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Highlight 24 

PhenoImage is an open-source application designed for analyzing images derived from high-25 

throughput phenotyping. 26 

 27 

Abstract  28 

High-throughput genotyping coupled with molecular breeding approaches has dramatically 29 

accelerated crop improvement programs. More recently, improved plant phenotyping methods 30 

have led to a shift from manual measurements to automated platforms with increased scalability 31 

and resolution. Considerable effort has also gone into the development of large-scale 32 

downstream processing of the imaging datasets derived from high-throughput phenotyping 33 

(HTP) platforms. However, most available tools require some programing skills. We developed 34 

PhenoImage – an open-source GUI based cross-platform solution for HTP image processing 35 

with the aim to make image analysis accessible to users with either little or no programming 36 

skills. The open-source nature provides the possibility to extend its usability to meet user-37 

specific requirements. The availability of multiple functions and filtering parameters provides 38 

flexibility to analyze images from a wide variety of plant species and platforms. PhenoImage can 39 

be run on a personal computer as well as on high-performance computing clusters. To test the 40 

efficacy of the application, we analyzed the LemnaTec Imaging system derived RGB and 41 

fluorescence shoot images from two plant species: sorghum and wheat differing in their physical 42 

attributes. In the study, we discuss the development, implementation, and working of the 43 

PhenoImage. 44 

 45 

Keywords: high-throughput phenotyping, image processing, plant phenotyping, RGB images, 46 

fluorescence images, sorghum, wheat 47 
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Introduction 49 

In the genomics and post-genomics era, technological advances in sequencing platforms have 50 

paved the way for high throughput genotyping (Jackson et al., 2011; Furbank and Tester, 2011). 51 

These developments coupled with molecular breeding approaches have enhanced the genetic 52 

understanding of plants, which has dramatically progressed the crop-improvement efforts 53 

(Moose and Mumm, 2008; Varshney et al., 2009; Tester and Langridge, 2010). However, precise 54 

and efficient phenotyping has been a challenge (Furbank and Tester, 2011). To tackle this 55 

problem, plant phenotyping technologies have achieved a huge leap in recent times; the shift 56 

from laborious and error-prone manual measurements towards automation (Fiorani and Schurr, 57 

2013; Gong and He, 2014). Automated imaging-based platforms have tremendously enhanced 58 

our ability to record a plant’s physical and physiological attributes in a non-invasive manner. 59 

Despite these advances, phenotyping technologies still trail developments on the genomics front, 60 

especially the rate at which the phenotypic data is generated (Houle et al., 2010; Furbank and 61 

Tester, 2011; Minervini et al., 2015; Gehan et al., 2017). The major limit is not the ever-evolving 62 

sophisticated instrumentation for image capturing but with the downstream processing of large-63 

scale phenotypic data, which is not easily accessible to many plant biologists. 64 

High-throughput (HTP) imaging platform refers to the accurate acquisition and analysis 65 

of multidimensional traits at the individual plant level in context of this work (Yang et al., 2020). 66 

To no surprise, these platforms generate a diversity of images corresponding to different spectra 67 

of light such as RGB, near-infrared, fluorescence, and hyperspectral. Thus, terabytes of digital 68 

information can be routinely generated through an imaging experiment. Currently, the website: 69 

www.plant-image-analysis.org, documents 179 image software tools (Lobet et al., 2013). 70 

Availability and usage of some of these tools are being restricted and adheres to proprietary 71 

rights, for instance LemnaGrid-Scanalyzer3D by LemnaTec GmbH, Germany. On the other 72 

hand, several open-source tools designed for specific applications, ranging from cell to whole 73 

canopy analysis, are readily accessible in the public domain (Lobet et al., 2013). In addition to 74 

their broader functionalities these have also opened new avenues to integrate third-party 75 

algorithms. Examples include HTPheno (developed as a plugin for ImageJ) (Hartmann et al., 76 

2011), Plant Computer Vision or Plant CV (a community-based toolkit for plant phenotyping 77 

analysis) (Fahlgren et al., 2015; Gehan et al., 2017), Integrated Image Platform or IAP (Klukas 78 

et al., 2014), Image Harvest (Knecht et al., 2016). Despite their power and flexibility, these tools 79 
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may require some proficiency with programing language as a pre-requisite to process large-scale 80 

datasets. This is a challenge for many biologists with limited or no coding skills. 81 

The availability of several affordable automated and semi-automated phenotyping 82 

platforms has increased their usage to score the traits of interest (Klukas et al., 2014; Li et al., 83 

2014). Keeping this view in mind, we developed PhenoImage – an open-source, GUI-based 84 

cross-platform solution for large-scale data processing that is not only convenient to use but 85 

highly precise and effective at the same time. The intuitive nature of the application will allow 86 

plant scientists with little or no knowledge of programming language to process phenotypic 87 

dataset on their personal computers. In addition, the application can facilitate parallel processing 88 

of large-scale image data on high-performance computing clusters. To test the efficacy of the 89 

application, we analyzed the LemnaTec Imaging system-derived RGB and fluorescence images 90 

from sorghum and wheat, which differ in their physical attributes. The availability of multiple 91 

functions and filtering parameters provides flexibility to analyze a wide variety of plant species. 92 

Images acquired from other phenotyping platforms or handheld devices can also be processed 93 

using PhenoImage.  94 

 95 

Materials and Methods 96 

PhenoImage Workflow 97 

PhenoImage is a MATLAB-based application i.e. compatible with multiple operating systems. 98 

The software is available in two versions, a regular version that requires MATLAB license and a 99 

standalone version that uses ‘MATLAB Compiler Runtime' and does not necessarily require 100 

MATLAB license for its operation. Both versions can be downloaded from: 101 

http://wrchr.org/phenolib/phenoimage. The same graphical user interface (GUI) application can 102 

support image data processing on a single central processing unit (CPU) as well as parallel 103 

processing on High Performance Computing (HPC) clusters.  104 

 105 

Software Development and Implementation 106 

The GUI for high throughput image analysis is based on MATLAB. The summary of image 107 

processing workflow of PhenoImage includes: (i) file loading, (ii and iii) image cropping and 108 

filtering, (iv) digital trait extraction using specific functions (based on the user’s requirement), 109 
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(v) followed by image processing either on a local machine or HPC clusters (Fig. 1). We have 110 

provided a step-by-step guide to use PhenoImage (see PhenoImage Guide Document). 111 

 112 

File loading  113 

The image files can be loaded by specifying regular expressions in ‘Path’ using the following 114 

format: “FOLDER NAME\*.png”. This should allow the loading of all images under the 115 

respective folder. The application is compatible with widely used image formats such as 116 

jpg, png, and tiff. The spinner can be used to change the ‘Original Image’ that is currently 117 

displayed (Fig. 2).  118 

 The visible images (RGB) of plants can be obtained using any system such as LemmaTec 119 

or using standard digital cameras. If analyzing images using standard digital cameras, the user 120 

must ensure constant focal distance to have similar scale for all the images corresponding to the 121 

same batch to facilitate precise comparison.  122 

 123 

Selection of Region of Interest (ROI) and Image Filtering 124 

For selecting ROI, the user can either crop the image interactively by dragging a marquee tool 125 

over the image or by typing the position of the ROI using this format, [X_min, Y_min, Width, 126 

Height], where X_min, Y_min is the coordinate of the upper-left corner, and Width and Height 127 

correspond to the size of the ROI. The ROI selected is fixed for the image analysis of the 128 

respective folder. Thus, it is recommended that the user selects a relatively larger ROI. This is 129 

important especially during the analysis of plant growth dynamics in a temporal manner where 130 

plants tend to increase in size.  131 

Next, image segmentation separates plant pixels from the background. For segmentation, 132 

a logical expression can be specified in ‘Filter’ (Fig. 2). The application supports (1) red, green, 133 

and blue (RGB), (2) hue, saturation, and value (HSV), and (3) Lab color spaces, which provide 134 

flexibility to the user to optimally segment the RGB images. Any combination of arithmetic and 135 

logical operation can be used to segment the plant. In terms of setting the filter, ‘&’ means 136 

logical AND, ‘|’ means logical OR. For example, ‘r<200 & g< 150’ means finding pixels that 137 

have red values less than 200 and green values less than 150. The ‘Processed Image’ will be 138 

displayed after clicking ‘Test’ button (Fig. 2). 139 
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If the user is unsure about predefining the filter, then the ‘Segmentation’ feature can be 140 

utilized (Zhu et al., 2020). For this, click on ‘Foreground’ and a new pop-up window having the 141 

original image appears. The user can select the zoom-in option from the task bar menu to enlarge 142 

the area of interest (i.e., plant tissue in this case). Once the area is zoomed in, the user can 143 

deselect the zoom in option and scribble on the enlarged area of interest with a red mark (Fig. 3). 144 

Next, background (i.e., pot, pot stand, plant background, etc.) is to be selected by clicking the 145 

‘Background’ button and scribble on the background using a green mark. Afterwards, the user 146 

can click the ‘Segment’ button to initiate the segmentation or subtraction of plant pixels from the 147 

background (Fig. 3). We empirically segment the plant by finding plant pixels where the 148 

difference to the mean of selected foreground is less than 60. Implementation of the ‘Segment’ 149 

function may take a few additional seconds. After segmentation, the ‘Processed Image’ will 150 

show pixels corresponding only to the plant and the histograms corresponding only to the plant 151 

region will be displayed in ‘Channel 1, 2, and 3’. The range of the histogram for each channel 152 

can be used to define ‘Filter’ parameters. The ‘Segmentation’ feature is helpful to define filter 153 

parameters in a similar manner for both RGB and fluorescence images; however, histogram 154 

values for only the red channel need to be considered for setting the filter in the case of 155 

fluorescence images. 156 

 157 

Defining Functions for Plant Trait Analysis 158 

For digital trait extraction, the user can select functions from a dialog window by clicking 159 

‘Functions’, where any user defined functions can be selected. The selected functions will be 160 

listed in the text region and will take the segmented image as input to extract digital traits. Some 161 

of the commonly used functions are defined below: 162 

 163 

Pixel Count 164 

After segmentation, only the pixels corresponding to the plant are kept, while pixels 165 

corresponding to other objects in the image are set to black. The tool counts the number of pixels 166 

that belong to the plant in the ROI.  167 

 168 

Pixel Intensity 169 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

Pixel Intensity refers to the sum of the intensities of pixels in an image. As there are three 170 

channels, red, green, and blue, we calculate the pixel sum of each of the R, G, and B channels 171 

separately. 172 

 173 

Dimension 174 

To define the dimensions (width and height), firstly a bounding box, which based on the 175 

segmented pixels and encloses all pixels of the plant, is found (Fig. 4). Then, the width and 176 

height of the bounding box are used to define the dimensions of the plant. 177 

 178 

Convex Area 179 

Convex Area is a feature i.e. related to the shape of the plant. The convex area is the area of the 180 

convex hull. The convex hull is the smallest convex polygon enclosing all the pixels of the plant 181 

(Fig. 4). 182 

 183 

Image Skeleton  184 

We find the skeleton of the plant pixels using a skeletonization algorithm (Abeysinghe et al., 185 

2008). The skeleton of the plant approximates the center lines of the stem and the leaves. Then, 186 

the number of pixels in the skeleton is obtained (Fig. 4).  187 

 188 

Image moment 189 

Image moments can be used to evaluate the shape of the plant (Hu, 1962). We evaluate the 190 

image moment of the binary image or the segmented plant image. For the binary image, the plant 191 

pixel is considered as 1, and pixels of other objects in the image (e.g., pot, pot-holder, and 192 

background) is considered as 0. The moment of the binary image is only dependent on the 193 

positions of the pixels. The fourth-order central image moment (μ��) is evaluated for the binary 194 

image in default. The user can easily modify the function to obtain image moments of other 195 

orders. 196 

 197 
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Execution on a Local Machine 198 

Image Processing and Results collection 199 

The batch image processing can be initiated by clicking ‘Execute’ (Fig. 2). The ‘light bulb’ 200 

located on the right side indicates the status of processing. For instance, the light bulb turns red 201 

as images are being processed and will turn green upon its completion. The ‘Progress’ gauge 202 

will show the progress of the image processing on a percentage basis. A text file containing 203 

results from all the functions can be generated by clicking ‘Save’. The user can specify the path 204 

and file name of the text file in a pop-up dialog window. 205 

 206 

Execution on high performance computing (HPC) clusters  207 

Execution and code generation on HPC clusters 208 

For executing jobs on HPC clusters, slurm (Yoo et al., 2003) is used to submit a batch job, which 209 

distributes the jobs using job identifications (IDs). Each job requires a small number of 210 

resources, so the priority of execution of each job using slurm is high. Thus, owing to less 211 

queuing time, we chose slurm for PhenoImage. 212 

Further, to process images using HPC clusters, click the ‘Code’ button (Fig. 2), which 213 

generates a MATLAB script for processing images. A slurm file (an example is included in 214 

PhenoImage) is used to submit a job array to the cluster. Then, the job IDs and job size executed 215 

by slurm are used to partition the images so that each node processes only a part of images. The 216 

job IDs and job size are passed to the MATLAB script generated by PhenoImage as input 217 

parameters. The user needs to input the names of the files that need to be processed in a text file. 218 

For each node in the HPC cluster, the script reads all the filenames and processes a part of the 219 

images as specified by job ID and job size. Specifically, the script will process images with 220 

indices [JobID, JobID+JobSize, JobID+2* JobSize, …]. The script contains the position of the 221 

ROI, the expression of the color filter, and the names of the functions that have been selected for 222 

digital trait extraction.  223 

After submission of the job using the slurm file, the result computed by each function on 224 

each node will be printed out and finally aggregated in one output file, which is specified in the 225 

slurm file. The output file contains all the results for all the input images. 226 

 227 

Sorghum and wheat: a test case for PhenoImage validation 228 
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Sorghum: Four seeds of sorghum genotype, RTX430 were sown in each of the ten 5.6 liter (L) 229 

pots (22 cm diameter X 19.5 cm height) filled with 2.5 kg of a soil mix consisting of 2/3 peat 230 

moss and 1/3 vermiculite and 1.4 kg lime. Six days after germination, plants were thinned to one 231 

seedling per pot. For the first 21 days, all pots were watered to 70% water holding capacity 232 

(WHC). Afterwards, water was withheld from half of the pots (water-limited treatment; WL) 233 

until 30% WHC is attained, while half of the pots were maintained at 70%WHC (well-watered 234 

treatment; WW; (Supplementary Fig. S1). During the entire experiment, the greenhouse was 235 

maintained at 28/25°C temperature, 13h/11h – day/night, and 40-50% relative humidity.  236 

 237 

Wheat: Seeds of wheat genotype – Pavon were germinated in Petri dishes for four days in dark at 238 

25°C. Uniformly germinated seeds were transplanted in 3 L pots (12 cm diameter X 19.5 cm 239 

height) filled with 1.2 kg of Fafard germination soil (Sungro, Massachusetts, USA) 240 

supplemented with Osmocote fertilizer and Micromax micronutrients. Seedlings were grown for 241 

7 days at 80% WHC. After seven days, 6 seedlings each were maintained at 80% WHC for well-242 

watered treatment and 30% WHC for water-limited treatment (Supplementary Fig. S1). Growth 243 

conditions were maintained at 22/16°C – 16/8 h day/night temperatures. Afterwards, plants were 244 

imaged every day for 15 days. 245 

 246 

Water holding capacity (WHC) 247 

For calculating WHC of the soil mix, 2.5 and 1.2 kg of soil mix for sorghum and wheat 248 

experiment, respectively, was oven-dried (60°C for 7 days) and dry soil weight was measured. 249 

Then, the soil mix was transferred to pots perforated at the bottom for drainage. To achieve the 250 

saturation point (weight of the soil at 100% WHC), the soil mix was saturated with water while 251 

covered at the top to prevent evaporation. Pots were weighed daily until no change in pot weight 252 

was observed. These computed values were then used to calculate the weight of soil at a 253 

particular WHC by using the following equation: 254 

Soil weight at a particular WHC

� ��Soil weight at 100% WHC � Dry Soil Weight� � Required WHC! " Dry Soil Weight 

 255 

Plant Imaging 256 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


10 

 

A high-throughput phenotyping facility (LemnaTec Imaging System) at Nebraska Innovation 257 

Campus, the University of Nebraska-Lincoln was used to evaluate sorghum (RTx430) and wheat 258 

(Pavon) plants by RGB and fluorescence images. For sorghum plants, starting from the day 259 

water was withheld, both WW and WL pots were imaged every day until WL pots reached 30% 260 

WHC. Plants were imaged for 18 days (Supplementary Fig. S1). Due to technical error during 261 

the experiment, the imaging system failed to acquire images on the 13th day of imaging, so data 262 

corresponding to this day is missing from the downstream analysis. For wheat plants, imaging 263 

was performed for 15 days for WW and WL conditions (Supplementary Fig. S1).  264 

To reduce image occlusions, imaging was done from five different angles (side views at 265 

0°, 72°, 144°, 216°, and 288°; Supplementary Fig. S2) (Golzarian et al., 2011). Next, RGB and 266 

fluorescence images from both the species were used as a test cases to validate PhenoImage. For 267 

validation and optimal segmentation of RGB images, the following filter parameters were used: 268 

g<150 (for sorghum) and g<150 & h>0.2 & h<0.5 & s>0.1 & v<0.6 & a<-5 (for wheat). 269 

For fluorescence images, plants were imaged in a separate chamber and an ad hoc-image 270 

segmentation strategy was used to categorize image color ranges into 32 color classes (Campbell 271 

et al., 2015). Further, Hierarchical Cluster Analysis (HCA) was performed using wards method 272 

(JMP® Pro13) to examine the temporal profile of the color classes with pixel intensities. For 273 

fluorescence images, filters were defined using only the red pixels; sorghum – r>150 and wheat – 274 

r>50 & r<140. 275 

 276 

Performance testing 277 

To test the performance of PhenoImage, we evaluated the time required to process images with 278 

respect to individual functions such as convex area and pixel count (Supplementary Table S1). 279 

For this, an RGB image from a sorghum plant was analyzed at resolutions ranging from 100x100 280 

to 10,000x10,000 pixels in an incremental manner.  281 

 282 

Manual phenotyping and comparisons with other methods 283 

Manual measurements were performed for both sorghum and wheat plants on the last day of 284 

imaging in a destructive manner. For this, fresh and dry shoots were weighed. Shoots were dried 285 

for one week in an oven at 60°C and weighed to determine the dry weight. The manually derived 286 

traits were correlated with digital traits derived from last day of imaging for sorghum and wheat 287 
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(day 18 and 15, respectively; Supplementary Fig. 1). The RGB images from the last day of 288 

imaging were processed using PhenoImage (Supplementary Table S2) as well as HTPheno 289 

(Hartmann et al., 2011) and OpenCV (Bradski, 2000) (Supplementary Table S3). For correlation, 290 

pixel count derived from PhenoImage and OpenCV, and object area from HTPheno were 291 

considered.  292 

 293 

Results and Discussion 294 

Performance Testing 295 

We evaluated the performance of PhenoImage with respect to the time required to process 296 

images. For this, we computed time required to generate data for two functions: convex area and 297 

pixel count, derived from RGB images, which had different levels of resolution ranging from 298 

100x100 to 10,000x10,000 pixels (Supplementary Table S1). We observed that the application’s 299 

performance at different resolutions depended on the function that is being evaluated (Fig. 5). 300 

For example, time taken to analyze convex area at the highest resolution (10,000x10,000 pixels; 301 

1.646 sec) increased by 53.15% compared to the lowest resolution (100x100 pixels; 0.030 sec). 302 

On the other hand, time taken to analyze pixel count increased by 16.20% with the increase in 303 

the resolution i.e. 0.167 and 0.009 sec for the highest and lowest resolution, respectively (Fig. 5, 304 

Supplementary Table S1). 305 

 306 

Sorghum and wheat: A test case for PhenoImage validation 307 

The RGB images from sorghum (RTx430) and wheat (Pavon) were used for validating 308 

PhenoImage. These species were selected because of their visibly different physical attributes. 309 

Sorghum has one main shoot axis, which results in a relatively compact-looking phenotype 310 

compared to the wheat plant, which produces multiple tillers (Fig. 5). The two species also differ 311 

in other parameters such as stalk diameter, leaf width, leaf length, etc. Plants from both the 312 

species were used for HTP with the LemnaTec Imaging System, and images were processed 313 

using PhenoImage. After loading the images onto the application, the best filter parameters were 314 

determined empirically based on histogram generated after segmenting the foreground (i.e. plant 315 

pixels) from the background. 316 

We assessed two digital traits derived from the RGB images: pixel count and convex 317 

area, which are representative of a plant’s overall architecture. Pixel count was used as a proxy 318 
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for projected shoot area (PSA) and represents the total number of pixels of a plant, whereas the 319 

convex area was the area of the convex hull and illustrates the smallest convex polygon 320 

enclosing all of the pixels of the plant (Fig. 3). For validation, the visible differences between the 321 

two species were assessed for plants of the same age (26-day old) via imaging. As a result, we 322 

detected significant differences (P < 0.001) between sorghum and wheat plants with respect to 323 

PSA as well as the convex area (Fig. 6). Interestingly, although wheat plants have a higher 324 

number of leaves than sorghum of the same age, sorghum plants had higher PSA and convex 325 

area, apparently due to the broader leaves of sorghum.  326 

 327 

Comparison with manual measurements and other image processing methodologies 328 

Next, we performed destructive phenotyping of sorghum and wheat plants at the last day of 329 

imaging (day 18 and 15, respectively; Supplementary Fig. S1). The harvested plants were used to 330 

manually record fresh and dry shoot weight. As expected, we observed significantly higher fresh 331 

and dry weight for sorghum compared to wheat (Supplementary Table S2).  332 

Furthermore, we compared the manually recorded phenotypes with digital traits (pixel 333 

count) derived from RGB images. For this, the RGB images were processed using the in-house 334 

generated application – PhenoImage, as well as two publicly available tools, HTPheno and 335 

OpenCV. HTPheno is used as a plugin for ImageJ and does not involve programming language 336 

(Hartmann et al., 2011). The application does not allow calibration of color settings for image 337 

processing. On the other hand, OpenCV requires skills in Python programming language and 338 

does not offer GUI (Bradski, 2000). For both the plant species, we detected a high correlation for 339 

fresh and dry weight with PSA derived from RGB images processed using PhenoImage, which 340 

was comparable to correlations obtained from HTPheno and OpenCV (Table 1 and 341 

Supplementary Table S2 and S3). This illustrates the sensitivity of the PhenoImage application 342 

in terms of estimating digital traits from the two plant species while considering minute details in 343 

depth. 344 

 345 

Temporal analysis of growth dynamics using PhenoImage  346 

The image-based phenotyping platforms have enabled quantification of physiological and 347 

morphological features in a time-dependent manner. In this context, we performed temporal 348 

evaluation of sorghum and wheat growth dynamics under well-watered (WW) and water-limited 349 
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(WL) conditions using HTP. The RGB and fluorescent derived images were processed using 350 

PhenoImage for testing sensitivity of the tool to detect subtle physiological changes over time.  351 

The biomass of the plant increases with growth and development, which can be 352 

quantified by imaging, and environmental stresses in general slow growth and development 353 

(Chen et al., 2014; Röth et al., 2016). To evaluate the changes in plant size in a temporal manner, 354 

we traced PSA derived from RGB images under WW and WL conditions. For both sorghum and 355 

wheat, PSA showed a gradual increase over time under WW and WL; however, WL conditions 356 

exhibited lower PSA relative to WW conditions for the identical time-point (Fig. 7).  357 

We evaluated changes in pixel intensities corresponding to the ‘G’ channel and 358 

chlorophyll florescence as an indicator of plant health. In principle, the ‘G’ pixel intensity 359 

derived from the RGB images reflect the greenness of the plant; higher green pixel intensity 360 

reflects higher chlorophyll content, which in turn is associated with the higher photosynthetic 361 

activity (Wood et al., 2020). The greenness index (GI) was calculated using the following 362 

formula: � �
��

��������

 , where NR, NG, and NB are pixel intensity for R, G, and B channel 363 

normalized to total pixel count for the respective time-point and treatment. For both sorghum and 364 

wheat, we observed higher GI under WW relative to WL conditions (Fig. 8).  365 

Furthermore, abiotic stresses such as heat stress or water limitation decreases 366 

photosynthetic efficiency and increases non-photochemical quenching resulting in enhanced 367 

chlorophyll fluorescence and heat dissipation (Zhao et al., 2017; Paul et al., 2020). Therefore, we 368 

evaluated the dynamics of chlorophyll fluorescence for sorghum and wheat under WW and WL 369 

conditions. For this, total pixels corresponding to the red channel were classified into 32 color 370 

classes based on their fluorescence intensity. As the stress progressed, fluorescent intensity of 371 

pixels changed. To monitor the rearrangement of pixels over time and treatments, we performed 372 

HCA. As a result, we detected four clusters (I-IV) each for sorghum and wheat (Fig. 9; left 373 

panel). For sorghum, the identified clusters distinguished changes related to both development as 374 

well as water treatments (WW and WL). Cluster I comprised fluorescence changes at early time 375 

points – 1 to 5 day (d) of imaging, wherein cluster II and III were associated with later time 376 

points (d6 to d17) under both WW and WL conditions (Fig. 9). Furthermore, HCA clearly 377 

distinguished fluorescence changes linked with water treatment, as cluster II and III were 378 

predominant ones under WL and WW conditions, respectively (Fig. 9). In the case of wheat, 379 

HCA distinguished development-driven fluorescence changes, as early time points (d1 to d5) 380 
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were represented by cluster I and II and late time points (d6 to d15) were represented by cluster 381 

III and IV (Fig. 9; right panel). However, a clear distinction between WW and WL conditions 382 

was not observed. These results are in line with previous findings documenting decreased 383 

chlorophyll content or photosynthetic activity as a possible penalty on a plant subjected to WL 384 

conditions (Mathobo et al., 2017). 385 

 Collectively, the results establish that PhenoImage can be used to analyze HTP-derived 386 

longitudinal phenotypic datasets (RGB and fluorescence images) to detect the occurrence of 387 

subtle phenotypic changes in a plant’s growth and development.  388 

 389 

Conclusion 390 

PhenoImage offers an exhaustive and robust analysis of large-scale plant phenotyping data. The 391 

intuitiveness of the application allows scientists with little programming experience to process 392 

large-scale datasets on their computers. The tool can also support parallel high performance 393 

computing clusters. The availability of multiple functions and filtering parameters provides 394 

flexibility to analyze a wide variety of plant species. Moreover, open-source nature provides the 395 

possibility to extend the usability of the tool to meet specific user requirements. The current 396 

version of the application is designed for analyzing aboveground plant images. However, we 397 

plan to extend its usability to examine other tissues such as root or panicles.  398 
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 412 

Software Availability 413 

PhenoImage is available in two different versions: (i) Standalone application: this version does 414 

not require MATLAB license for its operation, (ii) Regular application: this version does require 415 

MATLAB: https://www.mathworks.com/products/matlab.html.   416 

Both versions are available at http://wrchr.org/phenolib/phenoimage. We have provided a 417 

detailed step-by-step guide for using PhenoImage (PhenoImage Guide Document). 418 

  419 
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 420 

Table 1: Correlation of manual traits – fresh weight 
(FW) and dry weight (DW) with the digital trait derived 
from RGB images processed using the three 
applications. 
 PhenoImage HTPheno OpenCV 

FW (Sorghum) 

FW (Wheat) 

0.923 

0.927 

0.897 

0.999 

0.901 

0.901 

DW (Sorghum) 

DW (Wheat) 

0.974 

0.863 

0.960 

0.871 

0.962 

0.999 

For comparisons, pixel count derived from PhenoImage 
and OpenCV, and object area from HTPheno for both 
plant species corresponding to the last day of imaging 
were used.  
 421 

Supplementary Material 422 

Supplementary Fig. S1: Water treatments for sorghum and wheat. For sorghum, all pots were 423 

watered to 70% water holding capacity (WHC) for the first 21 days. Then, water was withheld 424 

from half of the pots (water-limited treatment; WL) until 30% WHC is attained, while half of the 425 

pots were maintained at 70%WHC (well-watered treatment; WW). During the entire experiment, 426 

the greenhouse was maintained at 28/25°C temperature, 13h/11h – day/night, and 40-50% 427 

relative humidity. For wheat, seedlings were grown for 7 days at 80% WHC. After seven days, 428 

half of the seedlings were maintained at 80% WHC for WW treatment. For the other half, water 429 

was withheld until 30% WHC is attained (WL treatment). Growth conditions were maintained at 430 

22/16°C – 16/8 h day/night temperatures. Afterwards, plants were imaged every day for 15 days. 431 

 432 

Supplementary Fig. S2: Representative RGB original and processed images of sorghum and 433 

wheat plants from five different angles. 434 

 435 

Supplementary Table S1: To test the performance of PhenoImage, we evaluated the time 436 

required to process images with respect to individual functions: convex area and pixel count. For 437 

this, an RGB image from a sorghum plant was analyzed at resolutions ranging from 100x100 to 438 

10,000x10,000 pixels in an incremental manner. 439 

 440 
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Supplementary Table S2: Sorghum and wheat plants from the last day of imaging (day 18 and 441 

15, repsectively) were harvested for recording manual traits (fresh and dry weight; FW and DW). 442 

These manual traits were correlated with digital traits derived from RGB images processed using 443 

PhenoImage. n = 5 and 6 for sorghum and wheat, respectively. 444 

 445 

Supplementary Table S3: Sorghum and wheat plants from the last day of imaging (day 18 and 446 

15, repsectively) were harvested for recording manual traits (fresh and dry weight; FW and DW). 447 

These manual traits were correlated with digital traits derived from RGB images processed using 448 

PhenoImage and OpenCV (Pixel count), and HTPheno (Object Area).  449 

  450 
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Figure Legends: 451 

Fig. 1. PhenoImage Workflow. First, the path of the folder containing RGB images is described. 452 

Then, a region of interest containing plant image is defined, followed by the selection of color 453 

space of preference. Afterwards, filter parameters are determined, and functions corresponding to 454 

the digital traits of users’ choice are selected. Then, the processing of the images is executed 455 

using either a local CPU or high-performance computing clusters. 456 

 457 

Fig. 2. Graphical user interface (GUI) of PhenoImage. The numbers denote a step-by-step guide 458 

to use the application: (1) define ‘Path’ of the folder containing plant images and click ‘Load’ 459 

button, (2) ‘Light bulb’ shows status of the loading procedure, as the blue ‘Light bulb’ turns red 460 

while the loading is in progress and green when completed, (3) one of the image from the folder 461 

is displayed in the ‘Original Image’ section, (4) the spinner can be used to change the current 462 

image shown in the ‘Original Image’ space, (5) then, the user must define ‘Region of interest’ or 463 

‘ROI’ by dragging the cursor on the Original image, (6) select the ‘Color space’ of preference, 464 

(7 and 8) click on ‘Histogram’ button to visualize intensity of channels corresponding to the 465 

respective ‘Color space’, (9a and b) the user can either directly use the histogram values to 466 

define the ‘Filter’ or the user can use the ‘Segmentation’ function, where ‘Foreground’ and 467 

‘Background’ need to be specified to precisely segment plant pixels from the background, (10 468 

and 11) the user can click ‘Test’ to view the ‘Processed image’ and if the user has decided on the 469 

‘Filter’ (12) then, selection of ‘Functions’ is performed. The functions or the digital parameters 470 

that need to be extracted are based on user preference. (13) If running on a single machine, the 471 

user can ‘Execute’ the function to process all images in the respective folder, and progress of 472 

batch processing can be viewed in the ‘Progress bar’ and saved or (14) high-performance 473 

computing clusters can be used to process the images. 474 

 475 

Fig. 3. Representation of different features used by PhenoImage. The cropped image is derived 476 

from the original image after the selection of the region of interest. The binary image is a mask 477 

of the plant pixels where the plant pixels are set to 1 and the background is set to 0. The 478 

segmented image represents the segmented plant pixels from the background. The bounding box 479 

shown in the light blue color is calculated based on the segmented pixels and encloses all pixels 480 

of the plant. Convex hull signifies the smallest convex polygon enclosing all the pixels of the 481 
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plant. The image skeleton approximates the center lines of the stem and the leaves and is 482 

calculated using a skeletonization algorithm. 483 

 484 

Fig. 4. Segmentation. For subtracting plant pixels from the background, click on ‘Foreground’ 485 

and new a pop-up window displaying the original image opens. The user can scribble on the area 486 

of interest with a red mark. Likewise, the user can define background (i.e. pot, pot stand, plant 487 

background, etc.) by scribbling on the background using a green mark. Afterwards, the user can 488 

click the ‘Segment’ button to initiate the segmentation of plant pixels from the background. As a 489 

result, the ‘Processed Image’ will show pixels corresponding only to the plant. 490 

 491 

Fig. 5. Performance testing of PhenoImage. The plot shows the time taken to process images and 492 

extract the respective digital trait (convex area and pixel count) from the images at different 493 

resolution. 494 

 495 

Fig. 6. PhenoImage validation. (A) The RGB images from 26-day old sorghum and wheat plants. 496 

Two digital traits: convex area and projected shoot area (PSA), which represent a plant’s 497 

architecture were derived using PhenoImage. Significant differences (P < 0.001) were detected 498 

between sorghum (n = 5) and wheat (n = 6) for both the digital traits. For statistics, Welch’s t-499 

test (equal variance not assumed) was used. 500 

 501 

Fig. 7. Temporal analysis of growth dynamics. Sorghum and wheat plants subjected to well-502 

watered (WW) and water-limited (WL) conditions were imaged in a time-dependent manner 503 

using the LemnaTec Imaging System. Sorghum and wheat plants were imaged for 18 and 15 504 

days, respectively. PhenoImage derived projected shoot area (PSA) showed significant 505 

differences between WW and WL conditions on the 8th day for both sorghum (n = 5) and wheat 506 

(n = 6). For statistics, the paired t-test was used. The grey box represents the significance 507 

difference between WW and WL treatments for the respective days. 508 

 509 

Fig. 8. The heat map exhibits the ‘Greenness Index’ for sorghum and wheat under well-watered 510 

(WW) and water-limited (WL) conditions in a time-dependent manner. 511 

 512 
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Fig. 9. Hierarchical Cluster Analysis of fluorescence color classes for sorghum (left panel) and 513 

wheat (right panel). Normalized pixel counts corresponding to different color classes were 514 

clustered (I to IV) using wards method in JMP® Pro13 under well-watered (WW) and water-515 

limited (WL) conditions. Days of imaging under WW and WL treated plants were represented by 516 

blue and red-colored numerals, respectively.  517 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


21 

 

References: 518 

Abeysinghe SS, Baker M, Chiu W, Ju T. 2008. Segmentation-free skeletonization of grayscale 519 

volumes for shape understanding. IEEE International Conference on Shape Modeling and 520 

Applications 2008, Proceedings, SMI.63–71. 521 

Bradski G. 2000. The OpenCV Library. Doctor Dobbs Journal 25, 120–126. 522 

Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H. 2015. Integrating image-523 

based phenomics and association analysis to dissect the genetic architecture of temporal salinity 524 

responses in rice. Plant Physiology 168, 1476–1489. 525 

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C. 2014. Dissecting 526 

the phenotypic components of crop plant growthand drought responses based on high-throughput 527 

image analysis w open. Plant Cell 26, 4636–4655. 528 

Fahlgren N, Gehan MA, Baxter I. 2015. Lights, camera, action: high-throughput plant 529 

phenotyping is ready for a close-up. Current Opinion in Plant Biology 24, 93–99. 530 

Fiorani F, Schurr U. 2013. Future Scenarios for Plant Phenotyping. Annual Review of Plant 531 

Biology 64, 267–291. 532 

Furbank RT, Tester M. 2011. Phenomics - technologies to relieve the phenotyping bottleneck. 533 

Trends in Plant Science 16, 635–644. 534 

Gehan MA, Fahlgren N, Abbasi A, et al. 2017. PlantCV v2: Image analysis software for high-535 

throughput plant phenotyping. PeerJ 2017, 1–23. 536 

Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS. 2011. 537 

Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant 538 

Methods 7, 2. 539 

Gong P, He C. 2014. Uncovering Divergence of Rice Exon Junction Complex Core 540 

Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and 541 

Reproduction. Plant Physiology 165, 1047–1061. 542 

Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. 2011. HTPheno: An image 543 

analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics 12, 148. 544 

Houle D, Govindaraju DR, Omholt S. 2010. Phenomics: The next challenge. Nature Reviews 545 

Genetics 11, 855–866. 546 

Hu MK. 1962. Visual Pattern Recognition by Moment Invariants. IRE Transactions on 547 

Information Theory 8, 179–187. 548 

Jackson SA, Iwata A, Lee S-H, Schmutz J, Shoemaker R. 2011. Sequencing crop genomes: 549 

approaches and applications. New Phytologist 191, 915–925. 550 

Klukas C, Chen D, Pape JM. 2014. Integrated analysis platform: An open-source information 551 

system for high-throughput plant phenotyping. Plant Physiology 165, 506–518. 552 

Knecht AC, Campbell MT, Caprez A, Swanson DR, Walia H. 2016. Image Harvest: An 553 

open-source platform for high-throughput plant image processing and analysis. Journal of 554 

Experimental Botany 67, 3587–3599. 555 

Li L, Zhang Q, Huang D, Li L, Zhang Q, Huang D. 2014. A review of imaging techniques for 556 

plant phenotyping. Sensors 14, 20078–20111. 557 

Lobet G, Draye X, Périlleux C. 2013. An online database for plant image analysis software 558 

tools. Plant Methods 9, 38 559 

Mathobo R, Marais D, Steyn JM. 2017. The effect of drought stress on yield, leaf gaseous 560 

exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water 561 

Management 180, 118–125. 562 

Minervini M, Scharr H, Tsaftaris SA. 2015. Image analysis: The new bottleneck in plant 563 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


22 

 

phenotyping [applications corner]. IEEE Signal Processing Magazine 32, 126–131. 564 

Moose SP, Mumm RH. 2008. Molecular plant breeding as the foundation for 21st century crop 565 

improvement. Plant Physiology 147, 969–977. 566 

Paul P, Mesihovic A, Chaturvedi P, Ghatak A, Weckwerth W, Böhmer M, Schleiff E. 2020. 567 

Structural and functional heat stress responses of chloroplasts of Arabidopsis thaliana. Genes 11, 568 

1–20. 569 

Röth S, Paul P, Fragkostefanakis S. 2016. Plant heat stress response and thermotolerance. In: Jaiwal P., 570 

Singh R., Dhankher O. (eds) Genetic Manipulation in Plants for Mitigation of Climate Change. Springer, 571 

New Delhi. 572 

Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing 573 

world. Science 327, 818–822. 574 

Varshney RK, Nayak SN, May GD, Jackson SA. 2009. Next-generation sequencing 575 

technologies and their implications for crop genetics and breeding. Trends in Biotechnology 27, 576 

522–530. 577 

Wood NJ, Baker A, Quinnell RJ, Camargo-Valero MA. 2020. A Simple and Non-destructive 578 

Method for Chlorophyll Quantification of Chlamydomonas Cultures Using Digital Image 579 

Analysis. Frontiers in Bioengineering and Biotechnology 8.746. 580 

Yang W, Feng H, Zhang X, Zhang J, Doonan J. 2020. Crop phenomics and high-throughput 581 

phenotyping: past decades, current challenges, and future perspectives. Molecular Plant 13, 187–582 

214. 583 

Yoo AB, Jette MA, Grondona M. 2003. SLURM: Simple Linux Utility for Resource 584 

Management. Lecture Notes in Computer Science (including subseries Lecture Notes in 585 

Artificial Intelligence and Lecture Notes in Bioinformatics) 2862, 44–60. 586 

Zhao X, Chen T, Feng B, Zhang C, Peng S, Zhang X, Fu G, Tao L. 2017. Non-587 

photochemical quenching plays a key role in light acclimation of rice plants differing in leaf 588 

color. Frontiers in Plant Science 7, 1968. 589 

Zhu F, Paul P, Hussain W, Wallman K, Dhatt BK, Irvin L, Morota G, Yu H, Walia H. 590 

2020. SeedExtractor: an open-source GUI for seed image analysis. bioRxiv, 2020.06.28.176230. 591 

 592 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278234doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278234
http://creativecommons.org/licenses/by-nd/4.0/

