1 Title

2 Phenotypic and functional characterisation of first trimester human placental macrophages,

- 3 Hofbauer cells.
- 4
- 5 One sentence summary
- 6 Hofbauer cells are primitive placental macrophages with a unique phenotype and role in fetal
- 7 defence.
- 8

9 Authors

- 10 Jake Thomas^{1,2}, Anna Appios^{1,2}, Xiaohui Zhao², Roksana Dutkiewicz¹, Maria Donde¹, Colin
- 11 Lee¹, Praveena Naidu^{1, 2}, Christopher Lee^{3, 4}, Joana Cerveira¹, Bing Liu^{5, 6, 7}, Florent
- 12 Ginhoux^{3, 4, 8, 9}, Graham Burton², Russell S. Hamilton^{2,10}, Ashley Moffett^{1,2}, Andrew
- 13 Sharkey^{1,2}, Naomi McGovern^{1,2*}
- 14

15 Affiliations

- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge,
 CB2 1QP, UK
- 18 2. Centre for Trophoblast Research, Department of Physiology, Development and
- 19 Neuroscience, University of Cambridge, CB2 3DY, UK
- 20 3. Singapore Immunology Network (SIgN), Agency for Science, Technology and
- 21 Research (A*STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis,
- 22 Singapore 138648, Singapore
- 4. School of Biological Sciences, Nanyang Technological University, Singapore,
 Singapore.

25	5.	Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of
26		Hematology, School of Medicine, Jinan University, Guangzhou, China.
27	6.	State Key Laboratory of Proteomics, Academy of Military Medical Sciences,
28		Academy of Military Sciences, Beijing, China
29	7.	State Key Laboratory of Experimental Hematology, Institute of Hematology and
30		Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, 300020,
31		China
32	8.	Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine,
33		280 South Chongqing Road, Shanghai 200025, China
34	9.	Translational Immunology Institute, SingHealth Duke-NUS Academic Medical
35		Centre, 169856, Singapore
36 37 38	10	. Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH
39 40	*Corre	espondence: nm390@cam.ac.uk, ORCID: 0001-5200-2698
41		
42		
43	Summ	nary
44	Using	transcriptomic and proteomic data, Thomas, J. et al, analyse human first trimester
45	placen	tal macrophages and delineate markers that identify them. They also reveal that
46	Hofba	uer cells have microbicidal capacity, providing the fetus with an additional layer of
47	protec	tion from certain microbes.
48		
49	Abstr	act
50		Hofbauer cells (HBC) are a population of macrophages found in high abundance
51	within	the stroma of the first trimester human placenta. HBC are the only fetal immune cell
52	popula	ation within the stroma of healthy placenta. However, the functional properties of these

53	cells are poorly described. Aligning with their predicted origin via primitive haematopoiesis,
54	we find that HBC are transcriptionally similar to yolk sac macrophages. Phenotypically, HBC
55	can be identified as HLA-DR ⁻ FOLR2 ⁺ macrophages. We identify a number of factors HBC
56	secrete (including IL-8 and MMP-9) that could affect placental angiogenesis and
57	remodelling. We determine that HBC have the capacity to play a defensive role, where they
58	are responsive to Toll-like receptor stimulation and are microbicidal. Finally, we also identify
59	a population of placenta-associated maternal macrophages (PAMM1a) that adhere to the
60	placental surface and express factors, such as fibronectin, that may aid in repair.
61	
62	Non-standard abbreviation
63	Placental associated maternal monocytes/macrophages, PAMM.
64	
65	Introduction
66	Macrophages are found within all human tissues where, within the adult, they mediate
67	tissue homeostasis, development, repair and immunity. During embryonic development the
68	first macrophages to seed all tissues are derived through a process called primitive
69	haematopoiesis. These macrophages, commonly termed 'primitive' macrophages, are distinct
70	to those generated through definitive haematopoiesis as there is no monocyte
71	intermediate(Ginhoux et al., 2010; Gomez Perdiguero et al., 2015). Although in some species
72	such as the mouse, primitive haematopoiesis is thought to only occur within the yolk sac
73	(YS), during human embryonic development primitive haematopoiesis also takes place in the
74	placenta(Van Handel et al., 2010).
75	The placenta is a major organ that regulates the health of both the mother and
76	developing fetus during pregnancy. The human placenta develops from the trophoectoderm,

78 (dpf)(Turco and Moffett, 2019). As the placenta develops, highly branched villous tree-like 79 structures form, which contain fibroblasts, immature capillaries and macrophages, termed 80 Hofbauer cells (HBC) (Figure 1A). The mesenchymal core is surrounded by a bilayer of 81 specialized placental epithelial cells called trophoblast. The outermost syncytiotrophoblast 82 (SCT) layer, in contact with maternal blood, is formed by fusion of underlying 83 cytotrophoblast cells(Turco and Moffett, 2019). HBC have been identified within the 84 placenta around day 18 post-conception(Castellucci et al., 1987; Boyd et al., 1970), before 85 the placenta is connected to the embryonic circulation(Van Handel et al., 2010). 86 A number of recent studies have profiled the gene expression of human embryonic 87 macrophage populations(Stewart et al., 2019; Vento-Tormo et al., 2018). However, studies 88 demonstrating their functional properties remain limited. Our previous work demonstrating 89 that 2nd trimester fetal dendritic cells are functionally active and responsive to TLR 90 stimulation(McGovern et al., 2017) led us to query if primitive macrophages have similar 91 capabilities. In particular, we were interested in determining if HBC demonstrate 92 microbicidal capacity, as they are the only fetal immune cells found within the stroma of the 93 human placenta, the crucial tissue barrier-site between maternal tissues and the fetus. 94 In this study we sought to develop a technique that would allow us to characterise the 95 properties of HBC isolated from first trimester human placentas. Using a novel flow 96 cytometric gating strategy, we find that commonly used protocols for the isolation of HBC 97 from first trimester placentas yield a heterogenous population of macrophages that also 98 consist of placenta-associated maternal monocyte/macrophage (PAMM) subsets. We 99 demonstrate that HBC have a unique phenotype, specific to the placental niche; they do not 100 express HLA-DR and highly express folate receptor 2 (FOLR2). We identify a range of 101 factors HBC secrete that possibly affect placental angiogenesis and remodelling, including 102 IL-8, osteopontin and MMP-9. We show that HBC are responsive to TLR stimulation and do

103	have microbicidal capacity, and can thereby play a defensive role for the fetus. Finally, we
104	identify a novel population of placenta-associated maternal macrophages (PAMM1a), that
105	could function in tissue repair. Our findings provide novel insights into the properties of
106	human primitive macrophages, and the roles of HBC in placental homeostasis.
107	
108	Results
109	Identification of Hofbauer cells using anti-HLA antibodies
110	Previous reports phenotyping HBC isolated from the placenta have yielded
111	conflicting results(Sutton et al., 1983; Böckle et al., 2008; Bulmer et al., 1988; Goldstein et
112	al., 1988; Reyes and Golos, 2018). We first sought to determine the true identity of first
113	trimester HBC using multi-parameter flow cytometry. Employing a commonly used protocol
114	to isolate HBC(Tang et al., 2011) (Figure S1A), we obtain a CD45 ⁺ CD14 ⁺ macrophage
115	population that is heterogeneous for HLA-DR expression (Figure 1B). We sought to
116	determine if the observed heterogeneity is due to maternal monocyte/macrophage populations
117	contaminating the HBC placental isolates.
118	Fetal cells express both maternally and paternally derived genes. To determine if
119	maternal cells contaminate the HBC preparations and contribute to the heterogeneity in
120	observed HLA-DR expression, we added antibodies to common HLA allotypes (HLA-A3,
121	HLA-B7 and HLA-A2) to our flow cytometry panel. The specificity of these antibodies was
122	previously verified by quantitative polymerase chain reaction (qPCR) on DNA from blood
123	samples of HLA-typed donors. We chose to use anti-HLA antibodies instead of sex
124	chromatin staining (to identify male fetal cells), so that we could develop a flow cytometry
125	panel to allow isolation of live cells for functional assays. By using anti-HLA antibodies and
126	analysing matched maternal blood or decidual cells (Figure S1D, S1E), we consistently
127	observe that the variable population of HLA-DR ⁺ cells in first trimester placental digests are

128	maternal in origin (Figure 1C, S1A-C). We termed the maternal cells obtained in placenta
129	digests 'placenta-associated maternal monocytes/macrophages' (PAMM).
130	We had expected that maternal contamination of placental macrophage cell isolates
131	would only become significant from the 10 th week of gestation, the time when maternal blood
132	flow to the intervillous space is fully established(Burton et al., 2009b). However, application
133	of our new gating strategy to placental digests of 7-9 wk estimated gestational age (EGA) and
134	10-12 wk EGA, demonstrated that maternal cells make a significant contribution to the
135	CD14 ⁺ macrophage populations isolated from the placenta as early as the 7 th week of
136	gestation, comprising 20-40% of CD14 ⁺ cells (Figure 1D). Whole-mount
137	immunofluorescence microscopy revealed that while HLA-DR ⁺ cells do adhere to the SCT
138	layer of the placental villi, HLA-DR ⁺ cells are not present within the stromal core from the 7 th
139	to 10 th week of gestation (Figure 1E). These findings are in line with recent single cell RNA
140	sequencing (scRNAseq) studies of placental cell isolates(Tsang et al., 2017; Vento-Tormo et
141	al., 2018) where maternal cells were also observed. Our data demonstrate that maternal cell
142	contamination is higher than has previously been appreciated within first trimester placental
143	cell suspensions. These findings will have a significant impact on <i>in vitro</i> studies that aim to
144	determine the specific functional properties of HBC.
145	

145

146 Identification of specific markers for HBC

A limitation of using anti-HLA antibodies is that they can only distinguish maternal and fetal cells where there is a maternal/fetal HLA-mismatch for these specific allotypes. We therefore sought to identify markers that would allow us to confidently distinguish maternal from fetal cells independently of HLA antibodies. To do this, we carried out transcriptomic analysis of first trimester placental cells using a publicly available scRNAseq dataset(Vento-Tormo et al., 2018). Clustering and uniform manifold approximation and projection (UMAP)

153 visualisation of 22,618 placental single cells identifies 2 distinct macrophage populations, as 154 indicated by *CD68* expression (Figure S1F, S1G). Consistent with our flow cytometry 155 analysis, PAMM can be readily identified as HLA-DR^{hi}, while HBC are HLA-DR⁻ (Figure 156 **S1G**). Expression of male (*RPS4Y1*) and female (*XIST*) specific genes in placental cells from 157 male fetal donors confirms the fetal and maternal origin of HBC and PAMM clusters (Figure 158 **S1H**). 159 A total of 962 genes are significantly differentially expressed genes (DEGs) (adjusted 160 p value < 0.01) between PAMM and HBC clusters. *FCGR1A*, *FCGR1B*, *VSIG4*, *MRC1*, 161 FOLR2 and LYVE-1 are upregulated within HBC. Unlike adult macrophages, HBC do not express HLA-DR. In contrast, PAMM highly express HLA-DRB1 and HLA-DRA (Figure 162 163 1F). We tested a number of additional HBC specific markers that were identified by analysis 164 of the sequencing data, including FOLR2, CD64 and CD206. We also analysed the 165 expression of arginase 2, which has previously been shown to be expressed by fetal immune 166 cells(McGovern et al., 2017). Samples from donors where the anti-HLA antibodies 167 distinguished maternal from fetal cells were used. These markers are expressed by HBC at 168 the protein level by flow cytometry (Figure 1G). Any of these 4 markers, in combination 169 with HLA-DR, allows us to confidently distinguish HBC from PAMM within first trimester 170 samples. The combination of FOLR2 and HLA-DR provides the clearest separation for the 171 isolation of HBC. 172 173 Hofbauer cells are transcriptionally similar to 'primitive' macrophages and proliferate 174 in situ

HBC are predicted to be 'primitive' macrophages derived directly from progenitors
independent of monocytes. A recent study characterising the transcriptional landscape of
human macrophage development, identified a population of true primitive yolk sac

178 macrophages (YS Mac1) from a Carnegie stage 11 embryo (~4 weeks post conception)(Bian 179 et al., 2020). Consistent with their predicted primitive origins, HBC are enriched for a gene 180 signature derived from YS Mac1, but not embryonic monocytes (Figure 2A, 181 Supplementary File 1). Integration of first trimester placental(Vento-Tormo et al., 2018) and 182 early human fetal myeloid scRNAseq(Bian et al., 2020) datasets reveals a high degree of 183 transcriptional similarity between HBC and primitive YS Mac1 (Figure 2B, 2C). PAMM 184 however, display transcriptional similarity to embryonic monocytes, reflecting their 185 monocytic origins (Figure 2A, 2C). 186 HBC are also highly enriched for a gene signature from YS-derived embryonic 187 macrophages from a Carnegie stage 10 embryo (~4 weeks post conception) (CS10 mac) from 188 an additional dataset(Zeng et al., 2019) (Figure 2D, Supplementary File 1). PAMM display 189 intermediate levels of enrichment for the CS10 mac gene signature. This is likely due to 190 conserved myeloid genes not specific to 'primitive' macrophages within the gene signature, 191 as it was generated via comparison between CS10 macs and non-immune cells in that dataset 192 (Materials and Methods). Analysis of individual genes reveals further similarity between 193 HBC, YS Mac1 and CS10 mac, on the basis of HLA-DRB1 and FOLR2 expression (Figure

194 **2**E).

195 Due to the transcriptional similarity between HBC and 'primitive' macrophages, we 196 hypothesised that HBC would be maintained in the tissue via local proliferation. We find that 197 ~11% of freshly isolated HBC express Ki67 by flow cytometry (Figure 2F, S1I) and identify 198 Ki67⁺ cells within the stroma of placental villi by immunohistochemistry (IHC) (Figure 2G). 199 Furthermore, during overnight culture, ~1.5% of FACS-isolated HBC incorporate 5-Ethynyl-200 2'-deoxyuridine (EDU), and incorporation is slightly elevated by the addition of macrophage 201 colony-stimulating factor (MCSF) to the cultures (Figure 2H). Directed analysis of the HBC 202 cluster within the placental scRNAseq dataset identifies 2 proliferating populations, pHBC-1

203	and pHBC-2 (Figure 2I). These clusters express genes associated with distinct stages of the
204	cell cycle (PTTG1, CDC20, UBE2C, CDK1, PCNA and MCM5) (Figure 2J), and cell cycle
205	scoring assigns pHBC-1 and pHBC-2 to the S and G2/M phases of the cell cycle respectively
206	(Figure 2K). RNA velocity vectors, derived by calculating the ratio between spliced and
207	unspliced reads of each gene within each cell(La Manno et al., 2018), demonstrate a clear
208	path of HBC through the cell cycle (Figure 2K). No subpopulations are observed within non-
209	proliferating HBC, allowing us to isolate them as a single population for functional assays.
210	Together these data show that HBC are transcriptionally similar to macrophage
211	populations generated through primitive haematopoiesis and are a homogenous population,
212	proliferating within placental villi, suggesting that they arise without a monocyte
213	intermediate.
214	
215	PAMM are heterogeneous
216	Our flow cytometric analysis clearly shows that PAMM consist of 2 major
217	populations, HLA-DR ^{hi/lo} FOLR2 ⁻ cells (PAMM1) and HLA-DR ^{hi} FOLR2 ^{hi} cells (PAMM2)
218	(Figure 3A). Subsequently, directed reanalysis of PAMM within the scRNAseq dataset
219	reveals further heterogeneity on the basis of CD9, but not FOLR2 expression (Figure 3B).
220	Adding CD9 to our flow cytometry panel, the HLA-DR ^{hi/lo} FOLR2 ⁻ (PAMM1) cells are split
221	into two populations (Figure 3C). To determine if either of these populations are circulating
222	maternal monocytes, we added the monocyte maker CCR2 to the panel and performed flow
223	cytometry on matched maternal blood. FOLR2 ⁻ CD9 ^{hi} CCR2 ^{lo/int} cells are not present in
224	matched maternal blood, indicating that they are macrophages with a phenotype specific to
225	the placental niche. The remaining PAMM1 cells do however share a similar phenotype with
226	maternal peripheral blood monocytes (Figure 3D). Therefore, we subdivided PAMM1 into
227	two populations: PAMM1a, FOLR2 ⁻ CD9 ^{hi} CCR2 ^{lo/int} (macrophages), and PAMM1b, FOLR2 ⁻

228 CD9-^{/int}CCR2⁺ (monocytes) (Figure 3E, S1J).

229	HLA-DR ^{hi} FOLR2 ^{hi} cells (PAMM2) are rare in placental samples (~3% of placental
230	CD14 ⁺ cells) (Figure 3F). Decidual macrophages also express FOLR2 and HLA-DR (Figure
231	S2A, S2B) and it is likely that PAMM2 are maternal decidual macrophages that will
232	contaminate placental samples. Although PAMM2 do not form a distinct cluster in the
233	placental scRNAseq dataset, combined analysis of placental, decidual and maternal blood
234	scRNAseq datasets (Figure S2C) reveals that HLA-DR ⁺ FOLR2 ⁺ decidual macrophages
235	(dMac2) (Figure S2D) are found in low numbers in the placental digests (Figure
236	S2E)(Vento-Tormo et al., 2018). Cytospins and analysis of cell granularity and size by flow
237	cytometry shows that HBC, PAMM1a and PAMM2 are large, granular cells with
238	morphologies typical of macrophages - large vacuoles and pseudopods (Figure 3G, 3H, 3I).
239	PAMM1b are comparatively smaller in size, and their morphology is typical of blood
240	monocytes (Figure 3G, 3H, 3I). In line with their phenotypic and morphological properties,
241	we find that PAMM1b are transcriptionally similar to adult circulating classical monocytes
242	(Figure S2F). However, PAMM1b display increased expression of 150 genes, including
243	chemokines, in comparison to maternal blood classical monocytes (Figure S2G). PAMM1a
244	are not present within the decidua (Figure S2A), indicating their phenotype probably reflects
245	adherence to the SCT. Of the three PAMM populations identified, PAMM1a are the most
246	abundant, representing ~11% of the CD14 ⁺ cells in placental isolates (Figure 3F).
247	In conclusion PAMM can be subdivided into different populations. PAMM1b are
248	monocytes, PAMM1a are macrophages that are specific to the placental surface, whilst
249	PAMM2 are contaminating decidual macrophages.
250	

PAMM1a adhere to sites of injury on the placental surface and secrete factors involved
in tissue repair

253	We next sought to determine the potential role of PAMM1a in healthy pregnancy. To
254	investigate what changes in gene expression occur during the transition from PAMM1b
255	(monocytes) to PAMM1a (macrophages) we performed Slingshot trajectory analysis(Street et
256	al., 2018) (Figure 4A). Genes associated with monocyte identity and function, including
257	S100A8, S100A9 and LYZ, are downregulated along the trajectory (Figure 4B). Upregulated
258	genes included macrophage markers CD63, CD68, CD36 and GPNMB, and a subset of genes
259	associated with tissue remodelling (including LPL, MMP7, and MMP9) (Figure 4C). The
260	elevated surface expression of LOX-1 (the receptor encoded by OLR1), CD63, CD68 and
261	CD36 by PAMM1a are verified by flow cytometry (Figure 4D).
262	Breaks occur in the SCT in vivo in healthy pregnancies(Burton and Watson, 1997).
263	Fibrin deposits together with macrophages are characteristically seen at the sites of syncytial
264	damage(Pierleoni et al., 2003; Burton and Watson, 1997). We identify PAMM1a adhered to
265	sites of damage on the SCT by electron (Figure 4E, S2H) and fluorescent microscopy
266	(Figure 4F). PAMM1a secrete matrix metalloproteinase (MMP)-9 (detected by Luminex
267	assay after FACS isolation and overnight culture) (Figure $4G$) and strongly express
268	fibronectin (mRNA) (Figure 4H). Transmission electron microscopy reveals PAMM1a are
269	laden with lipid droplet-like structures (yellow arrows Figure 4E). Staining with BODIPY, a
270	dye that specifically labels neutral lipids, confirms that PAMM1a are highly loaded with lipid
271	droplets (Figure 4I, S2I, S2J). Lipid droplet formation in macrophages can be induced by the
272	uptake of apoptotic cells(Ward et al., 2018; Ford et al., 2019; D'Avila et al., 2011),
273	suggesting PAMM1a function in the clearance of cellular debris and repair of the SCT
274	following damage. If this is the case, PAMM1a might display transcriptomic similarities to
275	macrophages in damaged, fibrotic tissues. Indeed, we find that PAMM1a, but not HBC, are
276	strongly enriched for a gene signature from a population of scar-associated macrophages

found in human cirrhotic livers(Ramachandran et al., 2019)(Figure 4J, Supplementary File
1).

To summarise, we have identified PAMM1a on the SCT, and these cells are likely to function in essential repair of the placental barrier.

281

282 Hofbauer cells produce factors that promote placental angiogenesis

283 HBC, PAMM1a and PAMM1b populations were isolated by FACS from placental 284 digests, cultured overnight and their secretion of cytokines and growth factors was 285 determined by Luminex (PAMM2 cell yields were too low for functional assays) (Figure 5A, 286 S3A). The secretion profile of PAMM1a and PAMM1b differs substantially from HBC 287 reflecting their maternal origin. PAMM1b secrete increased amounts of the proinflammatory 288 cytokines IL-1 β and IL-6 in comparison with PAMM1a (Figure 5A), consistent with a 289 monocyte to macrophage transition. In comparison with PAMM1a and PAMM1b, HBC 290 secrete both VEGF-A and low levels of FGF2, growth factors involved in placental growth 291 and angiogenesis(Burton et al., 2009a; Arany and Hill, 1998) as well as high levels of 292 osteopontin (OPN), that has a role in implantation and placentation(Johnson et al., 2003). 293 Surprisingly, HBC also secrete factors that are typically associated with inflammation such as 294 IL-8, CCL-2, 3 and 4. However, these factors also have pro-angiogenic properties, a more 295 likely role in the context of the placenta(Shi and Wei, 2016; Lien et al., 2018; Wu et al., 296 2008; Salcedo et al., 2000; Stamatovic et al., 2006). HBC expressed tissue inhibitor of 297 metalloproteinase (TIMP)-1 and MMP-9, both of which are involved in remodelling of 298 placental vessels(Luizon et al., 2014; Plaks et al., 2013). 299 To determine which cells respond to factors secreted by HBC, we generated a 300 measure of the interaction potential between HBC and other placental cells by combining 301 Luminex protein secretion data with scRNAseq gene expression data for cognate receptors

302 (Figure 5B). Our analysis reveals predicted targets of HBC signalling (Figure 5C, S3B). 303 Endothelial cells are the main target of VEGF-A secretion, mediated by the expression of 304 kinase insert domain receptor (KDR) and neuropilin 1 (NRP1). OPN is also predicted to 305 signal to endothelial cells, via CD44 and integrin complexes, interactions which are known to 306 promote angiogenesis(Dai et al., 2009; Poggio et al., 2011). HBC-endothelial cell interactions are also facilitated by their close proximity within placental villi (Figure S3C). Additionally, 307 308 HBC are predicted to signal to placental fibroblasts via IL-6, and to villous cytotrophoblast 309 via both OPN and granulocyte-macrophage colony-stimulating factor (GM-CSF). 310 In summary, we have identified factors that HBC secrete that are likely to promote 311 placental growth and homeostasis through interactions with endothelial cells, fibroblasts and 312 trophoblast. 313 314 Hofbauer cells are responsive to TLR stimulation 315 The placenta is a crucial barrier protecting the fetus from vertical infections, and HBC 316 are the only fetal myeloid cells in the first trimester placenta. However, their role in 317 defending the fetus from infection remains unclear. In addition, whether 'primitive' 318 macrophages have the capacity to detect and respond to microbial stimuli is unknown. We 319 therefore next asked whether HBC are responsive to Toll-like receptor (TLR) stimulation. 320 TLRs drive specific immune responses through the recognition of distinct pathogen-321 associated molecular patterns, derived from a range of microbes(Kawasaki and Kawai, 2014). 322 The TLR expression profile of HBC analysed by flow cytometry is distinct from 323 PAMM populations (Figure 5D, S3D); while HBC express TLR2, 3, 4, 7 and 8, their 324 expression of TLR-6 is elevated in comparison with PAMM1a and 1b. TLR9 expression is 325 low to negative in HBC, PAMM1a and PAMM1b. Interestingly, TLR expression is poorly

326 captured by scRNAseq (Figure S3E), highlighting potential issues with over-reliance on
327 gene expression data alone.

328 We next determined the response of HBC, PAMM1a and PAMM1b to TLR 329 stimulation by analysing their production of cytokines and growth factors after overnight 330 stimulation with TLR agonists. Due to differences between subsets in their baseline 331 expression of cytokines and growth factors, as demonstrated in Figure 5A, expression levels 332 are normalised to unstimulated controls (Figure 5E, S4). The response of HBC to TLR 333 stimulation is specific to the agonist used, with LPS+IFNy and FSL-1, a TLR 6 agonist, 334 having the greatest impact. A combination of LPS and IFNy impairs the ability of HBC to 335 produce factors important in tissue remodelling, including TIMP-1 and MMP-9, and 336 increases the secretion of IL-1 β and TNF α . FSL-1 increases HBC production of CCL3, IL-8, 337 IL-6 and GM-CSF. In contrast, PAMM1a and PAMM1b did not respond to FSL-1. These data show that 'primitive' HBC are capable of recognising and responding to microbial 338 339 stimulation and highlight the distinct responses of HBC compared to maternal PAMM1a and 340 PAMM1b.

341

342 Hofbauer cells demonstrate microbicidal capacity

Given that breaks in SCT could provide a placental entry point for microbes and HBC are responsive to TLR stimulation, we next sought to determine if HBC have the mechanisms in place to kill microbes. Although mechanisms utilised by adult macrophages to kill microbes are well described in the literature, it remains unclear if 'primitive' macrophages such as HBC can utilise these.

348 HBC highly express receptors involved in phagocytosis, including CD64 (binds to
349 IgG immune complexes), the mannose receptor CD206 (Figure 1G), and the scavenger
350 receptors CD163, AXL and TIM1 (recognises phosphatidylserine (PS) and is critical for the

uptake of apoptotic cells(Kobayashi et al., 2007))(Figure S5A). In line with these findings
HBC display increased phagocytic capacity of YG beads (Figure 6A) and CFSE-labelled *Escherichia coli* (Figure S5B) in comparison with PAMM1a. Cells cultured at 4°C and in the
presence of cytochalasin D (an inhibitor of actin polymerisation) were used as controls for
beads bound to the cellular surface.

During phagocytosis phagosomes fuse with lysosomes, resulting in production of reactive oxygen species (ROS) and protease activation. We tested if HBC can produce ROS using the ROS indicator CM-H2DCFDA. Isolated HBC make ROS even without phorbol 12myristate 13-acetate (PMA) stimulation (**Figure S5C**), possibly due to the stress of the cell isolation protocol. Using *ex-vivo* whole-mount immunofluorescence microscopy on placental explants, we find that the CD64⁺ HBC in the villous stroma produce ROS, indicated by CM-H2DCFCA staining (**Figure 6B**).

363 Both HBC and PAMM also express high levels of the protease cathepsin B (Figure 364 6C). Cathepsin B is active within HBC and PAMM1a, as demonstrated using cathepsin 365 Magic RedTM (Figure 6D, Figure S5D). HBC and PAMM1a also contain lysosomal 366 structures that were identified by the addition of acridine orange (AO) (Figure 6E, Figure 367 S5D). An acidic environment in phagosomes directly aids in bacterial killing and is also important for the activation of pH-sensitive antimicrobial enzymes(Sedlyarov et al., 2018; 368 369 Flannagan et al., 2015). To determine if the HBC phagosome becomes acidic during 370 maturation, we profiled the uptake of zymosan particles tagged with a pH sensitive probe 371 (Carboxy SNARF ®-1)(Foote et al., 2017, 2019). After allowing phagocytosis for 20 372 minutes, we find that the HBC phagosome becomes rapidly acidic, reaching a pH of 373 ~4.5(Figure 6F, 6G). In contrast, the phagosomes of PAMM1a are more alkaline, with a pH 374 of ~7.4 (Figure 6F, 6G). The pH of the PAMM1a phagosome is characteristic of antigen-375 presenting cells that are processing peptides for presentation(Savina et al., 2006).

376	Finally, to confirm that first trimester HBC have microbicidal capacity we cultured
377	HBC with Lactobacillus crispatus (a microbe reported to be found in very low abundance
378	within the 2 nd trimester fetal intestine (Rackaityte et al., 2020)) and <i>Escherichia coli</i> (not
379	found in the fetus(Rackaityte et al., 2020)). We find that HBC are as efficient as PAMM1a at
380	killing both <i>L. crispatus</i> and <i>E. coli</i> , when cultured at a MOI of 1 (Figure 6H, 6I) and 10
381	(Figure S5E, S5F).
382	Together, these data demonstrate that HBC, a population of 'primitive' macrophages,
383	exhibit a range of microbicidal tools and have the capacity to kill bacteria in vitro.
384	
385	Discussion
386	Here we describe methods for the identification, isolation and characterisation of first
387	trimester HBC. We have summarised our key findings and conclusions in Figure 6J.
388	Through the application of multi-parameter flow cytometry, anti-HLA antibodies and
389	analysis of publicly available scRNAseq datasets, we find that CD14 ⁺ cells obtained from
390	first trimester placental digests contain both fetal macrophages and maternal
391	monocytes/macrophages. Our results indicate that all previous findings on HBC from
392	placental digests will include these maternal myeloid cells. PAMM constitute \sim 20-40% of
393	isolated CD14 ⁺ cells and consist of 3 populations, PAMM1a, PAMM1b and PAMM2.
394	PAMM1a are maternal monocyte-derived macrophages that have adopted a phenotype
395	specific to the placental niche. PAMM1b are very similar to maternal monocytes, but display
396	elevated expression of 150 genes when compared to matched maternal blood monocytes.
397	This may reflect an adaptation to their location in the intervillous space, a unique
398	microenvironment which can attract specific immune cells during gestation(Solders et al.,
399	2019). However, these differences in gene expression could also reflect the isolation process
400	for placental cells. Given their similar phenotype, PAMM2 are likely to be decidual

401 macrophages, previously termed dMac2(Vento-Tormo et al., 2018), that contaminate the cell
402 isolates from uterine/placental tissues from early pregnancy. They are relatively rare cells and
403 their properties were not studied further.

404 Our data demonstrates that HBC are a homogenous population that are 405 transcriptionally similar to primitive YS macrophages, further emphasising their origin 406 through primitive haematopoiesis. While fate mapping studies using murine models have 407 determined the origins of many tissue macrophage populations(Ginhoux and Guilliams, 408 2016), the origin of HBC has yet to be elucidated. The placenta is a known site of primitive 409 haematopoiesis(Van Handel et al., 2010), but whether it occurs independently of the yolk sac 410 or if yolk sac macrophages migrate to the placenta giving rise to HBC is unknown. HBC, YS 411 macrophages and YS-derived macrophages from a Carnegie stage 10 embryo do not express 412 HLA-DR. This suggests that the lack of HLA-DR is an intrinsic property of primitive 413 macrophages, and could be used to distinguish macrophages derived from primitive and 414 definitive haematopoiesis in other fetal tissues.

415 Previous studies have yielded variable findings concerning the phenotype, cytokine 416 secretion and functions of HBC(Johnson and Chakraborty, 2012; Young et al., 2015; Pavlov 417 et al., 2020; Loegl et al., 2016; Schliefsteiner et al., 2017; Swieboda et al., 2020), probably 418 due to the failure to account for PAMM contamination which we show is present in placental 419 digests. Here, using our gating strategy for the isolation of placental myeloid cell populations 420 we find that steady-state HBC secrete a range of factors that play a role in vascularisation and 421 the remodelling of blood vessels, such as VEGF-A, OPN, MMP-9 and TIMP-1(Johnson et 422 al., 2003; Dai et al., 2009; Poggio et al., 2011; Luizon et al., 2014; Plaks et al., 2013). HBC 423 also secrete factors that are typically associated with inflammation, including IL-8, CCL-2, 424 CCL-3 and CCL-4. IL-8 is a potent neutrophil chemoattractant(Hammond et al., 1995) but 425 neutrophils are absent from the healthy placenta. In the context of the placenta, it is therefore

426 likely that these factors are pro-angiogenic. For example, *in vitro* assays(Shi and Wei, 2016), 427 using a physiological range of IL-8 ($0.2 - 1 \text{ ng ml}^{-1}$) (we found HBC produce ~128 ng ml⁻ 428 $^{1}/10^{4}$ cells of IL-8), have shown that IL-8 promotes the migration and canalization of human 429 umbilical vein endothelial cells (HUVECs) and their production of VEGF-A(Shi and Wei, 430 2016).

431 The SCT layer that covers the placental surface always contains sites of damage 432 during healthy pregnancy(Costa et al., 2017; Burton and Watson, 1997), particularly seen at 433 bridges between 2 villi(Burton and Watson, 1997). Fibrin deposits are typically present at the 434 sites of breaks in the syncytium(Burton and Watson, 1997). We suggest that PAMM1a are 435 the macrophages that have been identified at sites of damage at the syncytium(Burton and 436 Watson, 1997) and are mediators of the repair process, as they adopt a tissue-repair phenotype, and are transcriptionally similar to scar-associated macrophages in human liver 437 438 fibrosis. PAMM1a are also laden with lipid droplets and are deficient in phagocytosis. This 439 finding is resonant with data showing microglia laden with lipid droplets also display 440 impaired phagocytosis(Marschallinger et al., 2020), although the responsible mechanisms are 441 still unknown. PAMM1a may have reached a point of 'saturation' through the uptake of 442 cellular debris at the placental surface, reducing further phagocytosis. In future studies, it will 443 be interesting to determine the role of PAMM1a in pregnancy disorders including 444 preeclampsia and transplacental infection.

445 Our work shows that while HBC are 'primitive' macrophages in terms of origin, they 446 are not primitive in function, demonstrated by their response to TLR stimulation and their 447 microbicidal capacity. The distinct response of HBC to TLR stimulation in comparison with 448 PAMM1a reflects their TLR expression profile. For example, HBC highly express TLR-6 449 (binds to bacterial lipoproteins) and strongly respond to TLR-6 stimulation in comparison 450 with PAMM1a. The elevated expression of TLR-6 by HBC is surprising given its expression

451 is restricted to a select number of human tissues, such as the spleen(Fagerberg et al., 2014). 452 While HBC demonstrate increased phagocytic capacity and adopt a more acidic phagosome 453 in comparison with PAMM1a, PAMM1a are as efficient as HBC at killing both E. coli and L. 454 *crispatus*. This equivalent microbicidal capacity can be explained by active cathepsin B 455 activity and other anti-microbial mechanisms that PAMM1a may have. Given the 456 microbicidal capacity of HBC, it is of interest to study their interaction with microbes that do 457 cross the placental barrier and cause an adverse pregnancy outcome, such as Listeria 458 monocytogenes and Zika virus. However, these areas of research were beyond the scope of 459 this study.

The work presented in this study is limited to first trimester samples. Previous studies have investigated the properties of HBC across gestation(Goldstein et al., 1988; Ingman et al., 2010; Swieboda et al., 2020; Pavlov et al., 2020). However, studies that used placental digests have not considered contamination with PAMM populations and so interpretation of some of their findings is difficult. Using the methods described here for the isolation and study of HBC, an area of interesting future research will be to investigate how HBC phenotype and functions change throughout pregnancy.

In summary, we have provided a gating strategy that allows the study of human HBC. We have inferred the roles of these cells at the steady state and demonstrated the microbicidal capacity of human 'primitive' macrophages. This study adds to our understanding of human developmental immunology and provides an important framework for the field of placental biology. Future studies will now aim to determine the roles of 'primitive' HBC in health and disease.

473

474 Methods and Materials

475 **Patient samples**

All tissue samples used were obtained with written consent from participants. 476 477 Decidual and placental tissues were obtained from healthy women with apparently normal 478 pregnancies undergoing elective first trimester terminations (6-12 weeks EGA) (n=20). 479 Peripheral blood was taken from women undergoing elective first trimester terminations (6-480 12 EGA). The EGA of the samples was determined from the last menstrual period. All 481 samples were obtained with written informed consent from participants under ethical 482 approval which was obtained from the Cambridge Research Ethics committee (study 483 04/Q0108/23).

484

485 **Tissue processing**

486 Placental samples were processed immediately upon receipt. Samples were washed in 487 PBS for 10 minutes with a stirrer before processing. The placental villi were scraped from the 488 chorionic membrane with a scalpel and digested with 0.2% Trypsin (Pan-Biotech)/0.02% 489 Ethylenediaminetetraacetic acid (EDTA) (Source BioScience) at 37°C with stirring, for 7 490 minutes. The digested cell suspension was passed through a sterile muslin gauze, and fetal 491 bovine serum (FBS) (Sigma-aldrich) was added to halt the digestion process. The undigested 492 tissue left on the gauze was scraped off with a scalpel and digested in 2.5ml 1mg/ml 493 collagenase V (Sigma-Aldrich), supplemented with 50ul of 10mg/ml DNAse I (Roche) for 20 494 minutes at 37°C with agitation. The digested cell suspension was passed through a sterile 495 muslin gauze and washed through with PBS. Cell suspensions from both the trypsin and 496 collagenase digests were pelleted, resuspended in PBS and combined. Cells were layered 497 onto a Pancoll gradient (PAN-biotech) and spun for 20 minutes without brake at 3000

rotations per minute (rpm). The leukocyte layer was collected and washed in PBS. Decidual
samples and blood were processed as described previously(Huhn et al., 2020).

500

501 Flow cytometry

502 Cell suspensions were stained for viability with either 1:3000 4',6-diamidino-2-503 phenylindole (DAPI) (Sigma-Aldrich) or 1:1000 Zombie Aqua (Biolegend) for 20 minutes at 504 4°C, and washed twice in PBS. Cells were blocked in human blocking buffer (5% human 505 serum (Sigma-Aldrich), 1% rat serum (Sigma-Aldrich), 1% mouse serum (Sigma-Aldrich), 506 5% FBS and 2mM EDTA) for 15 minutes at 4°C, and were incubated with antibody cocktails 507 for 30 minutes at 4°C. Antibodies used are listed in Supplementary Table 1. Cells were 508 washed and resuspended in FACS buffer (PBS containing 2% FBS and 2mM EDTA). For 509 intracellular staining, cells were fixed and permeabilised with BD Pharmingen[™] 510 Transcription Factor Buffer (BD bioscience), according to manufacturer's instructions. The 511 lineage (lin) channel in flow cytometry analyses included the markers CD3, CD19, CD20, 512 CD66b and CD335, for the removal of contaminating maternal T cells, B cells, NK cells and 513 granulocytes. Flow cytometry was performed using a Cytek Aurora (Cytek), or cells were 514 purified by cell-sorting using a BD FACS Aria III (BD bioscience). All flow cytometry data 515 was analysed using FlowJo v10.6.1 (Treestar).

516

517 Whole mount immunofluorescence microscopy

Biopsies of placental tissue (2 cm³) were prepared as described previously(Wang et
al., 2014). Placental villi were blocked with microscopy blocking solution (1% BSA (SigmaAldrich), 0.25% Triton X-100 (Sigma-Aldrich) in PBS) for 15 minutes and stained with
antibodies (Supplementary Table 1) suspended in microscopy blocking solution in 1.5ml
Eppendorf tubes for 1 hour at room temperature or overnight at 4°C. The nuclear dye

523	Hoechst 33342 (Abcam) (diluted 1:2000 in PBS) was added for 30 minutes before imaging.
524	Whole mounts were mounted in a chamber system (POC-R2 cell cultivation system from
525	Pecon). Imaging was performed using a Zeiss SP8 confocal LSM 700.
526	
527	Electron Microscopy
528	Correlative scanning and transmission electron microscopy images of PAMM on the
529	surface of first trimester placental villi were generated as previously described(Burton, 1986).
530	
531	Immunofluorescence of placental tissue sections
532	First trimester placenta villous tissue and decidual sections were prepared as
533	described previously. Slides were placed in blocking buffer for 20 minutes at room
534	temperature, washed in PBS and incubated overnight at 4°C with antibodies (Supplementary
535	Table 1). The slides were washed twice for 5 minutes in PBS, and when necessary, incubated
536	with secondary antibodies for 1h at room temperature and washed twice for 5 minutes in
537	PBS. The slides were then air-dried and mounted using VECTASHIELD® Antifade
538	Mounting Medium with DAPI (Vector Laboratories). Slides were imaged using a Zeiss SP8
539	confocal LSM 700 (Zeiss).
540	
541	Immunohistochemistry
542	Slides were prepared as described previously(Sharkey et al., 1999). Antibodies used
543	are indicated in Supplementary Table 1. Slides were imaged on an EVOS M5000
544	microscope (Thermo Fisher Scientific).
545	

BODIPY staining of placental cells

547	Placental cells were stained for flow cytometry as described above. Cells were
548	incubated in 2ng/ml BODIPY 493/503 (Thermo Fisher Scientific) in PBS for 20 minutes at
549	4°C. Cells were washed in FACS buffer and acquired on a Cytek Aurora (Cytek).
550	FACS-isolated PAMM1a and PAMM1b were incubated in 250ng/ml BODIPY
551	493/503 (Thermo Fisher Scientific) in PBS for 1 hour at 37°C, fixed in 4% paraformaldehyde
552	solution (Sigma) and washed twice in PBS. Cytospins were prepared and mounted using
553	VECTASHIELD® Antifade Mounting Medium with DAPI (Vector Laboratories) and imaged
554	using a Zeiss SP8 confocal LSM 700.
555	
556	5-Ethynyl-2'-deoxyuridine (EDU) incorporation assay
557	FACS-purified HBC were plated at a density of 10,000 cells in 100ul of Dulbecco's
558	Modified Eagle Medium (DMEM)(Thermo Fisher Scientific) supplemented with 10% FBS,
559	2.5% Penicillin Streptomycin (Sigma-Aldrich) and 20µM L-Glutamine (Sigma-Aldrich).
560	EDU incorporation was determined using the Click-IT TM Plus EdU Alexa Fluor TM 647 Flow
561	Cytometry Assay Kit (Thermo Fisher Scientific), according to manufacturer's instructions.
562	Cells were incubated for 18 hours prior to harvesting and acquisition by flow cytometry.
563	
564	Cytokine production and Toll-like receptor stimulations
565	FACS-purified HBC, PAMM1a and PAMM1b were plated into V-bottom 96 well
566	plates at a density of 10,000 cells in 50 μ l of DMEM supplemented with 10% FBS, 2.5%
567	Penicillin Streptomycin, 20µM L-Glutamine, and 100µM Beta 2-mercaptoethanol (Sigma-
568	Aldrich). Cells were incubated for 18 hours without stimulus, or with the following stimuli:
569	Lipopolysaccharide (LPS) (Invivogen) 100ng/ml(Sander et al., 2017), IFNy (Novaprotein)

- 570 1000U/ml(Sander *et al.*, 2017), Polyinosinic:polycytidylic acid (poly(I:C)) (InvivoGen)
- 571 25µg/ml(Farina et al., 2004), Imiquimod (Insight Technology LTD) 20µg/ml, Peptidoglycan

572 (PGN) (InvivoGen) 10µg/ml), Pam2CGDPKHPKSF (FSL-1) (InvivoGen) (200ng/ml). After
573 incubation, plates were spun to remove cellular debris, and supernatants were collected and
574 stored at -80°C.

575 Cell culture supernatants were tested for the presence of 16 analytes using a custom 576 10-plex Luminex ProcartaPlex assay (Thermo Fisher Scientific), and a custom 6-plex 577 Luminex ProcartaPlex assay (Thermo Fisher Scientific) designed to profile the expression of: 578 CCL2, CCL3, CCL4, CCL5, FGF-2, GM-CSF, IL-1β, IL-1RA, IL-6, IL-8, IL-10, MMP-9, 579 Osteopontin, TIMP-1, TNF-α and VEGF-A. Samples were diluted in cell culture medium at a 580 ratio of 1:1 for the 10-plex Luminex ProcartaPlex assay, and 1:40 for the 6-plex Luminex 581 ProcartaPlex assay. The Luminex assays were performed according to manufacturer's 582 instructions, and beads were ran on a Luminex LX-200 (Luminex), using xPONENT 583 software (Luminex). Results were visualised using Prism 8 (GraphPad) and R version 3.5.1 584 (The R Foundation).

585

586 Phagocytosis assays

Microsphere phagocytosis assay: Macrophages were placed in 1.5ml Eppendorfs, at
10,000 cells in 100µl PBS and human serum opsonised FluoresbriteTM Yellow Green
Microspheres 1µm (Polysciences) were added at a concentration of 10:1 for 1 hour. Controls
included cells cultured at 4°C and 37°C in the presence of 10µM cytochalasin D (SigmaAldrich).

E.coli phagocytosis assay: *E.coli* were grown until log-phase growth in and had
reached an optical density (595nm) of 0.3. Bacteria were opsonised in heat-inactivated
human serum for 30 minutes at 37°C and labelled via incubation with 10μM
carboxyfluorescein succinimidyl ester (CFSE) (Biolegend) for 30 minutes at 37°C. Labelled
bacteria were washed 3 times in PBS prior to use. First trimester placental cell suspensions

597	were plated at a density of 1×10^{6} /ml per well in PBS. Labelled <i>E.coli</i> were added at a MOI of
598	10, and cultured for 1 hour at 37°C. Control wells were incubated at 4°C and at 37°C in
599	presence of $10\mu M$ Cytochalasin-D. Plates were centrifuged at 200g for 5 minutes to promote
600	cell-bacteria interactions. Cells were washed 3 times in 4°C PBS, and stained for flow
601	cytometry as described above.
602	
603	Reactive oxygen species production assays
604	FACS isolated HBC were plated at a density of 50,000 cells in 50µl of DMEM
605	(Gibco) supplemented with 10% FBS (Sigma-Aldrich), 2.5% Penicillin Streptomycin, 20µM
606	L-Glutamine. Cells were stained with $1\mu M$ CM-H2DCFDA (Thermo Fisher Scientific), and
607	were either treated with 1x cell activation cocktail (PMA-ionomycin) (Biolegend) for 30
608	minutes, or incubated without stimulation. Cells were washed in PBS and data acquired as
609	described above.
610	Ex-vivo imaging of HBC ROS production was carried out by incubating placental villi
611	with anti-CD64 antibody conjugated to PE and $1\mu M$ CM-H2DCFDA for 15 minutes. The
612	villi were placed in Ibidi μ -Dish 35 mm and imaged using a Zeiss SP8 confocal LSM 700
613	(Zeiss).
614	
615	Cathepsin B activity assay and acridine orange assay
616	Macrophages were seeded at 10,000 cells/well in 10µl PBS on poly-L-lysine (Sigma)
617	coated Ibidi 4 well μ -Dish plates. Zymosan bioparticles (Thermo Fisher Scientific) were
618	added at a concentration of 10 particles per cell. Cathepsin B activity was determined using
619	Magic Red TM (a cell-permeable and non-cytotoxic reagent that contains a cathepsin B target
620	sequence peptide (RR)2 linked to a red (Cresyl Violet) fluorescent probe) and lysosomes
621	were detected with acridine orange (Biorad), according to manufactures instructions.

622

623 Phagosomal pH assay

624	Placental macrophage phagosomal pH measurements were performed by adapting a
625	method using the fluorescent-sensitive pH dye SNARF-1 (S-1) with a dual emission
626	spectrum(Foote et al., 2017). Carboxy-S-1-succinimidyl ester (Thermo Fisher Scientific) was
627	coupled to zymosan coated beads (Thermo Fisher Scientific) and opsonised with human
628	serum. Macrophages were cultured at 10,000 cells/well in 10µl PBS, in poly-lysine (Sigma)
629	coated Ibidi 4 well μ -Dish plates. $5x10^5$ S-1 labelled beads were added per well to
630	macrophages. 50µg of Carboxy S-1-acetoxymethyl (S-1-AM) ester (Thermo Fisher
631	Scientific) was added as a cytosolic dye (0.5 μ g/ml working solution). Subsequently, cells
632	were examined under a 63x oil-immersion objective on a Zeiss SP8 confocal LSM 700
633	(Zeiss), where cells were excited at 555 nm and emission was measured at 560-600 nm and
634	600-610 nm. Over 100 measurements were made per condition. The pH scale was generated
635	as described previously(Foote et al., 2017).

636

637 Escherichia coli and Lactobacillus crispatus killing assays

E. coli and L. crispatus were grown overnight in LB and Man, Rogosa and Sharpe 638 639 (MRS) broth respectively. Bacteria were subcultured the following day until they had reached 640 log-phase growth and an optical density (595nm) of 0.3. Bacteria were opsonised in heat-641 inactivated human serum for 30 minutes at 37°C. FACS purified placental cells were plated 642 into 96 well plates at a density of 10,000 cells in 50µl of DMEM (Gibco) supplemented with 643 10% FBS (Sigma-Aldrich), 20µM L-Glutamine and 25mM Hepes (Gibco). Bacteria were 644 added at a MOI of 1 or 10, and plates were centrifuged at 200g for 5 minutes to promote cell-645 bacteria interactions. After incubation for 1 hour, cells were lysed in deionised water, and 646 serial dilutions were plated onto LB agar or MRS agar plates, for E. coli and L. crispatus

647 experiments, respectively. Colony forming units (CFU) were counted after 24 hours for E.

- 648 coli and after 48 hours for *L. crispatus*.
- 649

650 Analysis of publicly available single-cell RNAseq data

651 Single-cell RNA sequencing (scRNAseq) data of first trimester placenta(Vento-

Tormo et al., 2018) was obtained at from EMBL-EBI ArrayExpress

653 (www.ebi.ac.uk/arrayexpress), under the experiment code E-MTAB-6701. Sequencing data

from placental samples were aligned using the Cell Ranger Single-Cell Software Suite (v3.0,

10x Genomics) against the GRCh38.93 human reference genome. Downstream analysis of

each sample was performed using Seurat (v3.0)(Butler et al., 2018). Cells with fewer than

657 500 detected genes, and more than 20% mitochondrial gene expression were removed.

658 Samples were log-normalised and integrated following the Seurat v3 Integration workflow.

659 Clusters were identified using the *FindNeighbours* and *FindClusters* functions in Seurat.

660 Clusters were annotated on the basis of expression of known marker genes. Uniform

661 Manifold Approximation and Projection (UMAP) dimensionality reduction was performed

662 using the *RunUMAP* function in Seurat, with default parameters. Significantly differentially

663 expressed gene (DEGs) were identified using the *FindMarkers* function, using the Wilcox

rank sum test, corrected for multiple comparisons.

665 scRNAseq data from early human fetal immune cells was obtained from GEO under 666 the accession code GSE133345. The dataset was analysed using Seurat, and subset to include 667 only myeloid cells. These cells were integrated with HBC and PAMM clusters from the 668 placenta scRNAseq dataset using the reference-based integration workflow in Seurat, using 669 the early human fetal myeloid cell object as a reference. Pearson's correlations between 670 annotated clusters were calculated using the average expression per cluster of the 2000 671 variable genes used for integration. Cell cycle scoring of HBC was performed using the

672 *CellCycleScoring* function in Seurat, and predicted cell cycle states were overlaid onto673 UMAP embeddings.

Cell Ranger output files for each sample were analysed using Velocyto(La Manno et 674 675 al., 2018) (python version 0.17.17). Output loom files were merged with Seurat objects in R 676 and RNA velocity vectors were calculated using the RunVelocity function from the 677 SeuratWrappers package, and projected onto UMAP embeddings using the 678 show.velocity.on.embedding.cor function from the VelocytoR package. 679 Comparisons of cell type similarity between datasets was performed using a random 680 forest model in the ranger R package, as previously described(Stewart et al., 2019). PBMC 681 scRNAseq data for comparison was downloaded from 10x Genomics 682 (https://support.10xgenomics.com/single-cell-gene-expression/datasets). Expression matrices 683 from both datasets were subset using the union of the highly variable features detected in 684 each dataset. The random forest model was built using the ranger function on the PBMC 685 dataset and single-cell prediction scores were generated for placental cells using the predict 686 function. 687 Single cell gene signature enrichment scores were calculated using the 688 AddModuleScore function in Seurat. Gene signatures from the cirrhotic liver scar-associated 689 macrophages (SAMacs) and Kupffer cells (KCs)(Ramachandran et al., 2019) were generated 690 from the analysis of scRNAseq data obtained from GEO under the accession code 691 GSE136103. In brief, the datasets were aligned and pre-processed as described above, and 692 subset to include only the myeloid compartment. DEGs in SAMac and KC clusters were 693 identified, and genes with log fold change > 0.5 and adjusted p value < 0.05 were used as 694 gene signatures. DEGs were identified between yolk sac macrophages and embryonic 695 monocytes (Bian et al., 2020), and the top fifty genes with log fold change > 0.5 and adjusted 696 p value < 0.05 were used as the gene signatures for each population. The gene signature from

697 CS10 macrophages(Zeng et al., 2019) was generated from the analysis of scRNAseq data 698 obtained from GEO under the accession code GSE135202. The data was processed as 699 described above and subset to include endothelial and hematopoietic populations. DEGs in 700 macrophages were identified, and the top fifty genes with log fold change > 0.5 and adjusted 701 p value < 0.05 were used as the gene signature. 702 Pseudotime trajectory analysis of PAMM was performed with the Slingshot R 703 package(Street et al., 2018), and the calculated trajectory was overlain onto the UMAP 704 embeddings. Selected genes which varied across the slingshot trajectory were plotted as 705 heatmaps of smoothed scaled gene expression. Smoothing was performed using the *rollmean* 706 function in the zoo R package. 707 708 **Cell-cell interactions analyses** 709 Predicted cell-cell ligand-receptor interactions were inferred from scRNAseq data 710 using CellphoneDB (Efremova et al., 2020), using the online tool (www.cellphonedb.org). 711 The minimum proportion of cells in a cluster expressing a gene was set to 10%, and the 712 number of iterations was set to 1000. Ligand-receptor pairs were subset to include only the 713 16 ligands profiled in Luminex experiments. An estimate for interaction potential between 714 cells was obtained by multiplying the log-normalised cytokine secretion of each ligand from 715 sort-purified cell populations, by the average log-normalised gene expression of each 716 receptor in each cluster. 717 **Online Supplemental Material** 718 719 Figure S1 shows the digestion protocols for obtaining single cell suspensions, HLA allotype

staining for matched maternal blood and decidua, relating to Figure 1B, first trimester

721 placental scRNAseq analysis, and the full gating strategy for the isolation of HBC and

722	PAMM populations. Figure S2 shows the identification and characterisation of PAMM		
723	populations. Figure S3 shows the data for cytokine, chemokine and growth factor secretion,		
724	related to Figure 5A, predicted interactions of HBC, PAMM1a and PAMM1b with other		
725	placental cells, quantification of TLR flow cytometric data related to Figure 5D, and TLR		
726	gene expression data. Figure S4 shows the normalised cytokine, chemokine and growth		
727	factor secretion, related to Figure 5E. Figure S5 shows the phagocytic and microbial capacity		
728	of HBC and PAMM1a. Supplementary file 1 presents the gene signatures used for		
729	scRNAseq enrichment analyses, relating to Figures 2A, 2D and 4J. Supplementary Table 1		
730	provides a list of reagents, antibodies and software used throughout the study.		
731			

732 Acknowledgements

733 We thank the following for assistance: The Flow Cytometry Core Facility at the 734 Department of Pathology and Core staff at the Immunophenotyping Hub at the Department of 735 Medicine, University of Cambridge. Mike Hollinshead at the Microscopy Core at the 736 Department of Pathology, Cambridge. Kjersti Aagaard from the Department of Obstetrics & 737 Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas 738 Children's Hospital, Houston Texas and Menna Clatworthy from the Department of 739 Medicine, University of Cambridge for scientific discussion. Lucy Gardner, Imogen Duncan 740 and Ritu Rani for their help in processing placental samples. We thank all donors who 741 participated in this study and hospital staff. 742 This work was supported by the Wellcome Trust, Royal Society, Centre for Trophoblast Research, and Department of Pathology, University of Cambridge, UK. N.McG, 743 744 is funded by a Wellcome Sir Henry Dale and Royal Society Fellowship (grant number 745 204464/Z/16/Z). J.T is funded by a Wellcome Trust PhD Studentship (grant number

746 215226/Z/19/Z). AS is funded by the MRC (grant number: MR/P001092/1).

747

748 Author Contributions

- 749 Conceptualisation: N.McG, J.T, A.S and A.M. Methodology: N.McG, J.T, X.Z, A.A,
- 750 R.D, M.D, C.L, P.N, J.C and G.B. Formal analysis: N.McG, J.T, A.A, X.Z, R.D, M.D, C.L.
- and G.B. Intellectual input: N.McG, J.T, A.M, A.S, F.G, G.B, X.Z and R.S. Writing: N.McG,
- 752 J.T, A.S and A.M. Visualisation: N.McG and J.T. Supervision: N.McG. All authors discussed
- the manuscript.

754

755 Declaration of Interests

756 The authors declare no competing interests.

757

759 Figure Legends

Figure 1. Anti-HLA antibodies allow for the specific identification of Hofbauer cells by flow cytometry.

762 (A) Schematic drawing of the human placenta and a villous cross-section. HBC – Hofbauer

- 763 cells, EGA Estimated gestational age. (B) Representative flow cytometric gating strategy
- 764 identifying two placental macrophage populations based on HLA-DR expression. Blue gate -
- 765 HLA-DR⁺ macrophages. Red gate HLA-DR⁻ macrophages. (C) Differential expression of
- 766 HLA-A3 within the CD14⁺ macrophage gate, shown by biaxial plot and heatmap overlay.
- 767 Maternal macrophages are indicated by the blue gate (HLA-DR⁺HLA-A3⁺), fetal

768 macrophages are indicated by the red gate (HLA-DR⁻HLA-A³⁻). Bidirectional arrows depict

requivalent cells. (D) Quantification of the abundance of PAMM within CD14⁺ placental cell

suspensions across the indicated EGA. Each data point indicates a separate donor (n=11). (E)

771 Whole-mount immunofluorescence of a placental villus, where HBC stained with CD64 (red)

are within villous stroma, and PAMM stained with HLA-DR (green, white arrow) are on the

syncytial layer. Cell nuclei are stained with Hoechst (blue). Scale bar = $50\mu m$. Representative

image of n=3. (F) Scatterplot showing log-normalised gene expression of HBC (x-axis) and

775 PAMM (y-axis) clusters derived from scRNAseq data analysis. Red dots represent genes that

are differentially expressed with an adjusted p value <0.01 (Wilcox rank sum test). (G) Flow

777 cytometric analysis of expression of indicated markers by HBC (identified with anti-HLA

antibodies in red overlay) and PAMM (grey). Representative plots of n=3. Data are

779 represented as mean \pm SEM (D).

780

Figure 2. First trimester HBC are transcriptionally similar to 'primitive' macrophages and proliferate *in situ*.

783 (A) Heatmap of placental scRNAseq cluster mean enrichment scores for extra-embryonic

784	yolk sac (YS) macrophage and embryonic monocyte gene signatures(Bian et al., 2020). HBC
785	- Hofbauer cell, PAMM $-$ placenta-associated maternal monocytes/macrophages, VCT $-$
786	villous cytotrophoblast, VCTp – proliferating villous cytotrophoblast, SCT –
787	syncytiotrophoblast, EVT – Extravillous trophoblast, Fibro – Fibroblasts, Endo – Endothelial
788	cells. (B) UMAP visualisation of 3,846 single cell transcriptomes from first trimester
789	placenta and embryonic myeloid cells(Bian et al., 2020). pHBC – proliferating HBC, YSMP -
790	yolk sac-derived myeloid-biased progenitors, GMP - granulocyte-monocyte progenitors,
791	YS_Mac – yolk sac macrophage. (C) Heatmap depicting transcriptomic similarity between
792	annotated clusters. Clusters are ordered according to hierarchical clustering. HBC and
793	YS_Mac1 are highlighted in blue. (D) Violin plot of placental scRNAseq cluster enrichment
794	scores for primitive macrophages from a Carnegie stage 10 (CS10) embryo(Zeng et al.,
795	2019). (E) Violin plots of <i>HLA-DRB1</i> and <i>FOLR2</i> log-normalised gene expression in HBC,
796	PAMM, YS_Mac1 and CS10 macrophages. (F) Representative flow cytometric plot and
797	quantification of Ki67 expression by HBC (n=8). (G) Representative immunohistochemistry
798	analysis of Ki67 expression in placental tissue sections. Black arrowheads indicate Ki67 ⁺
799	cells. Scale bar = $100\mu m$. (H) Incorporation of 5-ethynyl-2'-deoxyuridine (EDU) into FACS-
800	isolated HBC after 18 hour culture, with and without the addition of M-CSF (n= \geq 4), <i>p</i> -value
801	calculated by one-way ANOVA. (I) UMAP visualisation of 1,091 HBC single cell
802	transcriptomes identifying two proliferating HBC populations. (J) Dotplot heatmap of log-
803	normalised gene expression of genes associated with stages of the cell cycle in HBC clusters.
804	Dot size represents fraction of cells with non-zero expression. (K) UMAP visualisation of
805	HBC with cells coloured by predicted cell-cycle state, as determined by cell-cycle scoring,
806	with RNA velocity vector field projection calculated from all genes in all cells (black arrows)
807	overlain. Data are represented as mean \pm SEM (F) or mean alone (H).
808	

809 Figure 3. PAMM are a heterogeneous population, comprised of three subsets based on

810 their expression of FOLR2, CD9 and CCR2 expression.

- 811 (A) Expression of FOLR2 and HLA-DR by flow cytometry reveals three major populations
- 812 of placental macrophages: HBC (red), PAMM1 (green) and PAMM2 (orange). (B) UMAP
- 813 visualisation of 1,687 PAMM single cell transcriptomes from first trimester placenta, with
- 814 overlays of CD9 and FOLR2 log-normalised gene expression. (C) Heterogeneous expression
- 815 of CD9 within PAMM1 by flow cytometry. (D) Overlay flow cytometric plots of PAMM1
- 816 (blue) and peripheral blood (PB) monocytes from matched maternal blood (red) of CD9 and
- 817 CCR2 expression. (E) Flow cytometric plot of CD9 and CCR2 expression within PAMM1,
- 818 showing representative gates for the identification of PAMM1a and PAMM1b. (F)
- 819 Enumeration of HBC and PAMM populations as a percentage of total CD14⁺ cells from
- 820 placental cell suspensions (n=11). *p*-values were calculated by one-way ANOVA with
- 821 Tukey's multiple-comparisons test. (G) Representative Giemsa-Wright stained cytospins of
- HBC and PAMM subsets isolated by FACS. Scale bars = $20\mu m$. (H) Forward scatter (FSC-
- 823 A) and (I) Side scatter (SSC-A) mean fluorescence intensity (MFI) of HBC and PAMM
- subsets. *p*-values were calculated by one-way ANOVA with Tukey's multiple-comparisons
- 825 test. Data are represented as mean \pm SEM (F) or mean alone (H, I). * $p \le 0.05$, **** $p \le$
- 826 0.0001.
- 827

Figure 4. PAMM1 undergo a monocyte-to-macrophage transition and adopt a tissuerepair phenotype on the placental surface.

830 (A) UMAP visualisation of 1,687 PAMM single cell transcriptomes with Slingshot trajectory

- 831 overlain. (B) Heatmaps of smoothed scaled gene expression of selected genes which are
- 832 downregulated and (C) upregulated during PAMM1b to PAMM1a differentiation, ordered
- 833 according to Slingshot trajectory. (D) Relative surface expression of markers identified in (C)

834	in PAMM1a (green) and PAMM1b (cyan), compared to FMO control (grey), measured by
835	flow cytometry. Representative plots of n=3. (E) Transmission electron microscopy of first
836	trimester placental villous cross-section, PAMM1a can be observed on the placental surface,
837	localised to sites of damage to the syncytial layer (red inset). PAMM1a are loaded with lipid
838	droplets (yellow arrows). Scale bars = $20\mu m$. (F) Identification of CD9 ⁺ (green) HLA-DR ⁺
839	(red) PAMM1a cells on the surface of a 9wk EGA placental sample by fluorescence
840	microscopy. Representative image of n=3. Cell nuclei are stained with DAPI (blue). Scale
841	bars = $20\mu m$. (G) Secretion of MMP-9 by FACS-isolated PAMM1a and PAMM1b after
842	overnight culture (n=6). p-value calculated by unpaired t-test. (H) Log-normalised gene
843	expression of fibronectin (FN1) in PAMM1a and PAMM1b clusters, as determined from
844	scRNAseq data. (I) Analysis of intracellular neutral lipid content by flow cytometry
845	following staining with BODIPY; mean fluorescence intensity (MFI) of HBC and PAMM
846	subsets is shown. <i>p</i> -values calculated by one-way ANOVA with Tukey's multiple-
847	comparisons test. (J) Heatmap of placental macrophage mean enrichment scores for Kupffer
848	cells (KC) and scar-associated macrophage (SAMac) gene signatures(Ramachandran et al.,
849	2019). Data are represented as mean \pm SEM. ** $p \le 0.01$, *** $p \le 0.001$.
850	

Figure 5. HBC and PAMM subsets display distinct cytokine secretion profiles at the steady state and in response to TLR stimulation.

853 (A) Heatmap of average scaled cytokine, chemokine and growth factor secretion from FACS-

isolated HBC, PAMM1a and PAMM1b after overnight culture without stimulation (n=6). (B)

855 Schematic representation of inferred cell-cell interactions from Luminex and scRNAseq data.

- 856 Lower panel shows an example of predicted interactions between HBC and other placental
- 857 cells based on VEGF-A and KDR. (C) Heatmap of predicted interactions between HBC (red)
- and other placental cell populations (blue). Interaction potentials were calculated from

867	Figure 6. HBC are capable of mounting a microbicidal response.		
866			
865	** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$.		
864	were calculated by two-way ANOVA with Dunnett's multiple-comparisons test. $*p \le 0.05$,		
863	PAMM1b cultured overnight with TLR stimulation, relative to no stimulation (n=6). <i>p</i> -values		
862	showing the fold-change in cytokine secretion of FACS-isolated HBC, PAMM1a and		
861	PAMM1b compared to FMO control (grey). Plots are representative of n=3. (E) Heatmaps		
860	receptors. (D) Relative flow cytometric expression of TLRs in HBC, PAMM1a and		
859	expression of ligands determined by protein secretion, and scRNAseq expression of cognate		

868 (A) Phagocytosis of YG beads by FACS-isolated HBC and PAMM1a measured by flow

869 cytometry. *p*-values were calculated by two-way ANOVA with Tukey's multiple-

870 comparisons test. (B) Whole-mount immunofluorescence microscopy of a placental villus

871 showing CD64 expression (red) and ROS-dependant probe CM-H2DCFDA (green). Edges of

villus are indicated by white lines. Right panels, magnification of individual cells, denoted by

symbols. Scale bars = $20\mu m$. (C) Relative expression of cathepsin B in HBC and PAMM1a

to FMO control (grey), measured by flow cytometry. (D) Cathepsin B activity in FACS-

875 isolated HBC, co-cultured with zymosan particles, determined by cathepsin B Magic RedTM

staining. Scale bars = $20\mu m$. (E) Acridine orange staining of lysosomes in FACS-isolated

HBC, co-cultured with zymosan particles. Scale bars = $20\mu m$. (F, G) Comparison of the

878 phagosomal pH of HBC and PAMM1a. (F) Representative images of phagosomal pH of

879 FACS-isolated HBC and PAMM1a after coculture with Carboxy SNARF ®-1 -labelled

zymosan particles for 20 minutes. The cytosol is labelled with 5-(and-6)-carboxy S-1

acetoxymethyl (S-1-AM) ester, a cell-permeant pH indicator. Right panel, pH scale. (G)

882 Quantification of phagosomal pH, each data point represents an average of >100

883 measurements per separate donor. n≥3. *p*-value was calculated by unpaired t-test. (H, I) Rates

- of Lactobacillus crispatus (H) and Escherichia coli (I) killing by HBC and PAMM1a after 1
- 885 hour co-culture at a MOI of 1, relative to negative control, where no macrophages were
- added. *p*-values were calculated by one sample t-test. Each data point indicates a separate
- 887 donor. (J) Schematic depicting locations and subset-specific roles of placental macrophages.
- 888 Data are represented as mean \pm SEM. ^{ns}p > 0.05, ** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$.

890 Supplementary Data

891 Figure S1. Isolation and characterisation of placental macrophage populations.

- 892 (A) Schematic representation of a digestion protocol used to isolate placental cells(Tang et
- al., 2011). (B, C) Flow cytometric analysis of fetal myeloid cells (HLA-A2⁺), from the same
- sample digested with either trypsin alone (B), or (C) trypsin and collagenase. HBC (black
- gate) and PAMM are identified in both steps of the digestion process. (D, E) Flow cytometric
- analysis of maternal peripheral blood monocytes (D) and decidual CD14⁺ cells (E), matched
- 897 with the placental sample shown in Figure 1 B, C. (F) UMAP visualisation of 22,618
- 898 placental single cell transcriptomes(Vento-Tormo et al., 2018). VCT villous
- 899 cytotrophoblast, VCTp proliferating villous cytotrophoblast, SCT syncytiotrophoblast,
- 900 EVT Extravillous trophoblast, Fibro Fibroblasts, Endo Endothelial cells. (G) UMAP
- 901 visualisation with overlays of *CD68* and *HLA-DRB1* log-normalised gene expression. (H)
- 902 Violin plots showing log-normalised gene expression of *RSP4Y1* and *XIST*, for one male fetal
- 903 donor from scRNAseq dataset. (I) Flow cytometric plots showing the gating strategy and
- 904 representative Ki67 staining for HBC (n=8). (J) Representative flow cytometric plots for
- 905 gating strategy used to isolate HBC and PAMM populations for phenotypic, morphological
- 906 and functional analysis. For the donor shown, maternal and fetal cells are HLA-A3⁺ and

907 HLA-A³⁻ respectively.

908

909 Figure S2. Identification of PAMM populations.

910 (A) Flow cytometric analysis of decidual CD14⁺ cells. Cells with a phenotype consistent with

911 PAMM2 (FOLR2⁺ HLA-DR⁺) (red gate) and PAMM1b (blue gate) were readily identified.

- 912 Cells with a phenotype consistent with PAMM1a were low in abundance (green gate).
- 913 Representative flow cytometric plots from n=3 experiments. (B) Identification of HLA-DR⁺
- 914 (red) FOLR2⁺ (green) macrophages in the decidua by fluorescence microscopy. Cell nuclei

915 are stained with DAPI (blue). Scale bar = $50\mu m$. Representative image of n=2. (C) UMAP 916 visualisation of 9,474 myeloid cells from placenta, decidua and maternal blood(Vento-Tormo 917 et al., 2018). Cells are coloured and labelled by cluster identity (left panel) and tissue of 918 origin (right panel). cDC1 – conventional type 1 dendritic cells, cDC2 – conventional type 2 919 dendritic cells, C mono - classical monocytes, dMac1 - decidual macrophages 1, dMac2 -920 decidual macrophages 2, dMono – decidual monocytes, pDC – plasmacytoid dendritic cells, 921 pHBC/pdMac2 - proliferating HBC and dMac2, NC Mono – non-classical monocytes. (D) 922 Violin plots showing log-normalised gene expression of *FOLR2* and *HLA-DRB1* in placental, 923 decidual and maternal blood myeloid cells. (E) Annotation of PAMM2 (placental cells within 924 dMac2 cluster) (blue) onto original UMAP embedding of HBC and PAMM from the 925 placental scRNAseq dataset (Figure S1F). (F) Heatmap of transcriptional similarity between 926 placental macrophage/monocytes cell clusters and indicated PBMC populations, as 927 determined using a random forest classification prediction. p-HBC – proliferating HBC. (G) 928 Scatterplot showing log-normalised gene expression of PAMM1b (x-axis) and maternal 929 blood classical monocytes (y-axis) clusters. Red dots represent genes that are differentially expressed with an adjusted p value <0.01 (Wilcox rank sum test). (H) Scanning electron 930 931 micrographs of PAMM1a on the surface of a first trimester placenta, adhering to a site of 932 damage on a branching villus. Scale bars = $20\mu m$. (I) Representative flow cytometric 933 histograms of BODIPY staining within HBC and PAMM subsets, compared to unstained 934 cells (grey). (J) Images of BODIPY staining of FACS-isolated PAMM1a and PAMM1b. 935 Scale bars = $20\mu m$. Representative images of n=2. 936

Figure S3. HBC, PAMM1a and PAMM1b secretome analysis in the steady-state and
TLR expression.

939	(A) Cytokine, chemokine and growth factor secretion of FACS-isolated HBC, PAMM1a and			
940	PAMM1b after 18 hours in culture without stimulation, profiled by Luminex (n=6). <i>p</i> -values			
941	calculated by one-way ANOVA with Tukey's multiple-comparisons test. Only significant p-			
942	values, and <i>p</i> -values approaching significance shown. (B) Heatmap of predicted interactions			
943	between HBC, PAMM1a and PAMM1b (red) and other placental cell populations (blue).			
944	Interaction potentials were calculated from expression of ligands determined by protein			
945	secretion, and scRNAseq expression of cognate receptors. (C) Whole-mount			
946	immunofluorescence of placental villi stained for CD206 (red), and CD31 (green). Images			
947	from 2 independent donors, both 9wk EGA. Scale bar = $100\mu m$. (D) Quantification of			
948	expression of TLRs in HBC, PAMM1a and PAMM1b, profiled by flow cytometry, n=3. (E)			
949	Dotplot heatmap of log-normalised gene expression of TLR genes in HBC and PAMM			
950	scRNAseq clusters. Dot size represents fraction of cells with non-zero expression. TLR9 was			
951	not detected in the analysis. Data are represented as mean \pm SEM.			
952				
953	Figure S4. HBC, PAMM1a and PAMM1b secretome analysis in response to TLR			
954	stimulation.			
955	Normalised cytokine, chemokine and growth factor secretion of FACS-isolated HBC,			
956	PAMM1a and PAMM1b after 18 hours in culture with TLR stimulation, relative to without			
957	stimulation. HBC (red), PAMM1a (green), PAMM1b (cyan). Profiled by Luminex (n=6).			
958	Data are represented as mean \pm SEM.			
959				
960	Figure S5. Phagocytic and anti-bacterial capacity of HBC and PAMM1a.			
961	(A) Flow cytometric plots of scavenger receptor expression in HBC (red) and PAMM (grey).			
962	Representative flow cytometric plots of n=3 experiments. (B) Phagocytosis of CFSE-labelled			

963 Escherichia coli (E. coli) by HBC, PAMM1a, PAMM1b and PAMM2 subsets measured by

- 964 flow cytometry. *p*-values were calculated by two-way ANOVA with Tukey's multiple-
- 965 comparisons test. (C) Representative flow cytometric plot of CM-H2DCFDA staining in
- 966 FACS-isolated HBC with no stimulation (black) and with phorbol 12-myristate 13-acetate
- 967 (PMA) (red), relative to no stain (grey) Representative plot from n=3 experiments. (D)
- 968 Cathepsin B activity, determined by cathepsin B Magic RedTM staining, and acridine orange
- staining of lysosomes in FACS-isolated PAMM1a, co-cultured with zymosan particles. Scale
- 970 bars = 20µm. (E, F) Rates of *Lactobacillus crispatus* (*L. crispatus*) (E) and *E. coli* (F) killing
- 971 by HBC and PAMM1a after 1 hour co-culture at a MOI of 10, relative to negative control,
- 972 where no cells were added. *p*-values were calculated by one sample t-test. $n \ge 2$. Data are
- 973 represented as mean \pm SEM. ^{ns}p > 0.05, * $p \le 0.05$, **** $p \le 0.0001$.
- 974

975 Supplementary Table 1. Antibodies, reagents and software used.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-Human Arginase 2 (clone poly)	Abcam	Cat#:ab81505,
(cione poly)	/ toouin	RRID:AB_1861680
Anti-Human AXI (APC) (clone 108724)	R&D Systems	Cat#:FAB154A, no
	Red Systems	RRID
	Thermo Fischer	Cat#:PA5-17353,
Anti-Human Cathepsin D (unconjugated) (clone poly)	Scientific	RRID:AB_1098141
		8
Anti-Human CCR2 (BV421) (clone K036C2)	BioLegend	Cat#:357209,
	210208010	RRID:AB_2562293
Anti-Human CCR2 (PE) (clone K036C2) BioLegend	BioLegend	Cat#:357205,
	210208010	RRID:AB_2562058
Anti-Human CD14 (PE/Dazzle) (clone HCD14)	BioLegend	Cat#:325634,
	210208000	RRID:AB_2563625
Anti-Human CD163 (PE/Cy7) (clone GHI/61)	BioLegend	Cat#:333613,
	6	RRID:AB_2562640
Anti-Human CD19 (FITC) (clone SJ25C1)	BioLegend	Cat#:363008,
		RRID:AB_2564171
Anti-Human CD20 (FITC) (clone 2H7)	BioLegend	Cat#:302304,
		RRID:AB_314252
Anti-Human CD206 (PE) (clone 15-2)	BioLegend	Cat#:321105,
		RRID:AB_571910
		Cat#:321121,
Anti-Human CD206 (PerCP/Cy5.5) (clone 15-2)	BioLegend	RRID:AB_1090099
		0

		Cat#:309707,
Anti-Human CD282 (TLR2) (PE) (clone TL2.1)	BioLegend	RRID:AB_314777
		Cat#:315005,
Anti-Human CD283 (TLR3) (PE) (clone TLR-104)	BioLegend	RRID:AB_2303469
		Cat#:312805,
Anti-Human CD284 (ILR4) (PE) (clone H1A125)	BioLegend	RRID:AB_314954
		Cat#:334707,
Anti-Human CD286 (TLR6) (PE) (clone TLR 6.127)	BioLegend	RRID:AB_2205398
		Cat#:394803,
Anti-Human CD289 (TLR9) (PE) (clone S16013D)	BioLegend	RRID: AB_280103
		Cat#:300406,
Anti-Human CD3 (FITC) (clone UCHT1)	BioLegend	RRID:AB_314060
		Cat#:303109,
Anti-Human CD31 (AF488) (clone WM59)	BioLegend	RRID:AB_493075
		Cat#:331921,
Anti-Human CD335 (FITC) (clone 9E2)	BioLegend	RRID:AB_2561964
		Cat#:336203,
Anti-Human CD36 (FITC) (clone 5-271)	BioLegend	RRID:AB_1575029
		Cat#:353905,
Anti-Human CD365 (TIM-1) (APC) (clone 1D12)	BioLegend	RRID:AB_2564324
		Cat#:563792,
Anti-Human CD45 (BUV395) (clone HI30)	BioLegend	RRID:AB_2744400
		Cat#:304042,
Anti-Human CD45 (BV605) (clone HI30)	BioLegend	RRID:AB_2562106
		Cat#:368503,
Anti-Human CD45 (PerCP/Cy5.5) (clone 2D1)	BioLegend	RRID:AB_2566351

Anti-Human CD56 (FITC) (clone HCD56)	BioLegend	Cat#:318304, RRID:AB_604100
Anti-Human CD63 (AF647) (clone H5C6)	BioLegend	Cat#:353015, RRID:AB_2561662
Anti-Human CD64 (BV605) (clone 10.1)	BioLegend	Cat#:305033, RRID:AB_2566236
Anti-Human CD64 (PE) (clone 10.1)	BioLegend	Cat#:305007, RRID:AB_314491
Anti-Human CD66b (AF700) (clone G10F5)	BioLegend	Cat#:305113, RRID:AB_2566037
Anti-Human CD66b (FITC) (clone G10F5)	BioLegend	Cat#:305103, RRID:AB_314495
Anti-Human CD68 (PE) (clone Y1/82A)	BioLegend	Cat#:333807, RRID:AB_1089057
Anti-Human CD9 (FITC) (clone HI9a)	BioLegend	Cat#:312103, RRID:AB_314908
Anti-Human CD9 (PE/cy7) (clone HI9a)	BioLegend	Cat#:312115, RRID:AB_2728255
Anti-Human FOLR2 (APC) (clone 94b/FOLR2)	BioLegend	Cat#:391705, RRID:AB_2721302
Anti-Human FOLR2 (PE) (clone 94b/FOLR2)	BioLegend	Cat#:391703, RRID:AB_2721335
Anti-Human HLA-A2 (APC/Cy7) (clone BB7.2)	BioLegend	Cat#:343310, RRID:AB_2561568
Anti-Human HLA-A3 (APC) (clone GAP.A3)	Thermo Fischer Scientific	Cat#:17-5754-42, RRID:AB_2573220

		Cat#:747774,
Anti-Human HLA-A3 (BV650) (clone GAP.A3)	BD Biosciences	RRID:AB_2739760
		Cat#:130-106-046,
Anti-Human HLA-B/ (Biotin) (clone REA1/6)	Miltenyi Biotec	RRID:AB_2652117
		Cat#:372403,
Anti-Human HLA-B7 (PE) (clone BB7.1)	BioLegend	RRID:AB_2650773
	D' I 1	Cat#:307605,
Anti-Human HLA-DR (APC) (clone L243)	BioLegend	RRID:AB_314683
		Cat#:307643,
Anti-Human HLA-DR (BV711) (clone L243)	BioLegend	RRID:AB_1121879
		4
		Cat#:564041,
Anti-Human HLA-DR (BV786) (clone G46 - 6)	BD Biosciences	RRID:AB_2738559
		Cat#:327006,
Anti-Human HLA-DR (FITC) (clone G46 - 6)	BioLegend	RRID:AB_893569
	D. 1	Cat#:307609,
Anti-Human HLA-DR (PE) (clone L243)	BioLegend	RRID:AB_314687
	TT1 F. 1	Cat#:12569882,
Anti-Human Ki67 (PE) (clone SolA15)	Scientific	RRID:AB_1115095
		4
		Cat#:350501,
Anti-Human Ki67 (Unconjugated) (clone Ki-67)	BioLegend	RRID:AB_1066274
		9
Ant: Human LOV1 (DV421) (1	Dial agand	Cat#:358609,
Anu-Human LOA1 (BV421) (clone 15C4)	DIOLESCIIC	RRID:AB_2728342
Anti Ilumon Lucomura (EITC) (alere L.Z.2)	Thermo Fischer	Cat#:GIC207,
Anti-Human Lysozyme (FIIC) (clone LZ-2)	Scientific	RRID:AB_2536533

	Thermo Fischer	Cat#:MA5-16249,	
Anti-Human TLR/ (PE) (clone 4G6)	Scientific	RRID:AB_2537767	
		Cat#:ab45097,	
Anti-Human TLR8 (PE) (clone 44C143)	Abcam	RRID:AB_778508	
Bacterial and Virus Strains			
Lactobacillus crispatus	ATCC	ATCC-33820	
Chemicals, Peptides, and Recombinant Proteins			
3,3'-diaminobenzidine (DAB)	Sigma-Aldrich	D4168-50SET	
4',6-diamidino-2-phenylindole (DAPI)	Sigma-Aldrich	D9542	
Acetone	Sigma-Aldrich	179124-1L	
Aqua Zombie Fixable Viability Kit	Biolegend	423101	
BD Difco TM Dehydrated Culture Media: Lactobacilli	Thermo Fischer	DF0882-17-0	
MRS Agar	Scientific	D10002-17-0	
BD Difco TM Lactobacilli MRS Broth	Thermo Fischer	11713553	
	Scientific	11/15555	
BD Pharmingen Transcription Factor Buffer	BD bioscience	562574	
Beta 2-mercaptoethanol	Sigma-Aldrich	444203	
BODIPY 493/503	Thermo Fisher	D3922	
	Scientific	03722	
BSA	Sigma-Aldrich	A9418	
Carazzi's hematoxylin	Clin-Tech Ltd	642305	
5-(and-6)-Carboxy SNARF-1, Acetoxymethyl Ester,	Thermo Fischer	C1272	
Acetate	Scientific	01272	
SNARF [™] -1 Carboxylic Acid, Acetate, Succinimidyl	Thermo Fischer	\$22801	
Ester	Scientific	522001	
Carboxyfluorescein succinimidyl ester (CFSE)	Biolegend	423801	

Cell activation cocktail	Biolegend	423301
CM-H2DCFDA	Thermo Fischer Scientific	C6827
Collagenase V	Sigma-Aldrich	C9263
Cytochalasin-D	Sigma-Aldrich	C8273
DNAse I	Roche	10104159001
Advanced DMEM/F-12	Thermo Fisher Scientific	12634028
EDTA	Sigma-Aldrich	324506
Fetal Bovine Serum	Sigma-Aldrich	f9665-500ML
Fluoresbrite TM Yellow Green Microspheres 1 m	Polysciences	17154
Gibco™ HEPES (1M)	Thermo Fischer Scientific	11560496
Giemsa-stain	Sigma-Aldrich	48900-500ML-F
Glycerol gelatin	Sigma-Aldrich	GG1-15ML
Hoechst 33342 dye	Abcam	ab228551
Human AB serum	Sigma-Aldrich	H4522
Ibidi 4 well m-Dish plates	ibidi	80406
IFN-gamma	ThermoFisher	PHC4031
Imiquimod	InvivoGen	Tlrl-imqs
Invitrogen Zyomosan A Bioparticles	Thermo Fisher Scientific	Z2849
L-Glutamine	Sigma-Aldrich	G7513
Lactobacillus crispatus	ATCC	ATCC-33820
Lipopolysaccharide	Invivogen	tlrl-b5lps

	Thermo Fischer	
Methanol	Scientific	10675112
Mouse serum	Sigma-Aldrich	M5905
optimal cutting temperature embedding medium	Thermo Fisher Scientific	12678646
Pam2CGDPKHPKSF (FSL-1)	Invivogen	tlrl-fsl
Pancoll	Pan-Biotech	P04-60500
Paraformaldehyde	Thermo Fisher Scientific	43368
Penicillin Streptomycin	Sigma-Aldrich	P4333
Peptidoglycan	Invivogen	tlrl-pgns2
Poly-L-lysine	Sigma-Aldrich	P4707
Polyinosinic:polycytidylic acid (poly(I:C))	Invivogen	tlrl-pau
Rat serum	Sigma-Aldrich	R9759-5ML
Triton X-100	Sigma-Aldrich	X100-500ML
Trypsin	Pan-Biotech	P10-025100P
VECTASHIELD® Antifade Mounting Medium with DAPI	Vector Laboratories	H-1200
VECTASTAIN® Elite® ABC HRP Kit	Vector Laboratories	PK-6100
Wright-stain	Sigma-Aldrich	WS16-500ML
Critical Commercial Assays		
Click-IT TM Plus EdU Alexa Fluor TM 647 Flow	Thermo Fisher	
Cytometry Assay Kit	Scientific	C10634
10-plex Luminex ProcartaPlex assay	Thermo Fisher Scientific	PPX-10

6-plex Luminex ProcartaPlex assay	Thermo Fisher Scientific	PPX-06	
Magic Red TM Cathepsin assay kit	BIO-RAD	ICT937	
Software and Algorithms	1		
Flowjo v10.6.1	Treestar	https://www.flowjo.c om/	
R version 3.5.1	The R foundation		
Seurat v3	Butler et al., 2018	https://satijalab.org/s eurat/	
Velocyto & VelocytoR	La Manno et al., 2018	https://github.com/v elocyto- team/velocyto.R	
gProfiler web tool	Reimand et al., 2016	https://biit.cs.ut.ee/g profiler/gost	
Slingshot R package v1.1.3	Street et al., 2018	https://github.com/ks treet13/slingshot	
CellphoneDB	Efremova et al., 2020	https://www.cellpho nedb.org/	

978 070	Bibliography
979 980 981 982	Arany, E., and D.J. Hill. 1998. Fibroblast growth factor-2 and fibroblast growth factor receptor-1 mRNA expression and peptide localization in placentae from normal and diabetic pregnancies. <i>Placenta</i> . doi:10.1016/S0143-4004(98)90001-7.
983 984 985 986	Bian, Z., Y. Gong, T. Huang, C.Z.W. Lee, L. Bian, Z. Bai, H. Shi, Y. Zeng, C. Liu, J. He, J. Zhou, X. Li, Z. Li, Y. Ni, C. Ma, L. Cui, R. Zhang, J.K.Y. Chan, L.G. Ng, Y. Lan, F. Ginhoux, and B. Liu. 2020. Deciphering human macrophage development at single-cell resolution. <i>Nature</i> . doi:10.1038/s41586-020-2316-7.
987 988 989	Böckle, B.C., E. Sölder, S. Kind, N. Romani, and N.T. Sepp. 2008. DC-SIGN+ CD163+ Macrophages Expressing Hyaluronan Receptor LYVE-1 Are Located within Chorion Villi of the Placenta. <i>Placenta</i> . doi:10.1016/j.placenta.2007.11.003.
990 991	Boyd, J.D., W.J. Hamilton, J.D. Boyd, and W.J. Hamilton. 1970. Stroma of Villi. <i>In</i> The Human Placenta.
992 993	Bulmer, J.N., L. Morrison, and J.C. Smith. 1988. Expression of class II MHC gene products by macrophages in human uteroplacental tissue. <i>Immunology</i> .
994 995	Burton, G.J. 1986. Scanning electron microscopy of intervillous connections in the mature human placenta. <i>J. Anat.</i>
996 997	Burton, G.J., D.S. Charnock-Jones, and E. Jauniaux. 2009a. Regulation of vascular growth and function in the human placenta. <i>Reproduction</i> . doi:10.1530/REP-09-0092.
998 999 1000	Burton, G.J., and A.L. Watson. 1997. The structure of the human placenta: Implications for initiating and defending against virus infections. <i>Rev. Med. Virol.</i> doi:10.1002/(SICI)1099-1654(199712)7:4<219::AID-RMV205>3.0.CO;2-E.
1001 1002 1003 1004	Burton, G.J., A.W. Woods, E. Jauniaux, and J.C.P. Kingdom. 2009b. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. <i>Placenta</i> . doi:10.1016/j.placenta.2009.02.009.
1005 1006 1007	Butler, A., P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. <i>Nat.</i> <i>Biotechnol.</i> doi:10.1038/nbt.4096.
1008 1009 1010	Castellucci, M., A. Celona, H. Bartels, B. Steininger, V. Benedetto, and P. Kaufmann. 1987. Mitosis of the Hofbauer cell: Possible implications for a fetal macrophage. <i>Placenta</i> . doi:10.1016/0143-4004(87)90040-3.
1011 1012 1013 1014	Costa, M.L., M.L. Robinette, M. Bugatti, M.S. Longtine, B.N. Colvin, E. Lantelme, W. Vermi, M. Colonna, D.M. Nelson, and M. Cella. 2017. Two distinct myeloid subsets at the term human fetal-maternal interface. <i>Front. Immunol.</i> doi:10.3389/fimmu.2017.01357.

1015	D'Avila, H., C.G. Freire-de-Lima, N.R. Roque, L. Teixeira, C. Barja-Fidalgo, A.R. Silva,
1016	R.C.N. Melo, G.A. DosReis, H.C. Castro-Faria-Neto, and P.T. Bozza. 2011. Host cell
1017	lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of
1018	apoptotic cells are associated with prostaglandin E2 generation and increased parasite
1019	growth. <i>J. Infect. Dis.</i> doi:10.1093/infdis/jir432.
1020 1021 1022	Dai, J., L. Peng, K. Fan, H. Wang, R. Wei, G. Ji, J. Cai, B. Lu, B. Li, D. Zhang, Y. Kang, M. Tan, W. Qian, and Y. Guo. 2009. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. <i>Oncogene</i> . doi:10.1038/onc.2009.189.
1023	Efremova, M., M. Vento-Tormo, S.A. Teichmann, and R. Vento-Tormo. 2020.
1024	CellPhoneDB: inferring cell–cell communication from combined expression of multi-
1025	subunit ligand–receptor complexes. <i>Nat. Protoc.</i> doi:10.1038/s41596-020-0292-x.
1026 1027 1028 1029 1030 1031 1032 1033	 Fagerberg, L., B.M. Hallstrom, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M. Habuka, S. Tahmasebpoor, A. Danielsson, K. Edlund, A. Asplund, E. Sjostedt, E. Lundberg, C.A.K. Szigyarto, M. Skogs, J. Ottosson Takanen, H. Berling, H. Tegel, J. Mulder, P. Nilsson, J.M. Schwenk, C. Lindskog, F. Danielsson, A. Mardinoglu, A. Sivertsson, K. Von Feilitzen, M. Forsberg, M. Zwahlen, I. Olsson, S. Navani, M. Huss, J. Nielsen, F. Ponten, and M. Uhlen. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. <i>Mol. Cell. Proteomics</i>. doi:10.1074/mcp.M113.035600.
1034	Flannagan, R.S., B. Heit, and D.E. Heinrichs. 2015. Antimicrobial mechanisms of
1035	macrophages and the immune evasion strategies of Staphylococcus aureus. <i>Pathogens</i> .
1036	doi:10.3390/pathogens4040826.
1037 1038 1039	Foote, J.R., A.P. Levine, P. Behe, M.R. Duchen, and A.W. Segal. 2017. Imaging the neutrophil phagosome and cytoplasm using a ratiometric pH indicator. <i>J. Vis. Exp.</i> doi:10.3791/55107.
1040	Foote, J.R., A.A. Patel, S. Yona, and A.W. Segal. 2019. Variations in the phagosomal
1041	environment of human neutrophils and mononuclear phagocyte subsets. <i>Front.</i>
1042	<i>Immunol.</i> doi:10.3389/fimmu.2019.00188.
1043	Ford, H.Z., H.M. Byrne, and M.R. Myerscough. 2019. A lipid-structured model for
1044	macrophage populations in atherosclerotic plaques. J. Theor. Biol.
1045	doi:10.1016/j.jtbi.2019.07.003.
1046	Ginhoux, F., M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M.F. Mehler, S.J. Conway,
1047	L.G. Ng, E.R. Stanley, I.M. Samokhvalov, and M. Merad. 2010. Fate mapping analysis
1048	reveals that adult microglia derive from primitive macrophages. <i>Science (80).</i>
1049	doi:10.1126/science.1194637.
1050 1051	Ginhoux, F., and M. Guilliams. 2016. Tissue-Resident Macrophage Ontogeny and Homeostasis. <i>Immunity</i> . 44:439–449. doi:10.1016/j.immuni.2016.02.024.
1052	Goldstein, J., M. Braverman, C. Salafia, and P. Buckley. 1988. The phenotype of human

- Gomez Perdiguero, E., K. Klapproth, C. Schulz, K. Busch, E. Azzoni, L. Crozet, H. Garner,
 C. Trouillet, M.F. De Bruijn, F. Geissmann, and H.R. Rodewald. 2015. Tissue-resident
 macrophages originate from yolk-sac-derived erythro-myeloid progenitors. *Nature*.
 doi:10.1038/nature13989.
- Hammond, M.E., G.R. Lapointe, P.H. Feucht, S. Hilt, C.A. Gallegos, C.A. Gordon, M.A.
 Giedlin, G. Mullenbach, and P. Tekamp-Olson. 1995. IL-8 induces neutrophil
 chemotaxis predominantly via type I IL-8 receptors. *J. Immunol.*
- 1062 Van Handel, B., S.L. Prashad, N. Hassanzadeh-Kiabi, A. Huang, M. Magnusson, B.
 1063 Atanassova, A. Chen, E.I. Hamalainen, and H.K.A. Mikkola. 2010. The first trimester
 1064 human placenta is a site for terminal maturation of primitive erythroid cells. *Blood*.
 1065 doi:10.1182/blood-2010-04-279489.
- Huhn, O., M.A. Ivarsson, L. Gardner, M. Hollinshead, J.C. Stinchcombe, P. Chen, N.
 Shreeve, O. Chazara, L.E. Farrell, J. Theorell, H. Ghadially, P. Parham, G. Griffiths, A.
 Horowitz, A. Moffett, A.M. Sharkey, and F. Colucci. 2020. Distinctive phenotypes and
 functions of innate lymphoid cells in human decidua during early pregnancy. *Nat. Commun.* doi:10.1038/s41467-019-14123-z.
- Ingman, K., V.J.K.W. Cookson, C.J.P. Jones, and J.D. Aplin. 2010. Characterisation of
 Hofbauer Cells in First and Second Trimester Placenta: Incidence, Phenotype, Survival
 in vitro and Motility. *Placenta*. doi:10.1016/j.placenta.2010.03.003.
- Johnson, E.L., and R. Chakraborty. 2012. Placental Hofbauer cells limit HIV-1 replication
 and potentially offset mother to child transmission (MTCT) by induction of
 immunoregulatory cytokines. *Retrovirology*. doi:10.1186/1742-4690-9-101.
- Johnson, G.A., R.C. Burghardt, F.W. Bazer, and T.E. Spencer. 2003. Osteopontin: Roles in
 Implantation and Placentation1. *Biol. Reprod.* doi:10.1095/biolreprod.103.020651.
- 1079 Kawasaki, T., and T. Kawai. 2014. Toll-like receptor signaling pathways. *Front. Immunol.*1080 doi:10.3389/fimmu.2014.00461.
- Kobayashi, N., P. Karisola, V. Peña-Cruz, D.M. Dorfman, M. Jinushi, S.E. Umetsu, M.J.
 Butte, H. Nagumo, I. Chernova, B. Zhu, A.H. Sharpe, S. Ito, G. Dranoff, G.G. Kaplan,
 J.M. Casasnovas, D.T. Umetsu, R.H. Dekruyff, and G.J. Freeman. 2007. T cell
 Immunoglobulin Mucin Protein (TIM)-4 binds phosphatidylserine and mediates uptake
 of apoptotic cells. *Immunity*. doi:10.1016/j.immuni.2007.11.011.

Lien, M.Y., H.C. Tsai, A.C. Chang, M.H. Tsai, C.H. Hua, S.W. Wang, and C.H. Tang. 2018.
Chemokine CCL4 induces vascular endothelial growth factor C expression and
lymphangiogenesis by miR-195-3p in oral squamous cell carcinoma. *Front. Immunol.*doi:10.3389/fimmu.2018.00412.

placental macrophages and its variation with gestational age. *Am. J. Pathol.* 133:648–659.

1090 1091 1092	Loegl, J., U. Hiden, E. Nussbaumer, C. Schliefsteiner, S. Cvitic, I. Lang, C. Wadsack, B. Huppertz, and G. Desoye. 2016. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. <i>Reproduction</i> . doi:10.1530/REP-16-0159.
1093 1094 1095 1096 1097	 Luizon, M.R., A.C.T. Palei, V.C. Sandrim, L.M. Amaral, J.S.R. Machado, R. Lacchini, R.C. Cavalli, G. Duarte, and J.E. Tanus-Santos. 2014. Tissue inhibitor of matrix metalloproteinase-1 polymorphism, plasma TIMP-1 levels, and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. <i>Pharmacogenomics J.</i> doi:10.1038/tpj.2014.26.
1098 1099 1100 1101 1102	 La Manno, G., R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, K. Lidschreiber, M.E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L.E. Borm, Z. Liu, D. van Bruggen, J. Guo, X. He, R. Barker, E. Sundström, G. Castelo-Branco, P. Cramer, I. Adameyko, S. Linnarsson, and P. V. Kharchenko. 2018. RNA velocity of single cells. <i>Nature</i>. doi:10.1038/s41586-018-0414-6.
1103 1104 1105 1106 1107	 Marschallinger, J., T. Iram, M. Zardeneta, S.E. Lee, B. Lehallier, M.S. Haney, J. V. Pluvinage, V. Mathur, O. Hahn, D.W. Morgens, J. Kim, J. Tevini, T.K. Felder, H. Wolinski, C.R. Bertozzi, M.C. Bassik, L. Aigner, and T. Wyss-Coray. 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. <i>Nat. Neurosci.</i> doi:10.1038/s41593-019-0566-1.
1108 1109 1110 1111 1112 1113 1114	 McGovern, N., A. Shin, G. Low, D. Low, K. Duan, L.J. Yao, R. Msallam, I. Low, N.B. Shadan, H.R. Sumatoh, E. Soon, J. Lum, E. Mok, S. Hubert, P. See, E.H. Kunxiang, Y.H. Lee, B. Janela, M. Choolani, C.N.Z. Mattar, Y. Fan, T.K.H. Lim, D.K.H. Chan, K.K. Tan, J.K.C. Tam, C. Schuster, A. Elbe-Bürger, X.N. Wang, V. Bigley, M. Collin, M. Haniffa, A. Schlitzer, M. Poidinger, S. Albani, A. Larbi, E.W. Newell, J.K.Y. Chan, and F. Ginhoux. 2017. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. <i>Nature</i>. 546:662–666. doi:10.1038/nature22795.
1115 1116	Pavlov, O. V., A. V. Selutin, O.M. Pavlova, and S.A. Selkov. 2020. Two patterns of cytokine production by placental macrophages. <i>Placenta</i> . doi:10.1016/j.placenta.2020.01.005.
1117 1118 1119	Pierleoni, C., M. Castellucci, P. Kaufmann, L.R. Lund, and B.S. Nielsen. 2003. Urokinase receptor is up-regulated in endothelial cells and macrophages associated with fibrinoid deposits in the human placenta. <i>Placenta</i> . doi:10.1016/S0143-4004(03)00082-1.
1120 1121 1122 1123	Plaks, V., J. Rinkenberger, J. Dai, M. Flannery, M. Sund, K. Kanasaki, W. Ni, R. Kalluri, and Z. Werb. 2013. Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. <i>Proc. Natl. Acad. Sci. U. S. A.</i> doi:10.1073/pnas.1309561110.
1124 1125 1126 1127	Poggio, P., J.B. Grau, B.C. Field, R. Sainger, W.F. Seefried, F. Rizzolio, and G. Ferrari. 2011. Osteopontin controls endothelial cell migration in vitro and in excised human valvular tissue from patients with calcific aortic stenosis and controls. <i>J. Cell. Physiol.</i> doi:10.1002/jcp.22549.

1128 1129 1130	Rackaityte, E., J. Halkias, E.M. Fukui, V.F. Mendoza, C. Hayzelden, E.D. Crawford, K.E. Fujimura, T.D. Burt, and S. V. Lynch. 2020. Viable bacterial colonization is highly limited in the human intestine in utero. <i>Nat. Med.</i> doi:10.1038/s41591-020-0761-3.
1131 1132 1133 1134 1135 1136 1137	 Ramachandran, P., R. Dobie, J.R. Wilson-Kanamori, E.F. Dora, B.E.P. Henderson, N.T. Luu, J.R. Portman, K.P. Matchett, M. Brice, J.A. Marwick, R.S. Taylor, M. Efremova, R. Vento-Tormo, N.O. Carragher, T.J. Kendall, J.A. Fallowfield, E.M. Harrison, D.J. Mole, S.J. Wigmore, P.N. Newsome, C.J. Weston, J.P. Iredale, F. Tacke, J.W. Pollard, C.P. Ponting, J.C. Marioni, S.A. Teichmann, and N.C. Henderson. 2019. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. <i>Nature</i>. doi:10.1038/s41586-019-1631-3.
1138 1139	Reyes, L., and T.G. Golos. 2018. Hofbauer cells: Their role in healthy and complicated pregnancy. <i>Front. Immunol.</i> doi:10.3389/fimmu.2018.02628.
1140 1141 1142 1143	Salcedo, R., M.L. Ponce, H.A. Young, K. Wasserman, J.M. Ward, H.K. Kleinman, J.J. Oppenheim, and W.J. Murphy. 2000. Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. <i>Blood</i> . doi:10.1182/blood.v96.1.34.013a49_34_40.
1144 1145 1146 1147	Savina, A., C. Jancic, S. Hugues, P. Guermonprez, P. Vargas, I.C. Moura, A.M. Lennon- Duménil, M.C. Seabra, G. Raposo, and S. Amigorena. 2006. NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells. <i>Cell.</i> doi:10.1016/j.cell.2006.05.035.
1148 1149 1150 1151	 Schliefsteiner, C., M. Peinhaupt, S. Kopp, J. Lögl, I. Lang-Olip, U. Hiden, A. Heinemann, G. Desoye, and C. Wadsack. 2017. Human placental Hofbauer cells maintain an anti-inflammatory M2 phenotype despite the presence of gestational diabetes mellitus. <i>Front. Immunol.</i> doi:10.3389/fimmu.2017.00888.
1152 1153 1154 1155 1156	 Sedlyarov, V., R. Eichner, E. Girardi, P. Essletzbichler, U. Goldmann, P. Nunes-Hasler, I. Srndic, A. Moskovskich, L.X. Heinz, F. Kartnig, J.W. Bigenzahn, M. Rebsamen, P. Kovarik, N. Demaurex, and G. Superti-Furga. 2018. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. <i>Cell Host Microbe</i>. doi:10.1016/j.chom.2018.04.013.
1157 1158 1159 1160	Sharkey, A.M., A. King, D.E. Clark, T.D. Burrows, P.P. Jokhi, D.S. Charnock-Jones, Y.W. Loke, and S.K. Smith. 1999. Localization of Leukemia Inhibitory Factor and Its Receptor in Human Placenta Throughout Pregnancy1. <i>Biol. Reprod.</i> doi:10.1095/biolreprod60.2.355.
1161 1162	Shi, J., and P.K. Wei. 2016. Interleukin-8: A potent promoter of angiogenesis in gastric cancer. <i>Oncol. Lett.</i> doi:10.3892/ol.2015.4035.
1163 1164 1165	Solders, M., L. Gorchs, E. Tiblad, S. Gidlöf, E. Leeansyah, J. Dias, J.K. Sandberg, I. Magalhaes, A.C. Lundell, and H. Kaipe. 2019. Recruitment of MAIT cells to the intervillous space of the placenta by placenta-derived chemokines. <i>Front. Immunol.</i>

- 1166 doi:10.3389/fimmu.2019.01300.
- Stamatovic, S.M., R.F. Keep, M. Mostarica-Stojkovic, and A. V. Andjelkovic. 2006. CCL2
 Regulates Angiogenesis via Activation of Ets-1 Transcription Factor. *J. Immunol.*doi:10.4049/jimmunol.177.4.2651.
- 1170 Stewart, B.J., J.R. Ferdinand, M.D. Young, T.J. Mitchell, K.W. Loudon, A.M. Riding, N.
- 1171 Richoz, G.L. Frazer, J.U.L. Staniforth, F.A.V. Braga, R.A. Botting, D.M. Popescu, R.
- 1172 Vento-Tormo, E. Stephenson, A. Cagan, S.J. Farndon, K. Polanski, M. Efremova, K.
- 1173 Green, M.D.C. Velasco-Herrera, C. Guzzo, G. Collord, L. Mamanova, T. Aho, J.N.
- 1174 Armitage, A.C.P. Riddick, I. Mushtaq, S. Farrell, D. Rampling, J. Nicholson, A. Filby, J.
- 1175 Burge, S. Lisgo, S. Lindsay, M. Bajenoff, A.Y. Warren, G.D. Stewart, N. Sebire, N.
- 1176 Coleman, M. Haniffa, S.A. Teichmann, S. Behjati, and M.R. Clatworthy. 2019.
- 1177 Spatiotemporal immune zonation of the human kidney. *Science (80-.)*.
- 1178 doi:10.1126/science.aat5031.
- 1179 Street, K., D. Risso, R.B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, and S. Dudoit.
- 2018. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. *BMC Genomics*. doi:10.1186/s12864-018-4772-0.
- Sutton, L., D.Y. Mason, and C.W. Redman. 1983. HLA-DR positive cells in the human
 placenta. *Immunology*.
- Swieboda, D., E.L. Johnson, J. Beaver, L. Haddad, E.A.L. Enninga, M. Hathcock, S. Cordes,
 V. Jean, I. Lane, I. Skountzou, and R. Chakraborty. 2020. Baby's First Macrophage:
 Temporal Regulation of Hofbauer Cell Phenotype Influences Ligand-Mediated Innate
 Immune Responses across Gestation. J. Immunol. doi:10.4049/jimmunol.1901185.
- Tang, Z., V.M. Abrahams, G. Mor, and S. Guller. 2011. Placental Hofbauer cells and
 complications of pregnancy. *Ann. N. Y. Acad. Sci.* doi:10.1111/j.17496632.2010.05932.x.
- Tsang, J.C.H., J.S.L. Vong, L. Ji, L.C.Y. Poon, P. Jiang, K.O. Lui, Y.B. Ni, K.F. To, Y.K.Y.
 Cheng, R.W.K. Chiu, and Y.M.D. Lo. 2017. Integrative single-cell and cell-free plasma
 RNA transcriptomics elucidates placental cellular dynamics. *Proc. Natl. Acad. Sci. U. S.*A. doi:10.1073/pnas.1710470114.
- Turco, M.Y., and A. Moffett. 2019. Development of the human placenta. *Dev.*doi:10.1242/dev.163428.
- Vento-Tormo, R., M. Efremova, R.A. Botting, M.Y. Turco, M. Vento-Tormo, K.B. Meyer,
 J.E. Park, E. Stephenson, K. Polański, A. Goncalves, L. Gardner, S. Holmqvist, J.
 Henriksson, A. Zou, A.M. Sharkey, B. Millar, B. Innes, L. Wood, A. Wilbrey-Clark,
 R.P. Payne, M.A. Ivarsson, S. Lisgo, A. Filby, D.H. Rowitch, J.N. Bulmer, G.J. Wright,
 M.J.T. Stubbington, M. Haniffa, A. Moffett, and S.A. Teichmann. 2018. Single-cell
- reconstruction of the early maternal–fetal interface in humans. *Nature*.
- 1203 doi:10.1038/s41586-018-0698-6.

1204 1205 1206 1207	 Wang, X.N., N. McGovern, M. Gunawan, C. Richardson, M. Windebank, T.W. Siah, H.Y. Lim, K. Fink, J.L.Y. Li, L.G. Ng, F. Ginhoux, V. Angeli, M. Collin, and M. Haniffa. 2014. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. <i>J. Invest. Dermatol.</i> 134:965–974. doi:10.1038/jid.2013.481.
1208 1209	Ward, M.G., G. Li, and M. Hao. 2018. Apoptotic β-cells induce macrophage reprogramming under diabetic conditions. J. Biol. Chem. doi:10.1074/jbc.RA118.004565.
1210 1211 1212 1213	Wu, Y., YY. Li, K. Matsushima, T. Baba, and N. Mukaida. 2008. CCL3-CCR5 Axis Regulates Intratumoral Accumulation of Leukocytes and Fibroblasts and Promotes Angiogenesis in Murine Lung Metastasis Process. J. Immunol. doi:10.4049/jimmunol.181.9.6384.
1214 1215 1216 1217	 Young, O.M., Z. Tang, T. Niven-Fairchild, S. Tadesse, G. Krikun, E.R. Norwitz, G. Mor, V.M. Abrahams, and S. Guller. 2015. Toll-like Receptor-Mediated Responses by Placental Hofbauer Cells (HBCs): A Potential Pro-Inflammatory Role for Fetal M2 Macrophages. <i>Am. J. Reprod. Immunol.</i> doi:10.1111/aji.12336.
1218 1219 1220 1221	Zeng, Y., J. He, Z. Bai, Z. Li, Y. Gong, C. Liu, Y. Ni, J. Du, C. Ma, L. Bian, Y. Lan, and B. Liu. 2019. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. <i>Cell Res.</i> doi:10.1038/s41422-019-0228-6.

PAMM1b	PAMM1a	C	PAMM1b	PAMM1a	
	-	S100A9		-	HLA-DRB1
		SELL			FCGR3A
		S100A12			OLR1
		S100A8			RGS1
		LYZ			CD9
		CFP			CD63
		CD14			CD68
		FCN1			CTSD
		IFITM2			ANXA2
		LST1			CAPG
		CYBB			TREM2
		IL1B			LGMN
		AIF1			GPNMB
		SRSF3			APOE
		SRGN			GSN
		TIMP1			LPL
		NFKBIA			RAB7B
		FOSB			MMP9
		JUNB			MMP7
		DUSP1			CD36

Scaled gene expression 0 -0.5 0.5

0 -

0

PAMM12 PAMM10

PAMM¹⁰ PAMM¹⁰

-1

1

0

A

Α