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ABSTRACT

Attention control is a basic behavioral process that has been studied for decades. The currently best models of attention
control are deep networks trained on free-viewing behavior to predict bottom-up attention control—saliency. We introduce
COCO-Search18, the first dataset of laboratory-quality goal-directed behavior large enough to train deep-network models.
We collected eye-movement behavior from 10 people searching for each of 18 target-object categories in 6202 natural-scene
images, yielding ∼300,000 search fixations. We thoroughly characterize COCO-Search18, and benchmark it using three
machine-learning methods: a ResNet50 object detector, a ResNet50 trained on fixation-density maps, and an inverse-
reinforcement-learning model trained on behavioral search scanpaths. Models were also trained/tested on images transformed
to approximate a foveated retina, a fundamental biological constraint. These models, each having a different reliance on
behavioral training, collectively comprise the new state-of-the-art in predicting goal-directed search fixations. Our expectation is
that future work using COCO-Search18 will far surpass these initial efforts, finding applications in domains ranging from human-
computer interactive systems that can anticipate a person’s intent and render assistance to the potentially early identification of
attention-related clinical disorders (ADHD, PTSD, phobia) based on deviation from neurotypical fixation behavior.
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The control of visual attention comes broadly in two forms.1

One is bottom-up, where control is exerted purely by the2

visual input1, 2. This is the form of attention predicted by3

saliency models, which exploded in popularity in the behav-4

ioral fixation-prediction and computer-vision literatures1, 3–5.5

The other form of control is top-down, where behavioral goals6

rather than bottom-up salience control the allocation of visual7

attention. Goal-directed attention control underlies all the8

things that we try to do, and this diversity makes its prediction9

vastly more challenging than predicting bottom-up saliency,10

and more important. In addition to its basic research value, a11

better understanding of goal-directed attention could lead to12

the development of biomarkers for neurotypical attention be-13

havior against which clinical conditions can be quantitatively14

compared, and to advances in intelligent human-computer15

interactive systems that can anticipate a user’s visual goals16

and render real-time assistance6–8.17

Goal-directed attention has been studied for decades9–16,18

largely in the context of visual search. Search is arguably the19

most basic of goal-directed behaviors; there is a target object20

and the goal is to find it, or conclude its absence. Goals are ex-21

tremely effective in controlling the allocation of gaze. Imagine22

two encounters with a kitchen, first with the goal of learning23

the time from a wall clock and again with the goal of warming24

a cup of coffee. These “clock” and “microwave” searches25

would yield two very different patterns of eye movement, as26

recently demonstrated in a test of this gedanken experiment17,27

and understanding this goal-directed control has been a core28

aim of search theory. The visual search literature is itself volu-29

minous (see reviews18–20). Here we focus on the prediction of 30

image locations that people fixate as they search for objects, 31

and how the selection of these fixation locations depends on 32

the target goal. 33

The visual search literature is not only mature in its empiri- 34

cal work, it is also rich with many hugely influential theories 35

and models12–16, 21. Yet despite this success, over the last 36

years progress has stalled. Our premise is that this is due to 37

the absence of a dataset of search behavior sufficiently large to 38

train deep network models. Our belief is based on observation 39

of what occurred in the bottom-up attention-control literature 40

during the same time. The prediction of fixations during free 41

viewing, the task-less cousin of visual search, has become 42

an extremely active research topic, complete with managed 43

competitions and leaderboards for the most predictive mod- 44

els22 (http://saliency.mit.edu/). The best of these saliency 45

models are all deep networks, and to our point, all of them 46

were trained on large datasets of labeled human behavior23–27. 47

For example, one of the best of these models, DeepGaze II23, 48

is a deep network pre-trained on SALICON25. SALICON is 49

a crowd-sourced dataset consisting of images that were an- 50

notated with mouse-based data approximating the attention 51

shifts made during free viewing. This model of fixation pre- 52

diction during free viewing was therefore trained on a form 53

of free-viewing behavior. Without SALICON, DeepGaze II, 54

and models like it24–27, would not have been possible, and 55

our understanding of free-viewing behavior, widely believed 56

to reflect bottom-up attention control, would be greatly di- 57

minished. For the task of visual search, there is nothing 58
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remotely comparable to SALICON25. Here we describe in59

detail COCO-Search18, the largest dataset of goal-directed60

search fixations in the world. COCO-Search18 was recently61

introduced at CVPR202028, and our aim in this paper is to62

elaborate on the richness of this dataset so as to increase its63

usefulness to researchers interesting in modeling top-down64

attention control.65

Methods66

Behavioral Data Collection67

COCO-Search18 is built from Microsoft COCO, Common68

Objects in Context29. COCO consists of over 200,000 im-69

ages of scenes that have been hand-segmented into 80 object70

categories. This ground-truth labeling of objects in images71

makes COCO valuable for training computer vision models of72

object detection29–33. However, in order for COCO to be sim-73

ilarly valuable for training models of goal-directed attention,74

these images would also need to be labeled with the locations75

fixated by people searching for different target-object goals.76

COCO-Search18 fills this niche by providing these training77

labels of search behavior.78

The dataset consists of a large-scale annotation of a subset79

of COCO, 18 of its 80 object categories, with goal-directed80

search fixations. Each of 10 participants searched for each81

of 18 target-object categories (blocked) in 6,202 COCO im-82

ages, mostly of indoor scenes. This effort required an average83

of 12 hours per participant, distributed over 6 days. This84

substantial behavioral commitment makes it possible to train85

models of individual searchers28, although our focus here is86

on group behavior. The eye position of each participant was87

sampled every millisecond using a high-quality eye-tracker88

under controlled laboratory conditions and procedure, result-89

ing in ∼70,000,000 gaze-position samples in total. These90

raw gaze samples were clustered into 299,037 search fixations91

(∼30,000 per participant), which dropped to 268,760 fixations92

after excluding those from incorrect trials. Figure 1 shows93

representative images and fixation behavior for each target94

category. See SM1 for details about: selection criteria (for95

images, target categories, and fixations), the eye tracker and96

eye tracking procedure, participant instruction, and a compar-97

ison between COCO-Search18 and existing datasets of search98

behavior.99

Search-Relevant Image Statistics100

Figure 2A shows three search-relevant characterizations of the101

COCO-Search18 images. The left panel shows the distribution102

of target-object sizes, based on bounding-box COCO labels.103

This distribution skewed toward smaller targets, with the range104

constrained by image selection to be between 1% and 10% of105

the image size (see SM1). The mean visual angle of the targets,106

based on the square root of bounding-box size, was 8.4◦, about107

the size of a clenched fist at arm’s length. The middle panel108

shows the distribution of initial target eccentricities, which109

is how far the target appeared in peripheral vision, based on110

center fixation at the start of search. Target eccentricities111

ranged from 10◦ to 25◦ of visual angle, with a mean of ∼15◦ 112

eccentricity. The right panel shows the distribution of the 113

number of “things” in each image, again based on the COCO 114

object and stuff labels34. Some images depicted only a handful 115

of objects, whereas others depicted 20 or more (keeping in 116

mind that this labeling was coarse). We report this statistic 117

because search efficiency is known to degrade with the number 118

of items in a search array35, and a similar relationship has 119

been suggested for the feature and object clutter of scenes36–38. 120

Figure 2B again shows these measures, now grouped by the 121

18 target categories. Target size and initial target eccentricity 122

varied little across target categories, while the measure of set 123

size varied more. See SM2 for analyses showing how each 124

of these three measures correlated with search efficiency, for 125

each target category. 126

Search Procedure and Metrics 127

The paradigm used for data collection was speeded categorical 128

search39–41. The participant’s task was to indicate whether an 129

exemplar of a target category appeared in an image of a scene 130

(Figure S3). They did this by making a target present/absent 131

judgment as quickly as possible while maintaining accuracy. 132

The target category was designated at the start of a block of 133

trials. Half of the search images depicted an exemplar of a 134

target (target-present, TP), and the other half did not (target- 135

absent, TA). 136

We measure goal-directed attention control as the efficiency 137

in which gaze moves to the search target. Because the target 138

was an object category, the term used for this measure of 139

search efficiency is categorical target guidance39, 41, defined 140

as the controlled direction of gaze to a target-category goal. 141

We consider multiple measures of target guidance in Figure 3, 142

but here we focus on the cumulative probability of fixating 143

the target after each search saccade42–45. A target category 144

that can successfully control gaze will be fixated in fewer 145

eye movements compared to one that has less capacity for 146

target guidance. A desirable property of the target-fixation- 147

probability (TFP) function (Figure 4) is that it is meaningful 148

to compute the area under the TFP curve (TFP-auc), which 149

we suggest as a new metric for evaluating search guidance 150

across target categories and models. 151

Model Comparison 152

Now that COCO-Search18 exists, what can we do with it? 153

To answer this question we conducted benchmarking to deter- 154

mine how well current state-of-the-art methods, using COCO- 155

Search18, can predict categorical search fixations. To create a 156

context for this model comparison we considered three very 157

different modeling approaches, which all shared a common 158

backbone model architecture, a ResNet50 pre-trained on Ima- 159

geNet46. 160

Our first approach predicted search fixations using object 161

detectors trained for each of the target categories. We did 162

this by re-training the pre-trained ResNet50 on just the 18 163

target categories using the COCO labels. Standard data aug- 164

mentation methods of re-sizing and random crops were used 165
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A

B

Figure 1. (A). Examples of target-present images for each of the 18 target categories. Yellow lines and numbered discs indicate a
representative search scanpath from a single participant. From left to right, top to bottom: bottle, bowl, car, chair, (analog) clock, cup, fork,
keyboard, knife, laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet, tv. (B). Examples of fixation density maps (excluding
initial fixations at the center) computed over participants for the same scenes.

to increase variability in the training samples. We then used166

these trained detectors to predict search fixations on the test167

images. For a given target and test image, we obtained a con-168

fidence map from the target detector and used it to sample a169

sequence of fixation locations based on the level of confidence.170

Note that this approach is pure computer vision, meaning that171

it uses the image pixels solely and knows nothing about be-172

havior.173

With COCO-Search18, however, it is possible to also train174

on the search behavior. There are multiple ways of doing this.175

In our second approach we re-trained the same ResNet50,176

only this time using labels as the fixations made by searchers177

viewing the training images. Specifically, fixation-density178

maps (FDMs) were obtained for each TP training image for179

a given category, and these were used as labels for model180

training. This model is in a sense a search version of mod-181

els like DeepGaze II23 in the free-viewing fixation-prediction182

literature, which are also trained to predict FDMs. We there-183

fore refer to this model as Deep Search. Deep Search differs184

from the Target Detector model in that it is trained on search185

fixation density to predict search behavior. 186

For our third modeling approach we used inverse- 187

reinforcement learning (IRL)47–49, an imitation-learning 188

method from the machine-learning literature, to simply mimic 189

the search scanpaths observed during training. We chose IRL 190

over other imitation-learning methods because it is based on 191

reward, known to be a powerful driver of behavior50–52, but 192

we think it is likely that other imitation-learning methods 193

would perform similarly. The IRL model we used49 works 194

by learning, through an adversarial process playing out over 195

many iterations, how to make model-generated behavior, ini- 196

tially random, become more like human behavior. It does this 197

by rewarding behavior that happens to be more human-like. 198

IRL is therefore very different from a Target Detector, but 199

also different from Deep Search, which also gets to use search 200

behavior in its training. The IRL model learns to imitate the 201

search scanpath, meaning the sequence of fixations made to 202

the search target, whereas Deep Search uses only FDMs that 203

do not represent the temporal order of fixations. Because the 204

IRL model used the most search behavior for training, we 205
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B

Figure 2. (A). Distributions of target sizes, based on the visual angle of their bounding-box areas (left), and initial target eccentricities
(middle), both for the target-present images. The number of “things” (objects and “stuff” categories, both based on COCO-stuff labels)
appearing in the search images (right). (B). Image statistics from COCO-Search18, grouped by the 18 target categories. The left plot shows
the number of images, followed by three analyses paralleling those presented in (A): averaged target-object size in degrees of visual angle,
initial target eccentricity based on bounding-box centers, and the average number of things in an image (a proxy for set size).
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Figure 3. Basic behavioral analyses of the target-present data from COCO-Search18, grouped by the 18 target categories. Blue plots (left
two) show the manual measures of reaction time (RT) and response accuracy (ACC). Olive plots (top row) show gaze-based analyses of
categorical guidance efficiency: number of fixations made before the button press (NumFix), time until first target fixation (T2T), and number
of fixations made until first target fixation (NumFix2T). Orange plots (bottom row) show gaze-based measures of target verification: time
from first target fixation until response (TTFix2R), total time spent fixating the target (TonT), and the number of re-fixations on the target
(ReVisitT). Values are means over 10 participants, and error bars represent standard errors.

hypothesized that it would best predict search behavior in our206

model comparison. See SM3 for additional details about IRL.207

State Comparison208

In addition to the model comparison, we also compared sev-209

eral state representations used by the models. In the current210

context, the state is the information that is available to control211

search behavior, and essential to this are the features extracted212

from each search image. We refer to the original images as213

high-resolution (Hi-Res), in reference to the fact that they214

were not blurred to reflect retina constraints. Extracting fea-215

tures from a Hi-Res image produces a Hi-Res state, and it 216

is this state that is used by most object-detection models in 217

computer vision where the goal is to maximize detection suc- 218

cess. Primate vision, however, is profoundly degraded from 219

this Hi-Res state by virtue of the fact that we have a foveated 220

retina. A foveated retina means that high-resolution visual 221

inputs exist only for a small patch of the image at the current 222

fixation location, and blurred everywhere else. Given our 223

goal to model the fixation behavior of the COCO-Search18 224

searchers, each of whom had a foveated retina, we included 225
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A B C

Figure 4. (A). Cumulative probability of fixating the target (y-axis; target-fixation probability or TFP) as a function of fixation serial
position (x-axis; 0-6), shown individually for the 18 target categories (color lines) and averaged over target types (bold black line). The
bottom-most function is a Random Behavior baseline obtained by computing target-fixation probability using a scanpath from the same
participant searching for the same target category but in a different image. For the 18 target functions, means were computed by first
averaging over images and then over participants, and standard errors were computed over participants. For the averaged behavioral data and
the Random Behavior baseline (black and gray lines), means were computed by first averaging over images and then over categories, and
standard errors were computed over categories. (B). TFP functions generated from model predictions on the test images. Names designate a
model type (IRL, Detector, Deep Search) and a state representation (ReT, Hi-Low, Hi, C), separated by hyphens. Average behavioral TFP is
again plotted in bold black, this time for just the test data (which explains the small differences from the corresponding function in A, which
included the training and testing data). The Random Model baseline was obtained by making six movements of the Hi-Low foveated retina,
with ISTs after each, and determining whether any of these movements brought the high-resolution central window to the target. Means were
first computed over images and then over categories, and standard errors were computed over categories. (C). A re-plot of B, but only
including data from trials in which the target was successfully fixated within the first six fixations (i.e., search scanpaths that succeed in
locating the target.)

this basic biological constraint in the state to determine its226

importance in model training and prediction of search be-227

havior (see also53). Relatedly, and as fundamentally, each228

new fixation changes the state by allowing high-resolution229

information to be obtained from the vantage of a new image230

location. Capturing these fixation-dependent spatio-temporal231

state changes in the context of search was a core goal in the232

development of COCO-Search18.233

We considered two fovea-inspired states. In the first we234

used the method from Perry and Geisler54 to compute a Retina-235

Transformed (ReT) image. A ReT image is a version of the236

Hi-Res image that is blurred to approximate the gradual loss237

in visual acuity that occurs when viewing at increasing ec-238

centricities in peripheral vision. Second, we implemented an239

even more simplified foveated retina consisting of just a high-240

resolution central patch (7◦ × 7◦ visual angle) surrounded by241

low-resolution “peripheral” vision elsewhere, with the critical242

difference from the ReT image being that only a single level of243

blur (Gaussian filter with σ = 2) was used to approximate the244

low-resolution periphery. Computing the gradual blur used in245

the ReT image was computationally very demanding, and the246

inclusion of the simpler Hi-Low state was motivated largely to247

reduce these computational demands (ReT requires ∼15×the248

processing time per image). However, having this condition249

also enabled a needed initial evaluation of how veridically250

low-level visual-system constraints need to be followed when251

training deep-network models of human goal-directed behav-252

ior. 253

We also considered two spatio-temporal state representa- 254

tions for how information is accumulated with each new fixa- 255

tion in a search scanpath. A behavioral consequence of having 256

a foveated retina is that we make saccadic eye movements, 257

and the order in which these eye movements are made cor- 258

respond to different visual states. Our first spatio-temporal 259

state assumed a high-resolution foveal window that simply 260

moves within a blurred image. This means that each change in 261

fixation brings peripherally blurred visual inputs into clearer 262

view, and causes previously clear visual inputs to become 263

blurred. This spatio-temporal state representation is aligned 264

most closely with the neuroanatomy of the oculomotor system, 265

so we will consider this to be the default state. However, this 266

default state representation assumes that foveally-obtained 267

information on fixation n is completely lost by fixation n+1, 268

and indeed something like this is true for high-resolution in- 269

formation about visual detail55. However, this state fails to 270

capture any memory for the fixated objects that persists over 271

eye movement, which is also known to exist56. To address 272

the potential for an object context to build over fixations, we 273

therefore also used a state that accumulates the high-resolution 274

foveal views obtained at each fixation in the search scanpath, 275

a state we refer to as Cumulative (-C). Over the course of 276

multi-fixation search, the Hi-Low-C state would therefore 277

accumulate high-resolution foveal snapshots with each new 278

fixation, progressively de-blurring what would be an initially 279
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moderately-blurred version of the image. We explore these280

two extremes of information preservation during search so as281

to inform future uses of a fovea-inspired spatio-temporal state282

representation to train deep network models.283

General Model Methods284

All of the models followed the same general pipeline. Each285

1050×1680 image input was resized to 320×512 pixels to286

reduce computation. This is what we refer to as the Hi-Res im-287

age (or just Hi); the ReT and Hi-Low images were computed288

from this. These images were passed through the ResNet50289

backbone to obtain 20×32 feature map outputs, with the fea-290

tures extracted from these images now reflecting either Hi-Res,291

ReT, or Hi-Low states, respectively. Different models were292

trained using these features and others, as described in the293

Model Comparison section, and all model evaluations were294

based on a 70% training, 10% validation, and 20% testing,295

random split of COCO-Search18 within each target category.296

See SM3 for additional details about the training and testing297

separation, and Figure S15 for how the two compare on search298

performance measures.299

The trained models were used to obtain model-specific pri-300

ority maps for the purpose of predicting the search fixations in301

each test image. The priority map for the Target Detector was302

a map of detector confidence values at each pixel location, and303

fixations were sampled probabilistically from this confidence304

map.The priority map for Deep Search is its prediction of the305

FDM, given the input image and the model’s learned mapping306

between image features and the FDM ground-truth during307

training. The priority map for the IRL model is the reward308

map recovered during its training, which recall occurred dur-309

ing its learning to mimic search behavior. Because this search310

behavior was itself reward driven, the priority map for the311

IRL model is therefore a map of the total reward expected by312

making a sequence of search fixations to different locations313

in a test image. The IRL model was additionally constrained314

to have an action space discretized into a 20×32 grid, which315

again was done to reduce computation time. A given action,316

here a change in fixation, is therefore a selection of 1 from 640317

possible grid cells, a sort of limitation imposed on the spatial318

resolution of the model’s oculomotor system. The selected319

cell was then mapped back into 320×512 image space by320

upscaling, and the center of this cell became the location of321

the model’s next fixation. The non-IRL models made their322

action selection directly in the 320×512 image space, with323

higher priority values selected with higher probability.324

All of the model×state combinations in our comparison325

were required to make six changes in fixation for each test326

image. This number was informed by the behavioral data327

showing that the probability of target fixation was clearly at328

ceiling by the sixth eye movement (Figure 4A). To produce329

these 6-fixation scanpaths, we iterated the fixation generation330

procedure using inhibitory spatial tagging (IST), which is a331

mechanism serving the dual functions of (1) breaking current332

fixation, thereby enabling gaze to move elsewhere, and (2)333

discouraging the refixation of previously searched locations. 334

IST has long been used by computational models of free 335

viewing57, 58 and search59, 60. Here we enforce IST by setting 336

the priority map to zero after each fixation over a region having 337

a radius of 2.5◦ visual angle (based on a 3×3 grid within the 338

20×32 action space). IST was applied identically after each 339

fixation made by all of the models. This was true even for 340

models that did not have a foveated retina, such as a Target 341

Detector with a Hi-Res state, in which case IST was applied 342

to the image locations selected for "fixation". See SM3 for 343

additional details. 344

The nomenclature that we adopted for the model compari- 345

son consists of the model type as the base and the state repre- 346

sentation as a suffix. If the spatio-temporal state is cumulative, 347

there is a second suffix of -C. For example, the IRL-ReT-C 348

model accumulates graded-resolution foveal views of an im- 349

age with each reward-driven eye movement. Although our 350

aim is to explore as systematically as possible each state for 351

every model, for some models a given state representation is 352

not applicable. For example, it makes no sense for the IRL 353

model to use the Hi-Res state. Because that state representa- 354

tion does not change from one search fixation to the next it 355

would be impossible to learn fixation-dependent changes in 356

state, thereby defeating the purpose of using the IRL method. 357

Similarly, it makes no sense to have a cumulative state for 358

anything but the IRL model, as the others would be unable to 359

use this information. However, it does make sense to test a 360

Target Detector and Deep Search on a Hi-Low state as well as 361

a Hi-Res state, and these models are included in the Table 1 362

model evaluation. 363

Results 364

Behavioral Performance 365

We interrogated COCO-Search18 using multiple performance 366

measures. Figure 3 reports these analyses for each of the 367

target categories. Analyses can be conceptually grouped into 368

manual measures (accuracy and response time; blue plots), 369

gaze-based measures of categorical guidance (number of fixa- 370

tions before the button press, and both the time and number 371

of fixations until the first target fixation; olive plots), and mea- 372

sures of target verification time (time from first target fixation 373

until the button press, total time spent fixating the target, and 374

the number of target re-fixations; orange plots). What is clear 375

from these analyses is that, except for accuracy, there is wide 376

variability across target categories in these measures, and this 377

variability creates fertile ground for future model develop- 378

ment. Also clear from Figure 3 is that there is considerable 379

correlation among some of these measures, perhaps most evi- 380

dent among the search guidance measures where the shapes 381

of the plots look similar. We include these different measures, 382

not to suggest their independence, but rather as a courtesy to 383

readers who may be familiar with different measures. 384

Figure 5 is a matrix visualization of these analyses, now 385

with color coding a ranking of search efficiency. In Figure 5A, 386

the deepest red for each measure (row) indicates the least effi- 387
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TFP-AUC ↑ Probability
Mismatch ↓

Scanpath
Ratio ↑

Sequence
Score ↑

MultiMatch ↑
shape direction length position

Human 5.200 - 0.862 0.489 0.903 0.736 0.880 0.910

Random Model 0.744 4.455 0.392 0.266 0.832 0.579 0.783 0.755
Detector-Hi 4.001 1.209 0.680 0.411 0.877 0.665 0.837 0.872
Detector-Hi-Low 2.975 2.225 0.601 0.370 0.863 0.640 0.820 0.833
Deep Search-Hi 2.519 2.681 0.579 0.348 0.890 0.627 0.867 0.861
Deep Search-Hi-Low 2.282 2.918 0.546 0.333 0.882 0.617 0.859 0.848
IRL-ReT-C 4.170 1.131 0.731 0.418 0.879 0.673 0.842 0.874
IRL-Hi-Low-C 4.262 1.031 0.747 0.419 0.886 0.677 0.849 0.885
IRL-Hi-Low 4.245 1.036 0.753 0.417 0.884 0.677 0.847 0.885

Table 1. Results from fixation-prediction models (rows) using multiple scanpath metrics (columns) applied to the COCO-Search18 test
images. Arrows indicate the direction of better prediction success, and values in bold indicate best predictions across the model comparison.
In the case of Sequence Score and MultiMatch, “Human” refers to an oracle method whereby one searcher’s scanpath is used to predict
another searcher’s scanpath; “Human” for all other metrics refers to observed behavior. See the main text for additional details about the
scanpath-comparison metrics, and SM3 for purely spatial comparisons using the AUC, NSS, and CC metrics.

A B

Figure 5. (A). Ranked target-category search efficiency [1-18], averaging over participants. Redder color indicates higher rank and harder
search targets, bluer color indicates lower rank and easier search. Target category is grouped (columns) and shown for multiple performance
measures (rows). These measures include: response Error, reaction time (RT), number of fixations (NumFix), time to target (T2T), number of
fixations to target (NumFix2T), time from first target fixation until response (TTFix2R), time spent fixating the target (TonT), and the number
of target re-fixations (ReVisitT). (B). A similar ranking of the target-present data, only now for participant efficiency (columns 1-10),
averaged over target category. Performance measures and color coding are the same as in panel A.

cient (or most difficult) search over the 18 target categories,388

and the deepest blue indicates the most efficient (or easiest)389

search. The appearance of columns in this visualization cap-390

tures the agreement among the measures. More subtle patterns391

in the data can also be seen. For example, the two predomi-392

nately red columns at the left indicate agreement in that the393

bottle and bowl objects were difficult targets, speculatively394

because these target categories have particularly high variabil-395

ity in their image exemplars. Relatedly, appearing near the396

right are two of the consistently easiest targets, stop signs and397

toilets, both having relatively well-defined category member-398

ship. Figure 5B shows a similar plot, only now performance is399

averaged over target categories and plotted for individual par-400

ticipants. Search accuracy and efficiency clearly differ among401

the participants in this ranking. Participants 7 and 8 were 402

better searchers than Participants 2 and 9, meaning that they 403

tended to find the target faster and with fewer fixations while 404

keeping a low error rate. Differences in search strategy can 405

also be seen from this visualization. Participant 1 searched 406

the display carefully, resulting in few missed targets, but this 407

person’s search was not very efficient. In contrast, Participant 408

4 was quick to find and verify targets, but had relatively low 409

accuracy. See SM2 for parallel analyses of the target-absent 410

data from COCO-Search18. 411

However, arguably the gold-standard measure of attention 412

control is the cumulative probability of fixating the target 413

after each saccade made during search, the target-fixation 414

probability (TFP). Figure 4A shows TFP functions for the first 415
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six search saccades, averaged over participants and plotted for416

individual target categories. The mean behavior over targets is417

indicated by the bold black function. The noteworthy pattern418

is that the slope of the group function is far steeper than that419

of the chance baseline, obtained by computing TFP using a420

scanpath from a different image but from the same participant421

and target category. On average, about half of the targets were422

fixated with the very first saccade. By the second saccade423

TFP jumped to .82, and by the third saccade it reached a424

performance ceiling of .94, which increased only slightly after425

saccades 4–6. This high degree of attention control means426

that, although we aimed to create a search dataset having427

a moderate level of difficulty, COCO-Search18 skews easy.428

This is due in part to unexpectedly large practice effects (see429

SM2 for details). However, it is fortuitous that such a strong430

attention-control signal exists in the behavioral data, given the431

challenge faced by even start-of-the-art models in predicting432

this simple search behavior.433

Model Evaluation434

Fixation prediction models broadly fall into two groups, mod-435

els that predict the spatial distribution of locations fixated by436

participants viewing an image (i.e., the FDM), and models437

that predict both the location and order of the fixations made438

by a person viewing an image (i.e., the scanpaths). In a search439

task, fixation behavior changes dramatically over the first few440

eye movements 61, making it important to consider the spatio-441

temporal fixation order. For this reason, we will focus on442

spatio-temporal fixation prediction here and defer discussion443

of purely spatial FDM prediction to SM4, and especially Ta-444

ble S1. Both types of prediction were based on the 6-saccade445

sequences that each model was required to make for each test446

image. Specifically, 10 6-fixation scanpaths (excluding the447

initial fixation) were predicted for each test image by sam-448

pling probabilistically from the generated priority map, and449

for each of these search scanpaths the model behavior was450

analyzed up to first fixation on the target, or six changes in451

fixation, whichever came first.452

Predicting the spatio-temporal order of search fixations453

can also take two forms. One has been to make fixation454

predictions with respect to the search target. For example,455

predicting the probability of the target being fixated by the456

first search saccade, the second, etc. These target-based pre-457

dictions capture the efficiency of search, where the goal is458

to find the target, and models making this type of prediction459

have been the more common in the search literature 45, 62.460

Here we use three metrics to evaluate the success of these461

predictions. Two of these metrics were derived from the TFP462

function (Figure 4A): TFP-auc, which is the area under the463

cumulative target-fixation-probability curve, and Probability464

Mismatch, which sums over each fixation in a scanpath the465

absolute differences between the behavioral and model TFP.466

The third metric, Scanpath Ratio, is the Euclidean distance467

between the initial fixation location (roughly the center of468

the image) and the location of the target (center of bounding469

box) divided by the summed Euclidean distances between 470

the fixation locations in the search scanpath42. It is a search 471

efficiency metric because an initial saccade that lands directly 472

on the target would yield a Scanpath Ratio of 1, and all less 473

efficient searches would be < 1. An alternative to predicting 474

target guidance over the spatio-temporal search scanpath is to 475

predict the scanpath itself. This approach assumes that any 476

target guidance would be reflected in the sequence of fixated 477

image locations leading up to the target decision. We con- 478

sidered two metrics for comparing behavioral and predicted 479

search scanpaths: Sequence Score, which clusters scanpaths 480

into strings and uses a string matching algorithm for com- 481

parison63, and MultiMatch, which takes a multi-dimensional 482

approach to computing scanpath similarity64, 65. Both metrics 483

capture properties of the spatio-temporal search scanpath and 484

place less importance on the fact that there is a search target. 485

SM4 should be consulted for additional details about these 486

metrics. 487

Table 1 provides an evaluation of how each model×state 488

combination fared in fair comparison using these metrics. 489

As we hypothesized, the three IRL models generally outper- 490

formed the others (see Table S2 for statistical tests). They did 491

so for every metric except MultiMatch, where all the models 492

performed similarly. The only other model that was compara- 493

bly predictive was Detector-Hi, but this model has no fovea 494

and is therefore the least biologically plausible. A perhaps 495

clearer picture of this model comparison can be obtained by 496

comparing the behavioral TFP function to ones computed 497

for each model. Figure 4B shows this evaluation of search 498

efficiency for each of the model×state combinations (in color) 499

and for the mean search behavior (in black), limited to the 500

TP test data. Focusing first on state comparisons, we did not 501

find large differences between the states tested. Whether blur 502

was graded or binary appeared not to matter, as indicated by 503

the very similar TFP functions for the ReT and the Hi-Low 504

states using the IRL model. This pattern also appeared in 505

Table 1, where the IRL models differed by tiny margins. For 506

this reason, and its far greater computational efficiency, we 507

adopted only the Hi-Low state in the other model comparisons 508

(therefore, there are no Deep Search-ReT or Detector-ReT 509

models). Similarly, but specific to the IRL model, it made 510

little difference whether or not the state accumulated high- 511

resolution visual information with each fixation in a search 512

scanpath. The fact that the IRL model seemed not to use this 513

accumulated visual information is broadly consistent with the 514

view that very little high-resolution information is preserved 515

across saccades55. However, it did matter whether the state 516

included a foveated retina or not, as exemplified by the dif- 517

ference between Hi-Res and Hi-Low states for the Detector 518

model. This state comparison suggests that future work may 519

want to avoid manipulations of fine-grained retinal blur and 520

assumptions about intersaccadic visual memory, and focus on 521

adding more basic limitations on human visual perception to 522

a model’s pipeline, with the inclusion of a Hi-Low foveated 523

retina being one example. 524
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All of the tested models made reasonable predictions of525

search behavior in this challenging benchmark, where “rea-526

sonable” is liberally defined as bearing greater resemblance527

to the human behavior than the chance baseline. However, the528

Deep Search models and the Detector-Hi-Low model were529

clearly less efficient in their search behavior than either hu-530

man behavior or any of the IRL models. This poor relative531

performance is likely caused by these models not capturing532

the serial order of search fixations, and that this order mat-533

ters. A corollary finding is that the IRL models, because they534

learned these spatio-temporal sequences of search fixations,535

better predicted search behavior. This was true for all the IRL536

models, which all predicted the efficiency of the first search537

fixation almost perfectly (IRL models vs. Human at fixation 1538

with post-hoc t-tests, all psbon f erroni = 1.0). Also interesting539

is the degree that an object detector (Detector-Hi) can pre-540

dict search behavior, supporting previous speculation66. If an541

application’s goal is to predict a person’s early fixation be-542

havior during search without regard for biological plausibility,543

a simple object detector will work well based on our testing544

with COCO-Search18. Another finding from Figure 4B is that545

none of the models achieved the high level of successful target546

fixation exhibited in human performance. Performance ceil-547

ings after six saccades (termed fixated-in-6 accuracy) ranged548

from .54 (Deep Search-Hi-Low) to .83 (IRL-Hi-Low-C), all549

well below the near perfect fixated-in-6 accuracy (.99) from550

human searchers (post-hoc t-tests with all psbon f erroni <.001).551

These lower performance plateaus, undoubtedly reflecting552

limitations in current object detection methods, means that553

the models tended either to fixate the target efficiently in the554

first one or two eye movements (like people), or tended not555

to fixate the target at all (unlike people). If a model cannot556

represent the features used for target guidance as robustly as557

people, there may be images for which there is essentially558

no guidance signal, and on these inefficient search trials the559

number of eye movements needed to fixate the target would560

often be greater than six, hence the performance plateaus.561

These different performance ceilings are problematic in that562

they conflate limitations arising from object detection with563

limitations in effective target prioritization, as measured by564

search efficiency. For example, a strength of the TFP-auc met-565

ric is that it is grounded in the TFP functions from Figure 4B,566

but this means that it includes the different performance ceil-567

ings in its measure and this weakens it as a pure measure of568

attention control. To address this concern, in Figure 4C we569

again plot TFP functions, but now only for trials in which the570

target was successfully fixated within the first six saccades.571

By restricting analysis to only trials having perfect fixated-572

in-6 accuracy, the metric becomes more focused on search573

efficiency. By this measure, and keeping in mind that the data574

are now skewed toward easier searches, the IRL-Hi-Low-C575

and IRL-Hi-Low models remain the most predictive overall,576

although now all IRL models overestimate slightly the effi-577

ciently of the first search saccade. But perhaps the biggest578

winner in this comparison is the Detector-Hi model, which579

now predicts TFP almost perfectly after the first fixation, and 580

has generally improved performance for subsequent fixations. 581

We tentatively conclude that simple prioritization of fixations 582

by an object detector predicts reasonably well the prioritiza- 583

tion of behavioral fixations in visual search. The losers in this 584

comparison were the Deep Search models, which remained 585

less efficient than human behavior even after normalization 586

for fixated-in-6 accuracy. 587

Discussion 588

Recent years taught us the importance of large datasets for 589

model prediction, and this importance extends to models of 590

attention control. COCO-Search18 is currently the largest 591

dataset of goal-directed search fixations, having sufficient 592

number to be used as labels for training deep network mod- 593

els. We conducted a systematic (but still incomplete) explo- 594

ration of models and state representations to provide some 595

initial context for the types of model predictions that are pos- 596

sible using COCO-Search18, given current state-of-the-art 597

(or nearly so). This model comparison focused on the de- 598

gree that search behavior was used during training, ranging 599

from none (Detector), to some (Deep Search), to entire search- 600

fixation scanpaths (IRL). With respect to the IRL model, its 601

use with COCO-Search18 is the first attempt to predict the 602

spatio-temporal movements of goal-directed attention by train- 603

ing on human search behavior. We found that the IRL model 604

was far more predictive of search efficiency than the Detector- 605

Hi-Low model or either of the Deep Search models, despite 606

the Deep Search models using methods considered to be state- 607

of-the-art in the fixation-prediction literature on free-viewing 608

behavior. In our state comparison we focused on the different 609

ways that a primate foveated retina, and its movement, might 610

be represented and used to train fixation prediction models. 611

We also extensively benchmarked COCO-Search18, both in 612

terms of the search behavior that it elicited, analyzed using 613

multiple behavioral measures and metrics, and in terms of 614

the predictive success of models ranging in their degree of 615

training on the COCO-Search18 behavior. All this means that 616

COCO-Search18 can be used immediately to start generating 617

new testable hypotheses. But likely the greatest contribution 618

of this work is yet to come. With a dataset the size and quality 619

of COCO-Search18, opportunities exist to explore new poli- 620

cies and reward functions for predicting goal-directed control 621

that have never before been possible 28. Our hope is that 622

COCO-Search18 will strengthen the bridge that human atten- 623

tion has built between the machine learning and behavioral 624

science literatures. 625

COCO-Search18 is now part of the MIT/Tuebingen 626

Saliency Benchmark, previously the MIT Saliency Bench- 627

mark but renamed to reflect the group that is now man- 628

aging the competition. The training, validation, and test 629

images in COCO-Search18 are already freely available as 630

part of COCO29. Researchers are also free to see and use 631

COCO-Search18’s training and validation search fixations, 632

but the fixations on the test images are withheld. As part 633
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of a managed benchmark, in a separate track it will be634

possible to upload predictions and have them evaluated635

on this test dataset. We invite you to participate in this636

good-natured adversarial competition, and we hope that you637

enjoy using COCO-Search18: https://github.com/638

cvlab-stonybrook/Scanpath_Prediction.639
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Supplementary Materials863

SM1: Behavioral Data Collection864

Comparable datasets of search behavior865

Figure S1 shows how COCO-Search18 compares to other866

large-scale datasets of search behavior. To our knowledge,867

there were only three such image datasets that were annotated868

with human search fixations17, 67, 68. In terms of number of869

fixations, number of target categories, and number of images,870

COCO-Search18 is far larger. The PET dataset68 collected871

search fixations for six animal target categories in 4,135 im-872

ages selected from the Pascal VOC 2012 dataset69, but the873

search task was non-standard in that participants were asked874

to “find all the animals” rather than search for a particular875

target category. This paradigm is therefore search at the super-876

ordinate categorical level, which is far more weakly guided877

than basic-level search70. Gaze fixations were also recorded878

for only 2 seconds/image, and multiple targets often appeared879

in each scene. The microwave-clock search dataset (MCS17)880

is our own work and a predecessor of COCO-Search18. In881

collecting data for the 18 target categories in COCO-Search18882

we had to start somewhere, and our first two categories were883

microwaves and clocks (although the datasets differed for884

even those two categories due to the use of different exclusion885

criteria). Until recently, perhaps the best dataset of search886

fixations was from67, but it is relatively small, limited to only887

the search for people in scenes, and is now a decade old.888

Note that, whereas there are larger datasets with respect to889

free-viewing fixations (SALICON25) or fixations collected890

using other visual tasks (POET71), these tasks were not visual891

search and therefore these datasets cannot be used to train892

models of search behavior. These collective inadequacies893

demanded the creation of a newer, larger, and higher-quality894

dataset of search fixations, enabling deep network models to895

be trained on people’s movements of attention as they pursue896

target-object goals.897

Selection of target categories and search images898

Here we more fully describe how we selected from COCO’s899

trainval dataset29 the 18 target categories and the 6,202 im-900

ages included in COCO-Search18. A goal in implementing901

our selection criteria was to elicit the behavior that we are902

trying to measure, namely, the guidance of search fixations by903

a target category. We also put care into excluding images that904

might elicit other gaze patterns that would introduce noise905

with respect to identifying the target-control signal. This sort906

of attention to detail is uncommon in datasets created for the907

training of deep network models, where the approach seems908

to be "the more images the better". But whereas this is usu-909

ally true because more images leads to better-trained models,910

in creating a dataset of human behavior this more-is-better911

impulse should be tempered with some quality control to be912

confident that the behavior is of the purported type. In the913

current context this behavior should be search fixations that914

are guided to the target, because search fixations that are un-915

guided have less value as training labels. Because a standard916

search paradigm collects behavioral responses for both TP and 917

TA images, separate selection criteria were needed. All image 918

selection was based on object labels and/or bounding boxes 919

provided by COCO. On this point, while inspecting the im- 920

ages that were ultimately selected we noticed that exemplars 921

in some categories were mislabeled, probably due to poor 922

rater agreement on that category. For instance, several chair 923

exemplars were mislabeled as couches, and vice versa. Rather 924

than attempting to correct these mislabels, which would be 925

altering COCO, we decided to keep them and tolerate a higher- 926

than-normal error rate for the affected categories. This action 927

seemed best, given our plan to discard error trials from the 928

search performance analyses in our study, but researchers in- 929

terested in interpreting button press errors in COCO-Search18 930

should be aware of this labeling issue. 931

Target-present image selection. Six criteria were imposed 932

on the selection of images to be used for target-present search 933

trials. 934

(1) Images were excluded if they depicted people or animals. 935

We did this to avoid the known biases to fixate on these 936

objects when they appear in a scene22, 72. Such biases 937

would compete with guidance from target-category fea- 938

tures, thereby distorting study of the target-bias that is 939

more central to search. 940

(2) Images were excluded if they depicted multiple instances 941

of the target. A scene showing a classroom with many 942

chairs would therefore be excluded from the “chair” tar- 943

get category because one, and only one, instance of a 944

chair would be allowed in an image. 945

(3) Images were excluded if the size of the target, measured 946

by the area of its bounding box, was smaller than 1% or 947

larger than 10% of the total image area. This was done 948

to create searches that were not too hard or too easy. 949

(4) Images were excluded if the target appeared at the image 950

center, based on a 5×5 grid. We did this because the par- 951

ticipant’s gaze was pre-positioned at this central location 952

at the start of each search trial. 953

(5) Images were excluded if their width/height ratio fell 954

outside the range of 1.2-2.0 (based on a screen ratio 955

of 1.6). This criterion excluded very elongated images, 956

which we thought might distort normal viewing behavior. 957

(6) Images, and entire image categories, were excluded if 958

the above criteria left fewer than 100 images per object 959

category. We did this because fewer than 100 images 960

would likely be insufficient for training and testing a 961

deep network model specific to that object category. 962

Applying these exclusion criteria left 32 object categories 963

from COCO’s original 80. Given that this left still far too 964

many images for people to practically annotate with search 965

fixations, we decided to attempt exclusion of images where 966

targets were highly occluded or otherwise difficult to recog- 967

nize. We did this out of concern that such images would 968

largely introduce noise into the search behavior. To do this, 969
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we trained object detectors on cropped views of these 32 cat-970

egories, and excluded images if the object bounding boxes971

had a classification confidence < .99. Specifically, for these972

32 categories we created a validation set consisting of images973

meeting the selection criteria and a training set consisting of974

the images that did not. The bounding box of the object, for975

each of the 32 object classes, was then cropped in the image to976

obtain the positive training samples. Negative samples were977

same-sized image patches that had 25% intersection with the978

target (area of intersection divided by area of target), mean-979

ing that they were class-specific hard negatives. All cropped980

patches (over 1 million) were resized to 224×224 pixels while981

maintaining the aspect ratio using padding. The classifier was982

a ResNet50 pre-trained on ImageNet, which we fine-tuned983

by dilating the last fully-connected layer and re-training on984

33 outputs (32+”Negative”). Images were excluded if the985

cropped object patch had a classification score of less than986

.99. This procedure resulted in 18 categories with at least 100987

images in each category, totaling 3,131 TP images.988

Two final exclusion criteria were implemented by manual989

selection. First, for the clock target category we included only990

images of analog clocks, meaning that we excluded digital991

clocks from being clock targets. We did this because the fea-992

tures of analog and digital clocks are highly distinct and very993

different, and we were concerned that this would introduce994

variability in the search behavior and reduce data quality. Five995

images depicting only digital clocks were excluded for this996

reason. Lastly, images from all 18 of the target categories997

were screened for objectionable content, which we defined998

as offensive content or content evoking discomfort or disgust.999

The “toilet” category had the most images (17) excluded for1000

objectionable content, with a total of 25 images excluded1001

across all target categories. After implementing all exclusion1002

criteria discussed in this section, we obtained 3,101 TP images1003

from 18 categories: bottle, bowl, car, chair, (analog) clock,1004

cup, fork, keyboard, knife, laptop, microwave, (computer)1005

mouse, oven, potted plant, sink, stop sign, toilet, and tv. See1006

Figure 2 for the specific number of images in each category.1007

Target-absent image selection. To balance the selection1008

of the 3,101 TP images, we selected an equal number of TA1009

images from COCO. To do this, we kept the criteria excluding1010

images depicting people or animals, extreme width/height1011

image ratios, and images with objectionable content, all as1012

described for the TP image selection, but added two more1013

exclusion criteria that were specific to each of the 18 target-1014

object categories.1015

(1) Images were excluded if they depicted an instance of the1016

target, a prerequisite for a TA image.1017

(2) Images were excluded if they depicted less than two1018

instances of the target category’s siblings, a criterion1019

introduced to discourage searchers from making TA re-1020

sponses purely on the basis of scene type. For example, a1021

person might be biased to make a TA response if they are1022

searching for a toilet target and the image is a street scene.1023

Because COCO has a hierarchical organization, parent, 1024

child, and sibling relationships can be used for image 1025

selection. For example, COCO defines the siblings of a 1026

microwave to be an oven, toaster, refrigerator, and sink, 1027

all under the parent category of appliance. By requiring 1028

that the TA scenes for a target category have at least two 1029

of that category’s siblings, we impose a sort of scene 1030

constraint that minimizes target-scene inconsistency and 1031

makes a scene appropriate to use as a TA image. A scene 1032

that has an oven and a refrigerator is very likely to be 1033

a kitchen, thereby making it difficult to answer on the 1034

basis of scene type alone whether a microwave target is 1035

present or absent. 1036

These exclusion criteria still left us with many thousands 1037

more TA images than we needed, so we sampled randomly 1038

within each of the 18 target categories to match the 3,101 TP 1039

images. 1040

Order of target-category presentation 1041

Collecting the search behavior for 6,202 images required di- 1042

viding each participant’s effort into six days of testing. Each 1043

testing session was conducted on a different day, lasted about 1044

2 hours, and consisted of about 1000 search trials, evenly 1045

divided between TP and TA. Because images from different 1046

categories can overlap (e.g., images depicting a microwave 1047

may also depict an oven), the presentation order of the target- 1048

category blocks was constrained to minimize the repetition 1049

of images in consecutive categories and consecutive sessions. 1050

For example, because 49 images satisfied the selection criteria 1051

for both the sink and microwave target categories, we pre- 1052

vented the microwave and sink categories from appearing in, 1053

not only the same session, but the sessions preceding and fol- 1054

lowing. We did this to minimize possible biases resulting from 1055

seeing the same scene in different search contexts. A heuris- 1056

tic for maximizing this distance between repeating images 1057

resulted in the following fixed target category presentation 1058

order across the six sessions: 1059

(1) tv + sink; 1060

(2) fork + chair; 1061

(3) car + bowl + potted plant + mouse; 1062

(4) knife + keyboard + oven + clock; 1063

(5) cup + laptop + toilet; 1064

(6) bottle + stop sign + microwave. 1065

Each participant viewed from Session 1 to Session 6, or 1066

from Session 6 to Session 1, with this order counterbalanced 1067

across participants. 1068

Data-collection procedure 1069

Participants were 10 Stony Brook University undergraduate 1070

and graduate students, 6 males and 4 females, with ages rang- 1071

ing from 18–30 years. All had normal or corrected to normal 1072

vision, by self report, were naive with respect to task design 1073

and paradigm when recruited, and were compensated with 1074

course credit or money for their participation. Informed con- 1075

sent was obtained from each participant at the beginning of 1076

testing, in accordance with the Institutional Review Board 1077

14/31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2020. ; https://doi.org/10.1101/2020.07.27.221499doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.221499


responsible for overseeing human-subjects research at Stony1078

Brook University.1079

The target category was designated to participants at the1080

start of each block. This was done using the type of display1081

shown in Figure S2 for the potted-plant and analog clock1082

categories. The name of the target category was shown in1083

text at the top, with examples of objects that would, or would1084

not, qualify as exemplars of the named category. In selecting1085

exemplars to illustrate as positive target-category members,1086

we attempted to capture key categorical distinctions at a level1087

immediately subordinate to the target category. When needed,1088

we also gave negative examples by placing a red X through1089

the object. We did this to minimize potential confusions and1090

to enable the participant to better define the target category’s1091

boundary.1092

The procedure (Figure S3) on each trial began with a fixa-1093

tion dot appearing at the center of the screen. To start a trial,1094

the participant would press the “X” button on a game-pad con-1095

troller while carefully looking at the fixation dot. An image1096

of a scene would then be displayed and the participant’s task1097

would be to answer, “yes” or “no”, whether an exemplar of the1098

target category appears in the displayed scene by pressing the1099

right or left triggers of the game-pad, respectively. The search1100

scene remained visible until the manual response. Participants1101

were told that there were an equal number of TP and TA trials,1102

and that they should make their responses as fast as possible1103

while maintaining high accuracy. No accuracy or response1104

time feedback was provided.1105

The presentation of images during the experiment was con-1106

trolled by Experiment Builder (SR research Ltd., Ottawa,1107

Ontario, Canada). Stimuli were presented to participants on1108

a 22-inch LCD monitor (1680×1050 pixel resolution) at a1109

viewing distance of 47cm from the monitor, enforced by chin1110

and head rests. These viewing conditions resulting in hori-1111

zontal and vertical visual angles of 54◦ × 35◦, respectively.1112

Participants were asked to keep their gaze on the fixation point1113

at the start of each trial, but were told that they should feel free1114

to move their eyes as they searched. Eye movements were1115

recorded throughout the experiment using an EyeLink 10001116

eye-tracker in tower-mount configuration (SR research Ltd.,1117

Ottawa, Ontario, Canada). Eye-tracker calibrations occurred1118

before every block or whenever necessary, and these 9-point1119

calibrations were not accepted unless the average calibration1120

error was ≤.51◦ and the maximal error was ≤ .94◦. The ex-1121

periment was conducted in a quiet laboratory room under dim1122

lighting conditions.1123

SM2: Behavioral evaluation of COCO-Search181124

Effects of set size and target eccentricity1125

The visual search literature has done excellent work in identi-1126

fying many of the factors that increase search difficulty (for1127

reviews, see:12, 18, 60, 73). Larger set sizes (number of items in1128

the search display), smaller target size, larger target eccentric-1129

ity, and greater target-distractor similarity are all known to1130

make search more difficult. However, most of this work was1131

done in the context of simple stimuli, and generalization to 1132

realistic images is challenging. For example, what to consider 1133

an object in a scene is often unclear, making it difficult to de- 1134

fine a set size74. Objects in images also do not usually come 1135

annotated with labels and bounding boxes. These problems of 1136

object segmentation and identification, which largely do not 1137

exist for search studies using object arrays, become significant 1138

obstacles to research when scaled up to images of scenes. 1139

With COCO-Search18, we can begin to ask how the search 1140

for targets in images is affected by set size and target eccen- 1141

tricity. Set size is determined based on the COCO object and 1142

stuff labels, which collectively map every pixel in an image 1143

to an object or stuff category. Set size is the count of the 1144

number of these labels for a given image. Figure S4 shows 1145

the relationship between the number of fixations made on an 1146

image, averaged over participants, and the set size of that im- 1147

age, grouped by target category. Some target categories, such 1148

as laptop, oven, microwave, and potted-plant, have significant 1149

positive set size effects (r = .21 to .37, ps ≤ .01), indicating 1150

a less efficient search with more objects. A similar pattern is 1151

shown in Figure S5 for the relationship between the number of 1152

fixations on a search image and the initial visual eccentricity 1153

of the target (distance between the image center and the target 1154

bounding-box center), where for these same objects there was 1155

a decrease in search efficiency with increasing target eccen- 1156

tricity. For other target object categories, such as: stop sign, 1157

fork, and keyboard, search efficiency was unaffected by either 1158

set size or target eccentricity (ps > .05), possibly because 1159

these objects are either highly salient (stop sign) or highly 1160

constrained by scene context (keyboard). 1161

Distance between search fixations and the target 1162

How much closer does each search fixation bring gaze to 1163

the target? We analyzed this measure of search efficiency 1164

and report the results in Figure S6. Plotted is the Euclidean 1165

distance between the target location and the locations of the 1166

starting fixation (0) and the fixation locations after the first six 1167

eye movements (1-6). The most salient pattern is the rapid 1168

decrease in fixation-target distance in the first two new fix- 1169

ations, which dovetails perfectly with the steep increase in 1170

the cumulative probability of target fixation over these same 1171

eye movements reported in Figure 4A. From a starting lo- 1172

cation near the center of the image, these eye movements 1173

brought gaze steadily closer to the target. Note that because 1174

this fixation-target distance is averaged over images and partic- 1175

ipants, the roughly 5 degrees of visual angle at the bottom of 1176

these functions should not be misinterpreted as gaze being this 1177

distance from the target on a given trial. More interpretable 1178

are the overall trends, where a steep drop in distance is fol- 1179

lowed by a plateau, or even a smaller increase in distance with 1180

the 5th and 6th new fixations. This small increase is likely an 1181

artifact of these 5 and 6-fixation trials being the most difficult, 1182

with more idiosyncratic search behavior. 1183
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Target-absent search fixations1184

In the main text we focused on the TP data, where the guid-1185

ance signal is clearer and the modeling goals are better defined,1186

but we conducted largely parallel analyses of the TA data. Fig-1187

ure S7A shows representative TA images with fixation data1188

from one participant, and Figure S7B shows FDMs from all1189

participants for the same images. Comparing these data with1190

the TP data from Figure 1, it is clear that people made many1191

more fixations in the absence of a target. This was expected1192

from the search literature, but it should also be noted that the1193

FDMs are still much sparser than what would be hypothesized1194

by an exhaustive search. Paralleling Figure 3, in Figure S8 we1195

report applicable analyses of the TA search behavior. These1196

are grouped by manual accuracy and response time, and the1197

mean number of fixations made before the target-absent but-1198

ton press terminating a trial. Note that accuracy was high1199

(low false positive error rate) for all of the target categories1200

except chairs and cups, with the reason for the former already1201

discussed in the context of mislabeling and the reason for the1202

latter likely reflecting an occasionally challenging category1203

distinction (e.g., some bottles can look like some cups). Also1204

note that there was an average of only five fixations made1205

during search, even on the TA search trials. As in Figure 5,1206

Figure S9 visualizes the agreement and other patterns among1207

these measures. The rows show ranked performance, with1208

dark red indicating more difficult (or least efficient) search1209

and dark blue indicating relatively easy or efficient search.1210

The columns in Figure S9A group the measures by target1211

category. Similar to the TP data, there was again good con-1212

sistency among the measures. Also consistent is the fact that1213

bottles and cups were among the most difficult target cate-1214

gories, whereas the toilet category was the easiest. There was1215

also evidence in the TA data for a speed-accuracy trade-off1216

for some target categories. For example, microwaves and stop1217

signs had relatively low error rates, but these categories were1218

searched with relatively high effort, as measured by ranked1219

response time and number of fixations. Figure S9B visualizes1220

the measures by participant instead of category, where we1221

again found individual differences between participants in1222

search efficiency.1223

Practice effects1224

Each of the participants contributing to COCO-Search181225

searched more than 6000 images, making it possible to ana-1226

lyze how their search efficiency improved with practice. Fig-1227

ure S10 shows practice effects for both response time (top)1228

and the number of fixations before the button press (bottom),1229

where we define practice effects as performance on the first1230

1/3 of the trials compared to performance on the last 1/3 of the1231

trials for each target category. Practice effects were larger for1232

TA trials (right) than for TP trials (left), noting the differences1233

in y-axes scales, and that considerable differences existed1234

across categories. Some categories, such as bottles, showed1235

large practice effects, while other categories, such as analog1236

clocks, showed none at all. We speculate that this difference is1237

due to some categories requiring more exemplars to fully learn1238

compared to others. For example, analog clock was perhaps 1239

the most well defined of COCO-Search18’s categories, and 1240

bottle certainly one of the least well defined, creating greater 1241

opportunity to better learn the bottle category with practice 1242

over trials. 1243

Search fixation durations 1244

Figures S11 and S12 show density histograms of the search 1245

fixation durations for the TP and TA data, respectively, plot- 1246

ted for each of the target categories. Fixation durations are 1247

plotted across the x-axes with a bin size of 50ms, and y-axes 1248

show the normalized probability density at each fixation. Of 1249

note in the TP data is that the mode initial fixation durations 1250

(blue lines) were a bit longer than the mode duration of the 1251

rest (averaged mode difference = 63ms), consistent with the 1252

very strong guidance observed in the initial eye movements, 1253

and they tended to have more bi-modal distributions. The 1254

main peak was at ∼250 ms, with a smaller and very short- 1255

latency peak at ∼50 ms that is likely a truncation artifact of 1256

fixation duration being measured relative to the onset of the 1257

search display. In contrast, the distributions of second fixa- 1258

tions (orange lines) were consistently shorter, even relative to 1259

the subsequent fixations. Speculatively, this may be due to 1260

a greater proportion of the first new fixations being “off ob- 1261

ject”75, which are often followed by short-latency corrective 1262

saccades that bring gaze accurately to an object. This inter- 1263

pretation is consistent with the high probability of the target 1264

being fixated by the second eye movement (Figure 4A). As 1265

for the subsequent fixations, they tended to be short (∼200ms) 1266

and not highly variable in their durations. The TA fixations 1267

showed similar trends, except for the durations of the second 1268

fixations no longer differing from the rest. 1269

Saccade amplitudes 1270

We also analyzed the distribution of saccade amplitudes dur- 1271

ing visual search, defined here as the Euclidean distance be- 1272

tween consecutive fixations in visual angle. Figure S13 and 1273

Figure S14 show the distributions of saccade amplitudes in 1274

the TP and TA data, respectively. In the TP data, saccade 1275

amplitudes were larger in some categories (toilet and stop 1276

sign) than others (bottle and potted plant), likely because eas- 1277

ier target categories could be identified from farther in the 1278

visual periphery. There was also evidence for bimodality in 1279

the amplitude distributions, shown most clearly for clocks, 1280

forks, stop signs, and tvs. We speculate that this bimodal- 1281

ity reflects larger-amplitude exploratory saccades mixed with 1282

smaller-amplitude saccades used in the verification of an ob- 1283

ject category. Mean saccade amplitudes in the TA data were 1284

clearly larger than for the TP data (t(17) = 11.79, p < .001), 1285

and this difference was consistent across target categories (all 1286

ps ≤ .001). We attribute this to the relatively large viewing 1287

angle of the search displays (54 × 35 degrees of visual angle) 1288

creating a greater need for exploration, but this is also specula- 1289

tion. The distributions of saccade amplitudes were also more 1290

consistent across categories in the TA data, with there being 1291

weaker evidence of bi-modality. 1292
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SM3: Model Methods1293

Training and testing datasets1294

Model success depends on the training dataset being an accu-1295

rate reflection of the test dataset. When the training dataset1296

includes a behavioral annotation, as does COCO-Search18, it1297

is therefore important to know that similar patterns exist in1298

the training and testing search behavior. The analyses shown1299

in Figure 5A included images from all of COCO-Search18,1300

which recall were randomly split into 70% for training, 10%1301

for validation, and 20% for testing. Figure S15 replots the1302

data from Figure 5A, but divides it into the training/validation1303

(left) and testing (right) datasets. Note the high agreement1304

between the testing and train/val datasets across this battery1305

of behavioral performance measures.1306

Inverse Reinforcement Learning1307

The specific inverse-reinforcement learning (IRL) method1308

that we used was generative adversarial imitation learning1309

(GAIL49) with proximal policy optimization (PPO)76. The1310

model policy is a generator that aims to create state-action1311

pairs that are similar to human behavior. The reward function1312

(the logarithm of the discriminator output) maps a state-action1313

pair to a numeric value. The generator and discriminator are1314

trained within an adversarial optimization framework to obtain1315

the policy and reward functions. The discriminator’s task is1316

to distinguish whether a state-action pair was generated by1317

a person (real) or by the generator (fake), with the generator1318

aiming to fool the discriminator by maximizing the similarity1319

between its state-action pairs and those from people. The1320

reward function and policy that are learned from the fixation-1321

annotated images during training are then used to predict new1322

search fixations in the unseen test images.1323

SM4: Performance metrics and model evaluation1324

Metrics for comparing search efficiency and scanpaths1325

We considered five metrics for quantifying search efficiency1326

and comparing search scanpaths (Table 1). Two metrics for1327

quantifying search efficiency follow directly from the group1328

target-fixation probability (TFP) function shown in Figure 4.1329

The first of these computes the area under the TFP curve, a1330

metric we refer to as TFP-auc. Second, and relatedly, we1331

compute the sum of the absolute differences between the hu-1332

man and model target-fixation-probabilities in a metric that1333

we refer to as Probability Mismatch. A third metric for quan-1334

tifying overt search efficiency is Scanpath Ratio. It is the1335

Euclidean distance between the initial fixation location and1336

the target divided by the summed Euclidean distances between1337

the fixation locations in the search scanpath42. It is an effi-1338

ciency metric because an initial saccade that lands directly1339

on the target would give a Scanpath Ratio of 1, meaning that1340

the distance between starting fixation and the target would1341

be the same as the summed saccade distance. These three1342

metrics emphasize target-fixation efficiency by penalizing ei-1343

ther the number of fixations or the saccade-distance traveled1344

to achieve the target goal. The final two metrics focus on1345

scanpath comparison, and specifically comparing the search1346

scanpaths between people and the models. The first of these 1347

scanpath-comparison metrics computes a Sequence Score by 1348

first converting a scanpath into a string of fixation cluster IDs, 1349

and then using a string matching algorithm63 to measure the 1350

similarity between the two strings. Figure S16 shows exam- 1351

ples of behavioral and model scanpaths and their sequence 1352

scores to develop an intuition for this metric. Lastly, we use 1353

MultiMatch64, 65 to measure the scanpath similarity at the 1354

pixel level. MultiMatch measures five aspects of scanpath 1355

similarity: shape, direction, length, position, and duration. 1356

We excluded the duration measure from our use of this metric 1357

because the models in our comparison group did not predict 1358

fixation duration. See Table S2 for the results of statistical 1359

tests comparing predictions from each pair of models. 1360

Comparing predicted and behavioral fixation-density 1361

maps (FDMs) 1362

Search has a temporal dynamic, making a metric for capturing 1363

the spatio-temporal sequence of fixations preferred over ones 1364

that compare only FDMs, where this temporal component is 1365

disregarded. However, the prediction of FDMs is common 1366

for free-viewing tasks, and because there is no technical rea- 1367

son why FDM metrics cannot be applied to search we do so 1368

here in the hope that the visual saliency literature finds this 1369

comparison useful. Models generated scanpaths having a max- 1370

imum length of 6 new fixations, but FDMs were constructed 1371

only from those fixations leading up to the first fixation on 1372

the target, just as FDMs were constructed from the behav- 1373

ioral fixations. We used three widely accepted metrics for 1374

comparing predicted against observed FDMs. Area Under 1375

the Receiver Operating Characteristic Curve (AUC) uses a 1376

predicted priority map as a binary classifier to discriminate 1377

behavioral fixation locations from non-fixated locations. Nor- 1378

malized Scanpath Saliency (NSS) finds the model predictions 1379

at each of the behavioral fixation locations, then averages and 1380

normalizes these values. Lastly we computed a Pearson’s 1381

Correlation Coefficient (CC) between the predicted and be- 1382

havioral FDMs, although this metric reflects only the degree 1383

of linear relationship between predicted and behavioral FDMs 1384

(for additional discussion, see: Borji & Itti5; Bylinskii et al.77). 1385

Table S1 reports the results of an evaluation comparing model 1386

predictions of search FDMs to behavioral search FDMs using 1387

each of these metrics. The findings that we report in the main 1388

text in the context of scanpath prediction also hold in the case 1389

of FDM prediction. Specifically, the IRL-Hi-Low-C model 1390

outperformed the others, and did so for all three metrics. Ad- 1391

ditionally, the Detector-Hi model also performed relatively 1392

well in all the metrics, supporting our conclusion that a simple 1393

detector does a relatively good job in predicting fixations in 1394

visual search. 1395
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Figure S1. Comparisons between COCO-Search18 and other large-scale datasets of search behavior. COCO-Search18 is the largest in
terms of number of fixations (∼300,000), number of target categories (18), and number of images (6,202).

Figure S2. Examples of target-designation displays, shown for the potted-plant and analog clock targets, that preceded the block of trials for
a given target category.

Initial Fixation Search display

“target present”
or

“target absent"

Response

Figure S3. Example of the search procedure. Each trial began with a fixation dot appearing at the center of the screen. Participants would
start a trial by pressing a button on a game-pad controller while carefully looking at the fixation dot. An image of a scene would then be
displayed and the participant’s task was to make a speeded “yes” or “no” target-presence judgment by pressing the right or left triggers,
respectively, of a game-pad controller.
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Figure S4. Number of fixations made on the target-present images plotted as a function of the set sizes of those images (using COCO object
and stuff labels), averaged over participants and grouped by target category.
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Figure S5. Number of fixations made on the target-present images plotted as a function of initial target eccentricity (using the center of the
COCO bounding-box), averaged over participants and grouped by target category.
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Figure S6. Averaged Euclidean distance (in visual angle) between gaze and the target’s center (using COCO bounding-box labels) over the
first 6 saccades, grouped by target category.
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A

B

Figure S7. (A). Examples of a target-absent image for each of the 18 target categories. Yellow lines and numbered discs indicate a
representative search scanpath from a single participant. From left to right, top to bottom: bottle, bowl, car, chair, (analog) clock, cup, fork,
keyboard, knife, laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet, tv. (B). Examples of fixation density maps for the same
target-absent images.
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Figure S8. COCO-Search18 analyses for all 18 target categories in target-absent trials. Top: number of images in each category (gray), and
response accuracy (ACC). Bottom: reaction time (RT) and number of fixations made before the button press (NumFix). Values are means
over 10 participants, and error bars represent standard errors.

A B

Figure S9. (A). Target-absent data, ranked [1-18] by target category (columns) and averaged over participants, shown for multiple
performance measures (rows). These include: response error, reaction time (RT), and number of fixations (NumFix). Redder color indicates
higher rank and harder search targets, bluer color indicates lower rank and easier search. (B) Target-absent data, now ranked by participant
[1-10] and averaged over target category (columns). Performance measures and color coding are the same as in (A).
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Figure S10. Practice effects, visualized as the difference in search performance between the red (first 1/3 of the trials) and the blue (last 1/3
of the trials) bars, grouped by the 18 target categories. The top row shows response time, and the bottom row shows the number of fixations
before the button press. Target-present data are shown on the left, target-absent data are shown on the right. Only correct trials were included.
*: p < .05, **: p < .01
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Figure S11. Density distributions of target-present fixation durations, plotted for each of the target categories (bin size = 50ms). The color
lines refer to the initial fixation durations (0, blue), followed by the first four new fixations (1-4).
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Figure S12. Density distributions of target-absent fixation durations, plotted for each of the target categories (bin size = 50ms). The color
lines refer to the initial fixation durations (0, blue), followed by the first four new fixations (1-4).
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Figure S13. Density distributions of target-present saccade amplitudes (in visual angle), plotted by target category. Red vertical lines
indicate median amplitudes. Dark blue lines represent Gaussian kernel density estimates.
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Figure S14. Density distributions of target-absent saccade amplitudes (in visual angle), plotted by target category. Red vertical lines
indicate median amplitudes. Dark blue lines represent Gaussian kernel density estimates.
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Figure S15. Target-present data, ranked by target category (1-18, columns) and shown for multiple performance measures (rows) in the
trainval (top) and test (bottom) COCO-Search18 datasets. Redder color indicates higher rank and harder search targets, bluer color indicates
lower rank and easier search. Measuers include: response error, reaction time (RT), number of fixations (NumFix), time to target (T2T),
number of fixations to target (NumFix2T), time from first target fixation until response (TTFix2R), time spent fixating the target (TonT), and
the number of target re-fixations (ReVisitT).
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Figure S16. Left: cumulative distribution of average sequence scores computed between each scanpath generated by the IRL model and
each behavioral scanpath for the test images of COCO-Search18. Right: Examples illustrating the scanpaths producing four different
sequence scores. Behavioral scanpaths are colored in yellow, and the IRL-generated scanpaths are in green. Sequence scores for the four
illustrated examples are 0.33, 0.40, 0.50, and 0.75, from top to bottom. Note that these results are from a slightly different version of the IRL
model than the one reported here.
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AUC ↑ NSS ↑ CC ↑
Human 0.675 3.396 0.356

Random 0.531 0.280 0.039
Detector-Hi 0.605 1.210 0.163
Detector-Hi-Low 0.575 0.792 0.105
Deep Search-Hi 0.620 1.122 0.153
Deep Search-Hi-Low 0.598 0.864 0.118
IRL-ReT-C 0.595 1.601 0.214
IRL-Hi-Low-C 0.628 1.806 0.246
IRL-Hi-Low 0.621 1.728 0.235

Table S1. Results from models (rows) predicting behavioral fixation-density maps (FDMs) using three spatial comparison metrics
(columns), applied to the COCO-Search18 test images. “Human” refers to an oracle method whereby the FDM from half of the searchers was
used to predict the FDM from the other half of the searchers. See the supplemental text for additional details about the spatial fixation
comparison metrics.

Compared Models TFP-
AUC

Probability
Mismatch

Scanpath
Ratio

Sequence
Score

MultiMatch
shape direction length position

IRL-ReT-C vs. IRL-Hi-Low-C n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. IRL-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. Detector-Hi n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-ReT-C vs. Detector-Hi-Low .0017 <.001 <.001 n.s. .005 .0686 <.001 .0039
IRL-ReT-C vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-ReT-C vs. Deep Search-Hi-Low <.001 <.001 <.001 .0587 n.s. <.001 n.s. n.s.
IRL-Hi-Low-C vs. IRL-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
IRL-Hi-Low-C vs. Detector-Hi n.s. n.s. .0653 n.s. n.s. n.s. .0235 n.s.
IRL-Hi-Low-C vs. Detector-Hi-Low <.001 <.001 <.001 n.s. <.001 .0515 <.001 <.001
IRL-Hi-Low-C vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-Hi-Low-C vs. Deep Search-Hi-Low <.001 <.001 <.001 .0559 .0298 <.001 n.s. .0110
IRL-Hi-Low vs. Detector-Hi n.s. n.s. .0151 n.s. n.s. n.s. .0206 n.s.
IRL-Hi-Low vs. Detector-Hi-Low <.001 <.001 <.001 n.s. <.001 .0539 <.001 <.001
IRL-Hi-Low vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. <.001 n.s. n.s.
IRL-Hi-Low vs. Deep Search-Hi-Low <.001 <.001 <.001 .0506 n.s. <.001 n.s. .0029
Detector-Hi vs. Detector-Hi-Low .0019 <.001 .0086 n.s. n.s. n.s. n.s. .0150
Detector-Hi vs. Deep Search-Hi <.001 <.001 <.001 n.s. n.s. .0013 <.001 n.s.
Detector-Hi vs. Deep Search-Hi-Low <.001 <.001 <.001 .0755 n.s. <.001 <.001 n.s.
Detector-Hi-Low vs. Deep Search-Hi n.s. n.s. n.s. n.s. <.001 n.s. <.001 <.001
Detector-Hi-Low vs. Deep Search-Hi-Low n.s. .0275 n.s. n.s. .0446 n.s. <.001 .0511
Deep Search-Hi vs. Deep Search-Hi-Low n.s. n.s. n.s. n.s. n.s. n.s. n.s. .0778

Table S2. P values from post-hoc t-tests (Bonferroni corrected) comparing predictive models (rows), averaged across the 18 target
categories, for multiple scanpath metrics (columns). All dfs = 34. For decisively significant comparisons, the more predictive model is
indicated in boldface.
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