brain by using searchlight analysis. In the searchlight analysis, for each voxel of each 

subject, the data in the neighborhood with a radius of 6 mm was extracted and was expanded 

in line. A matrix of 12 × n (where 12 is the number of stimulus conditions and n is the number 

of voxels in the searchlight) could be obtained for each searchlight step. Then, for each 

condition pair, Pearson correlation coefficients between the two conditions were calculated, and 

the 12 × 12 RDM of the searchlight was obtained. The Kendall rank correlation coefficient 
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between the searchlight RDM and each candidate model RDM was calculated, which was 

assigned to the central element of the searchlight. The correlation coefficient could evaluate to 

what extent the neural representation pattern of the searchlight could be interpreted by the 

model. For each candidate model, the above process was repeated on all voxels of each subject, 

and the subjects' whole brain correlation map (r-Map) was thus obtained. The group analysis 

was set with the subjects as random effects. For all candidate models, one-sample t-test was 

used to test the hypothesis of each voxel, and the significance value corresponding to the 

candidate model was obtained for each voxel, and then the whole brain significance map (p-

Map) was obtained at the group level. Brain regions that were significantly correlated with the 

models were acquired with the threshold p = 0.01, corrected at the cluster level with the cluster 

size above 30 voxels. 

Conjunction analysis of emotion 

To further locate the regions that might be involved in emotion perception, three new contrasts 

were defined in the first level analysis for each subject, which were Anger > Neutral, Sad > 

Neutral and Joy > Neutral. Then, the results of all subjects were assessed in the second level 

group analysis, the significance level of which was set to p = 0.05 (FDR corrected) to obtain 

the activation maps of the three emotions versus neutral emotion. Finally, a conjunction analysis 

of (Anger>Neutral)∩(Sad>Neutral)∩(Joy>Neutral) was conducted based on the above results. 

Results 

RSA based on ROIs 

Based on previous findings, the AMG, insula, IPL, and STG were initially defined to be the 

ROIs to further explore their roles in the perception of speech emotion in visual and auditory 

modalities. To precisely investigate the hemispheric effect on the representation of emotion, all 

ROIs were divided into two parts. 

Weight analysis of best fitted model 

For each ROI, a best fitted model using the linear combination of the 8 candidate models was 

constructed to minimize the mean square error with the data RDM (Fig. 3). The weight analysis 

of emotion models revealed that compared with other brain regions, the negative model 
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provided a small but significant contribution in the fitted results of the bilateral amygdala (left 

amygdala: Mean = 0.013, SD = 0.011; Right amygdala: Mean = 0.047, SD = 0.027), which 

indicated their roles in the processing of negative emotion. The joy emotion model had a 

significant contribution to the best fitted model of bilateral AMG, suggesting that they might 

also be associated with the processing of positive emotion. 

 

Fig 3. The results of data RDMs and fitted model RDMs on ROIs. Each pane showed the neural 

representation (data) RDM and the fitted model RDM of a specific brain region. The four panes on the 

left showed the results of left hemisphere and others showed the right hemisphere’s results. IPL, inferior 

parietal lobule; STG, superior temporal gyrus; AMG, amygdala; L, left; R, right. 

 

The anger and joy emotion models shared significant contributions in all ROIs while the 

weights of sad and neutral models were relatively less. For the best fitted model of all brain 

regions, the weights of the neutral emotion model of the left AMG and the right insula were 

zero, while each single emotion model had a certain weight on other ROIs, indicating that they 

might be involved in the perception of speech emotion in different valences. For more details, 

please refer to Tab. 1. 
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Tab. 1. The weights of each model in fitted model (p = 0.05, FDR corrected) 

 

SD, standard deviation; IPL, inferior parietal lobule; STG, superior temporal gyrus; AMG, amygdala; L, 

left; R, right. 

Statistical analysis 

Neural representation RDM in each ROI was used to calculate the Kendall rank correlation 

coefficient with each model RDM, which were then examined with a unilateral sign rank (p set 

to 0.05, FDR corrected). We found that the data RDMs of all ROIs had no significant correlation 

with the sad emotion model. A significant correlation to the negative model was observed in 

the bilateral AMG, the values of which were greater than other emotion models. The correlation 

of joy model and bilateral AMG was also significant. These findings further indicated that the 

bilateral AMG might play an important role in the perception of positive and negative speech 

emotion in visual and auditory modalities. Bilateral AMG and neutral emotion model were not 

significantly correlated, suggesting that the bilateral AMG might not be associated with the 

processing of neutral emotion. 

Bilateral insula, bilateral STG and left IPL showed significant correlations with all single 

emotion models except the sad model, which indicated their roles in the perception of emotions 

in different valences. No significant correlation with the neutral model was observed in the right 

IPL. 

The statistical analysis results of all ROIs were shown in Fig. 4. It showed that the best 

fitted model was superior to any other models for all ROIs. 

 

Region 
Anger Sad Neutral Joy Negative 

Mean SD Mean SD Mean SD Mean SD Mean SD 

AMG_L 0.404 0.230 0.056 0.118 0.000 0.000 0.208 0.103 0.013 0.011 

AMG_R 0.376 0.202 0.044 0.108 0.108 0.144 0.175 0.105 0.047 0.027 

Insula_L 0.307 0.243 0.008 0.012 0.043 0.018 0.036 0.134 0.001 0.001 

Insula_R 0.266 0.306 0.042 0.127 0.000 0.000 0.127 0.246 0.000 0.000 

IPL_L 0.217 0.130 0.051 0.041 0.005 0.004 0.062 0.082 0.000 0.000 

IPL_R 0.283 0.170 1.13e-04 0.001 0.015 0.012 0.013 0.037 0.024 0.022 

STG_L 0.259 0.346 0.020 0.018 0.002 0.002 0.085 0.192 0.000 0.000 

STG_R 0.221 0.290 0.040 0.070 1.98e-04 0.001 0.069 0.141 0.000 0.000 
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Fig 4. Statistical analysis results of ROIs. Each pane corresponded to the result of a ROI and showed 

the Kendall rank correlation coefficients between neural representation RDM of the ROI and the models. 

The models included the 8 candidate models and the best fitted model obtained by weighted RSA. P 

value stood for significance level and the asterisk represent the correlation was significant. The line 
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segment meant the left model was superior to the right one. IPL, inferior parietal lobule; STG, superior 

temporal gyrus; AMG, amygdala; L, left; R, right. 

Searchlight analysis on the whole-brain level 

The weighted RSA analysis showed that the weights of neutral emotion model were zero in the 

best fitted models of left AMG and right insula and the statistical analysis suggested that the 

correlation between the data RDM of right IPL and the neutral emotion model RDM was not 

significant. In order to explore whether these brain regions could perceive neutral emotion and 

promote the following analysis, a whole-brain searchlight analysis with a radius of 6mm was 

conducted for neutral emotion model. With a significant level of p = 0.01 (t-test) and cluster 

sizes above 30 voxels, brain regions that were significantly correlated with neutral emotion 

model were obtained.  

 

Tab. 2. The searchlight results of neutral emotion model (p = 0.01, t-test) 

 

Anatomical region Hemisphere Cluster size 
MNI coordinates 

x y z 

STG L 598 

-51 -6 -24 IPL L 171 

Insula L 60 

STG R 522 

57 3 -21 Insula R 146 

IPL R 44 

The cluster size indicated number of voxels; IPL, inferior parietal lobule; STG, superior temporal gyrus; 

L, left; R, right. 

 

As shown in Tab. 2, the whole-brain searchlight indicated that the correlation of bilateral 

IPL, bilateral insula and bilateral STG with neutral model reached the significant level (p = 

0.01, t-test). Combined with the results of the statistical analysis, these brain regions were 

significantly correlated with all single emotion models except the sad emotion model, 

suggesting that they might be involved in the perception of speech emotion. 

Conjunction analysis on the emotion 

To further explore if the IPL, insula and STG were really involved in the basic perception of 

speech emotion, a conjunction analysis of (Anger>Neutral)∩(Sad>Neutral)∩(Joy>Neutral) 

were conducted for all subjects' results. 
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As shown in Fig. 5, anger, sad and joy emotion were significantly activated in the left 

posterior insula and left anterior STG versus neutral emotion (p = 0.05, FDR corrected, cluster 

size > 10). The results of weighted RSA showed that each single emotion model had a 

contribution to the best fitted model of left insula and left STG. Statistical analysis indicated 

that the neural representation RDMs of left insula and left STG were significantly correlated to 

all single emotion models except sad emotion model and whole brain searchlight analysis 

further revealed their role in processing neutral emotion. Considering the above results, we 

concluded that the left posterior insula and left anterior STG were involved in the perception of 

speech emotion in visual and auditory modalities. 

 

Fig 5. The conjunction analysis result of (Anger>Neutral)∩(Sad>Neutral)∩(Joy>Neutral). The 

cluster size indicated number of voxels; L, left; R, right. 

 

Discussion 

In this study, the RSA based on ROIs, whole-brain searchlight analysis and emotion conjunction 

analysis were conducted to explore the brain regions involved in speech emotion perception in 

audio-visual modality. The results showed that the bilateral AMG was involved in the 

perception of positive and negative emotional stimuli, especially sensitive to negative emotions, 

but could not perceive neutral emotion. The left posterior insula and the left anterior STG were 

related to the perception of multimodal speech emotion in all valences, and bilateral IPL didn’t 

participate in the perception of neutral emotion. 

Recently, there has been a study describes the variational implementation of covariance 

component analysis, which has the functionality of pattern component modelling (PCM) and 
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RSA (Friston et al. 2019). It considers RSA and PCM as Bayesian model comparation 

procedures that assess the evidence for stimulus or condition-specific patterns of responses 

distributed over voxels or channels. In our study, we creatively proposed a weighted RSA 

method to evaluate the contribution of each candidate model to the best fitted model, which is 

also an enrichment and expansion of RSA. 

The perception of speech emotion in audio-visual modality 

The RSA based on ROIs suggested that the left IPL, bilateral insula and bilateral STG were 

significantly associated with all single emotion models except the sad model. The searchlight 

analysis pointed out the significant correlation between the right IPL and neutral model and it 

was included to the brain regions that might be involved in the perception of emotion. Only the 

left posterior insula and left anterior STG were observed in the further conjunction analysis of 

emotion, indicating their roles in the perception of different speech emotion valences in audio-

visual modality.  

For a long time, the insula has been thought to process the physical sensations of appetite 

and disgust and arouse the associated emotions, leading to conscious perception of emotion 

states (Schachter and Singer 1962; Russell 2003). Evidence from electrophysiological studies 

and hemispheric inactivation processes suggested that emotional processing within the insula 

was strongly lateralized based on autonomous input from this region (Oppenheimer et al. 1992). 

For example, the bilateral insular cortex was activated (experience) when people smell 

unpleasant smells, but only the left side was activated (perceive) when they see other people 

doing the same thing, demonstrating the role of the left insula in perceiving emotions. A recent 

study showed that sensory testing of facial expressions was associated with the functional 

connectivity from the fusiform gyrus to the frontal lobe and left insular cortex, suggesting that 

the left insula might be involved in the perception of facial emotions (Bae et al. 2019). Other 

studies have found that the activation of emotion perception in the middle and posterior insula 

was biased towards the left side. These results were strongly consistent with our findings, which 

revealed the role of the left posterior insula in the perception of speech emotion and provided 

further evidence for the left lateralized of insula in emotion perception. 

The STG was often revealed to be involved in the unimodal emotion perception (Dara 

2012; Ethofer et al. 2012; Zhang et al. 2019). Previous studies have shown that the bilateral 

STG were significantly activated when hearing emotional sounds compared to neutral sounds 

(Ethofer et al. 2012), and that the right STG was associated with extracting tonal cues for 

emotional inferences, while the bilateral STG was involved in processing sonic cues of 
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emotional prosody (Dara 2012). Studies also showed that the right STG played an important 

role in emotional facial perception of different valences (Zhang et al. 2019). Furthermore, the 

STG was also revealed to participate in processing of emotion perception in audio-visual 

modality. When the music and the face expressed the same emotion, the bilateral STG showed 

a stronger activation (Jeong et al. 2011). The bilateral anterior STG was observed in audio-

visual emotion perception when using emotional prosody and dynamic facial expression as 

stimuli (Robins et al. 2009). A recent study used the meta-analysis to quantitatively summarize 

the results of 18 neuroimaging studies and identified a core processing network of emotion, 

including the right posterior STG, the left anterior STG, the right AMG and the thalamus, 

supporting the involvement of the STG in emotion processing of audio-visual modality (Gao et 

al. 2019). Although more and more studies have been conducted to explore the perception 

mechanism of emotion, the exact location related to emotion perception was not consistent in 

the results and most of the research pointed to the temporal lobe, usually biased to the right 

hemisphere (Robins et al. 2009). In this study, the short speech sentences with emotional 

information were used as the stimuli. However, previous studies on emotion perception mainly 

used music or emotional rhythm as auditory stimuli, and their conclusions might not apply to 

our findings. In order to eliminate the interference of semantic information in the study of 

emotion perception, the subjects were required to make emotion recognitions ignoring semantic 

information in sentences before the experiment, but this does not seem to work. Numerous 

studies have found that the left STG was involved in the processing of lexical and syntactic 

information, not the right side (Friederici and Kotz 2003; Pisoni et al. 2012; Feng et al. 2020). 

Our study indicated that the short speech sentences containing emotional information might 

subconsciously lead to the processing of semantic information in the brain, thereby excluding 

the right STG from the involvement in speech emotion perception, and provided evidence for 

the role of the left anterior STG in the perception of speech emotion.  

Regions that couldn’t perceive emotions of all valences 

Compared with other emotion models, the bilateral AMG showed significant correlations with 

the negative emotion model in the RSA analysis. The weighted RSA suggested that the negative 

emotion model made more significant contribution to the best fitted model of bilateral AMG 

compared to other regions. These findings suggested that the AMG played a vital role in the 

perception of negative emotions. Previous studies have shown that the AMG was activated 

more significantly by negative emotional stimuli than neutral or positive ones (Irwin et al. 1996; 

Schneider et al. 1996; Lane et al. 1997; Zald and Pardo 1997), and the negative emotion 
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processing of amygdala have been observed in both visual and auditory modalities (Schaefer et 

al. 2002; Koelsch et al. 2006), which were consistent with our findings. The amygdala might 

have a more general function in perceiving different emotional facial expressions (Fitzgerald et 

al. 2006), playing a central role in processing both negative and positive emotions (MORIOKA 

et al. 2010). In our study, the weighted RSA suggested that the anger and joy model made 

significant contributions to the best fitted model in bilateral amygdala, and statistical analysis 

revealed that the neural representation RDMs of bilateral amygdala were significantly 

correlated with anger and joy emotion models, which provided evidence for the amygdala in 

dealing with emotions of different valences. Based on the previous studies and our findings, we 

speculate that the amygdala may be involved in the representation of emotions in different 

valences, and is more sensitive to the perception of negative emotions. No significant 

correlations between the bilateral amygdala and neutral emotion model in the RSA based on 

ROIs and searchlight analysis were observed, and the amygdala was not detected in the 

conjunction analysis detect, indicating that the amygdala may not participate in the perception 

of neutral emotions. 

The bilateral IPL was not observed in the further conjunction analysis, suggesting that the 

IPL might not be involved in the perception of speech emotion in audio-visual modality, which 

was consistent with our previous study that the IPL couldn’t decode emotion across modalities 

(Cao et al. 2018). Another study that explored the representations of emotions cross modalities 

suggested that the IPL could not classify the emotion of positive and negative valences, nor 

could it distinguish the emotional stimuli and neutral stimuli, which were similar to our results 

(Kim et al. 2017). We speculate the reason that the IPL was absent from the results of emotion 

perception might be that the IPL was unable to perceive the neutral emotion. Moreover, the 

neural emotion model made a quite small contribution in the weighted RSA. The statistical 

analysis showed that the correlation between the neutral emotion model and the neutral 

representation of right IPL did not reach the significant level, and the correlation value and 

significance value of the left IPL were both very low, which provided evidence for the 

incapability of bilateral IPL in perceiving neutral emotion. However, in our study, the 

searchlight analysis found a significant correlation between the bilateral IPL and the neutral 

emotion model, possibly due to the strong ability of RSA. When conducting RSA, the type I 

error might incorrectly infer the voxels that were not correlated to the model, thus obtaining the 

brain regions that shouldn’t exist (Thirion et al. 2015). Taking these into consideration, it’s 

considered that the bilateral IPL might not be associated with speech emotion perception in 

audio-visual modality. 
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Emotion models 

None of the ROIs showed a significant correlation with the sad emotion model, possibly 

because the perception of sad emotion was strongly influenced by individual differences. The 

individual differences have been suggested to be responsible for the inconsistencies in the 

findings of previous studies on sadness (Eugène et al. 2003). In our study, as the arousal of 

sadness was different among the subjects, all the ROIs failed to obtain a significant correlation 

with the sad emotion model at the group level. Other studies revealed that the spontaneous 

response of AMG was relatively low to sad faces (Kugel et al. 2008), and the people’s 

recognition ability to sad emotion decreased with age (Demenescu et al. 2015). These findings 

suggested that the brain's ability of perception and recognition to sadness might be weak, and 

the perception difference between participants was relatively large, all of which might cause 

the insignificant correlation between the representation pattern of ROIs and the sad emotion 

model. In addition, our results indicated that the anger and joy emotion model were significantly 

correlated with neural representations of all ROIs and contributed prominently to the best fitted 

models. Some studies have found that excited and angry facial expressions could cause 

enhanced activations compared with neutral expressions, revealing an obvious "emotion effect", 

which was consistent with our findings (Beltrán and Calvo 2015). 

Limitation 

Emotion perception includes cognitive process and emotional process. The ROIs in this study 

are mainly concentrated in the ventral region of the brain, which is related to emotional process. 

However, what is the role of the dorsal regions located in hippocampus and anterior cingulate 

gyrus in speech emotion processing and whether they are involved in the integration of 

multimodal affective speech information are still unknown. Further research should be 

conducted in this regard. Moreover, the results have shown that the left posterior insula and the 

left anterior STG are involved in emotion perception, but whether they are associated with the 

decoding of emotion still needs verification. Further studies can be conducted to classify 

different affective stimuli in these regions to reveal their role in the recognition of emotion. 

Conclusion 

In this study, we used dynamic facial expressions and affective speech to explore the brain 

regions that is involved in the perception of audio-visual emotional speech in different valences. 
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Traditional RSA, a weighted RSA method, the whole brain searchlight analysis and the 

conjunction analysis of emotion were used for the analysis of experimental data. The results 

showed that the bilateral AMG was able to process positive and negative emotions, especially 

sensitive to negative emotions compared with other ROIs, but couldn’t process neutral emotion. 

The left posterior insula and the left anterior STG were related to the perception of multimodal 

speech emotion in all valences, and bilateral IPL didn’t participate in the perception of neutral 

emotion. In addition, the weighted RSA method is an enrichment and expansion of traditional 

RSA, which provides a new way to deal with neuroscience problems by using multiple models. 
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