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Note A: Alignment parameters 
 

uLTRA 
 
We ran uLTRA (v 0.0.1, commit 3474f3c9) for all five datasets.  

Indexing 
We ran indexing, which consists of two steps `prep_splicing` and `prep_seqs` as follows. 
 
uLTRA prep_splicing --disable_infer GTF_annotation outfolder 
 
uLTRA prep_seqs ref_fasta  outfolder --min_mem X 
 
Where X=17 for DROS, SIRV, and the simulated read datasets, and X=20 for ALZ and ENS 
data. Also, the prep_splicing method sets the following default parameters: --flank_size 1000, 
--mask_threshold 200, --small_exon_threshold 200. 
 

Alignment 
Within the algorithm, uLTRA sets the --ont parameter for the DROS, SIM_ANN, and SIM_NIC 
datasets to encompass an error rate of 5-12%, and --isoseq parameter for the SIM_ENS and 
ALZ dataset for lower error rates. The --ont parameter sets minimum MEM size of 17 and MAM 
alignment minimum accuracy of 0.6, while  --isoseq sets minimum MEM size of 20 and MAM 
alignment minimum accuracy of 0.8. uLTRA uses slaMEM (Fernandes and Freitas 2014) to find 
MEMs, edlib (Šošic and Šikic 2017) to find MAMs, and parasail (Daily 2016) to perform final 
alignment to exons. We use alignment with parasail in semi-global mode with alignment 
penalties chosen as match:2, mismatch:-2, gap open: -3, gap extend: -1. 
 
uLTRA also sets the following parameters related to the number of alignments to report 
--dropoff 0.95, --max_loc 5. 
 

https://paperpile.com/c/pT057I/APZy
https://paperpile.com/c/pT057I/D7Jx
https://paperpile.com/c/pT057I/7dzp


Minimap2 
We ran minimap2 (H. Li 2018) (v2.17-r974-dirty, GitHub commit c9874e2). We used -k 14 for 
PacBio Alzheimer dataset and -k 13 for the other datasets to index the reference genomes. For 
alignment with minimap2, we specified parameters --eqx -t 62 -ax splice -k14 -G 
500k for the PacBio Alzheimer dataset, and  --eqx -t 62 -ax splice -k13 -w 5 -G 500k for the rest 
of the datasets. The -k and -w parameters were set to 13 and 5, respectively, to improve 
accuracy over default parameters. We observed a 0.25%, 0.5%, and 0.72% increase in the 
number of correct alignments over default parameters on SIM_ENS, SIM_ANN, and SIM_NIC. 
We also increased the -G parameter from the default value of 200,000 to 500,000 in all datasets 
except for SIRV. The parameter -G controls maximum intron length. We observed that 
minimap2 missed valid high quality mapped isoforms in the ALZ dataset with introns larger than 
200,000 (e.g., 10 reads that uLTRA found to transcript ENST00000555571.5 with an intron of 
length 387,219nt). Finally, minimap2 sets a special penalty score for non-canonical junctions. 
We set the non-default parameters --splice-flank=no --secondary=no -C5 on the SIRV dataset 
as suggested in the minimap2 documentation and discussed in issue 99 in the minimap2 
repository since SIRV isoforms do not honor the canonical AG-GT junction to the same extent 
as biological data. We observed a drastic improvement with setting --splice-flank=no compared 
to default splicing mode. With original splicing parameters, minimap2 only mapped 725860 
reads as FSM to 45 unique isoforms. 

deSALT 
We ran deSALT (v1.5.5, commit f4648d8) on all datasets besides the ENS and SIM_ANNOT 
datasets for which this version did not complete (took more than 96h). On these two datasets, 
we ran an earlier version (v1.5.1). We indexed the genomes with default parameters, as 
suggested in (Liu et al. 2019). We ran deSALT alignment with parameters -d 10 and -s 2 for all 
datasets, as (Liu et al. 2019) used these settings for both ONT and PacBio Iso-Seq data. We 
used the parameter -l 14, which lowers the seeding kmer size from the default of 15 and is 
supposed to increase accuracy at the cost of runtime. We also increased the --max-intron-len 
parameter from the default value of 200,000 to 500,000 in all datasets except for SIRV.  The 
parameter --max-intron-len controls maximum intron length, and we observed, similarly to 
minimap2, that deSALT missed valid isoforms with intron larger than the default value of 
200,000.  Also, deSALT, similarly to minimap2, set an individual penalty score for non-canonical 
junctions. We set the parameter --noncan to 4 instead of the default of 9 on the SIRV data, and, 
similarly to minimap2’s results, and we observed a substantially improved accuracy over default 
parameters. With original splicing parameters, deSALT only mapped 746,604 reads as FSM to 
47 unique isoforms. Finally, we specified -t 48 (number of cores) as deSALT allows a maximum 
of 48 cores. 

https://paperpile.com/c/pT057I/TSxQ
https://github.com/lh3/minimap2/commit/c9874e2dc50e32bbff4ded01cf5ec0e9be0a53dd
https://github.com/ydLiu-HIT/deSALT/commit/f4648d8c38c728552ecd00f12222e6ddbc4f477f
https://paperpile.com/c/pT057I/phHx
https://paperpile.com/c/pT057I/phHx


 

Graphmap2 
 
We ran GraphMap2, github commit 02fcef7a. We set --threads 62 and -x rnaseq. 
 

Note B: Simulated data 
 

Simulating from annotated transcripts 
We considered using already existing read simulators (NanoSim (Yang et al. 2017), 
DeepSimulator (Y. Li et al. 2018), SimLord (Stöcker, Köster, and Rahmann 2016), and 
SNaReSim (Faucon et al. 2017) before implementing a transcriptomic read simulator. However, 
they are genomic read simulators and cannot easily be modified to simulate full-length transcript 
reads.  
 
In our simulations, we simulate transcripts from 234,207 distinct ENSEMBL cDNA sequences 
from the human reference. We sample reads uniformly from the transcripts. Each sampled 
transcript is then subject to sequencing errors. At each position in the transcript, we enter an 
error state with probability 0.05. If the simulator enters an error state, it chooses a deletion state 
with probability 0.5, substitution with probability 0.3, and insertion with probability 0.2. In the 
deletion and insertion states, the length of the insertion and deletion is simulated from a 
geometric distribution with parameter 0.5. This model gives an average error rate of 8.6%. 
  

Simulating novel transcripts 
 
We used the GTF annotations for this simulation. We select all genes with four or more exons 
that have non-overlapping genomic coordinates. For each transcript we simulate from such a 
gene, we include the first and last exon with probability 1, but any internal exon with probability 
0.5. This probabilistic inclusion of exons gives isoforms. We check if the transcript matches an 
already annotated isoform. If not, we keep it in the simulation. To keep the number of transcripts 
equal to the annotated number of transcripts for each gene, we simulate as many novel 
transcripts as the gene had annotated transcripts (if the number of possible combinations 
permits). 
 

https://paperpile.com/c/pT057I/qk7PS
https://paperpile.com/c/pT057I/VD2ju
https://paperpile.com/c/pT057I/uO7Tr
https://paperpile.com/c/pT057I/xbeWg


Evaluation of simulated data 
 
For the simulated data, we have the true genome annotations of each exon in the transcript. A 
read is therefore classified as correct if the read is aligned to all the correct exons, and all of the 
exon alignments have an offset of fewer than 15 nucleotides to true annotation coordinates. An 
alignment is inexact if the read is aligned to the correct exons, but at least one junction offset is 
more than 15 nucleotides. An alignment is classified as having an exon difference if the read 
alignment is missing one or more exons, or a segment of at least 15 nucleotides is aligned to a 
genomic location not included in the set of true exons (i.e., appearing as a false exon). An 
alignment is classified as an incorrect location if it aligns to a genomic location not overlapping 
with the correct annotation. In our classifications above, we chose 15bp as the threshold 
because we did not observe deletions or insertions longer than 15 nucleotides in the simulated 
data. Therefore, an offset larger than 15 nucleotides indicates a misalignment rather than an 
actual deletion or insertion of this size in the read, causing a junction offset. 

Note C: SIRV analysis 
The SIRV dataset consists of 68 synthetic transcripts from 7 different loci sequenced with ONT 
R9 technology (see (Sahlin et al., n.d.) for details). The transcripts from each locus differ in their 
splicing pattern. Eight out of the 68 transcripts contain only one exon, and therefore does not 
have a splice site. Furthermore, two isoforms SIRV701 and SIRV705 have identical splice sites 
and differ only in a 2nt offset in both the transcription start and stop site. Therefore we used 59 
isoforms with distinct splice sites to investigate alignment performance around splice sites. The 
ONT SIRV dataset was constructed so that the isoforms should have roughly the same 
abundance in the sample (the SIRV E0 mix). While sequencing depth bias can cause significant 
differences in read depth due to the isoforms having different lengths, with the given depth of 
1.4 million reads, we expect all the isoforms to occur in the sample.  
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Supplementary Figures 
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Figure S1. Alignment results on simulated data for the ENS dataset. (A) Percentage of reads in 
each respective category. (B)  The fraction of correctly aligned exons (y-axis) as a function of 
exon size (x-axis). We could not evaluate GraphMap2 as it encountered an error on the ENS 
data. 

 
 
 
 
 



 

Figure S2. Alignment results on simulated data for the SIM_NIC dataset. (A) Percentage of 
reads in each respective category. (B)  The fraction of correctly aligned exons (y-axis) as a 
function of exon size (x-axis). We could not evaluate GraphMap2 as it encountered an error on 
the ENS data. 

 
 
 
 
 



 



Figure S3. The number of reads annotated as FSM to each of the 59 SIRV isoforms with at 
least one splice site (y-axis log scale). One panel per gene loci. 

 
 

 

Figure S4. Alignment overlap concordance between uLTRA, deSALT_GTF, and 
minimap2_GTF for DROS (A) and ALZ (B).  
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Figure S5. Alignment concordance between uLTRA, deSALT_GTF, and minimap2_GTF for the 
different categories FSM (A), ISM (B), NIC (C), NNC (D) and NO_SPLICE (E) in DROS.  
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Figure S6. Alignment concordance between uLTRA, deSALT_GTF, and minimap2_GTF for the 
different categories FSM (A), ISM (B), NIC (C), NNC (D) and NO_SPLICE (E) in ALZ.  

 



 

Figure S7. Concordance of unique isoforms that had FSM aligned reads for DROS (A) and ALZ 
(B).  

 

 

Figure S8. Histogram of the number of distinct isoform structures (y-axis) for which uLTRA 
aligned FSM reads to, but deSALT_GTF and minimap2_GTF dit not. The x-axis shows the FSM 
read support for these isoforms. Panel (A) shows the DROS dataset and (B) the ALZ dataset. 

 
 
 



 
A 

 
B 



 
C 

 
D 

Figure S9. IGV tracks of FSM splice read alignments to unique FSM isoforms found by uLTRA (first 
track) by aligning to small exons (6-8nt), with corresponding aligned reads of minimap2 (second track) 
and deSALT (third track). The green box highlights the best fit exon alignment. The red box highlights 
misalignments around the junctions caused by the unaligned small exons. (A) 920 reads mapping to 
transcript ENST00000292807.9 (AP2 gene). (B) 770 reads mapping to transcript ENST00000609360.6 
(APBB gene). (C) 167 reads mapping to ENST00000325495.9 (HNRNPM gene). (D) 136 reads mapping 
to ENST00000543672.5 (DCTN gene). 
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Figure S10. Potential subtle misalignment of 530 reads around junction for minimap2 (second track) and 
deSALT (third track) cause structural change in splice junction. Both minimap2 and deSALT place a 5nt 
segment in the upstream junction (with a 1nt insertion) instead of placing the 5nt segment (full match) in 
the downstream junction (B). This is caused by overfitting the alignment to match a GT-AG junction with 
junction specific penalties. In this gene, it appears as a small variant between the sample and the 
reference. Note that since the correct annotation is unknown for biological data, hence this may be a 
correct variation. However, uLTRA achieves higher identity in its alignment over the junction. 
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Figure S11. Discordant alignments of 176 reads between uLTRA (top track), minimap2 (middle track) and 
deSALT_GTF (bottom track) to the SPOCK gene. For these reads, uLTRA and deSALT_GTF align a 9nt 
portion of the reads to two different exons (A) while minimap2_GTF does not align this region and is 
instead present as an insertion in the downstream exon (B). uLTRA chooses the upstream exon because 
of the deterministic implementation of taking the closest segment to the downstream hit in the traceback 
vector of the collinear MAM-chaining solution. 
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Figure S12. IGV tracks of splice read alignments to a junction of the MBP gene. Homopolymer stretches 
of C both upstream (A) and downstream (B) of the junction creates ambiguity in alignment. deSALT_GTF 
and minimap2_GTF always align to the CT-AC junction by creating insertions of C at downstream 
junctions if needed, while uLTRA chooses a CT-TA junction for the reads with a homopolymer stretch of 
four Cs. The CT-AC matches an FSM transcript while the CT-TA junction creates a NIC transcript (1208 
reads).  
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Figure S13. IGV tracks of splice read alignments to unique NIC isoforms found by uLTRA (first track) by 
aligning to small exons (5-6nt), with corresponding aligned reads of minimap2 (second track) and deSALT 
(third track). A green rectangle highlights the best fit exon alignments. The red box highlights 
misalignments around the junctions caused by the unaligned small exons. (A) 126 reads mapping to a 
NIC transcript (with a 6nt exon) from the MICU1 gene. (B) 81 reads mapping to a NIC (with a 5nt exon) 
transcript of the SEPTIN7 gene. (C) 27 reads mapping to a NIC transcript (with a 6nt exon) from the 
APBB1 gene. 
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