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Abstract 12 
Population stratification has recently been demonstrated to bias genetic studies even in relatively 13 
homogeneous populations such as within the British Isles. A key component to correcting for 14 
stratification in genome-wide association studies (GWAS) is accurately identifying and controlling for 15 
the underlying structure present in the sample. Meta-analysis across cohorts is increasingly important 16 
for achieving very large sample sizes, but comes with the major disadvantage that each individual 17 
cohort corrects for different population stratification. Here we demonstrate that correcting for 18 
structure against an external reference adds significant value to meta-analysis. We treat the UK 19 
Biobank as a collection of smaller studies, each of which is geographically localised. We provide 20 
software to standardize an external dataset against a reference, provide the UK Biobank principal 21 
component loadings for this purpose, and demonstrate the value of this with an analysis of the 22 
geographically sampled ALSPAC cohort. 23 

Introduction 24 
Genome-wide association studies (GWAS) are increasingly being used to identify biological pathways 25 
underlying complex traits and diseases. They have become an essential part of making direct links 26 
between genetics and phenotypes (Visscher et al. 2017) and have facilitated causal inference 27 
through Mendelian Randomization (Paternoster, Tilling, and Smith 2017; Zhu et al. 2018). However, 28 
detecting and interpreting associations remains a challenge because genetic associations tend to be 29 
tiny (particularly for polygenic traits) and other associations may be large. 30 

Many groups have joined efforts to create large consortia that assemble results from multiple 31 
GWAS, providing aggregated sample sizes that are now in excess of a million individuals (Linnér et al. 32 
2019; Lee et al. 2018). Meta-analysis of consortia datasets improves the power necessary to detect 33 
many genotype-phenotype associations. However, where population structure exists in a dataset 34 
but is insufficiently controlled for, it can lead to spurious or inflated genotype-phenotype 35 
associations (Lawson et al. 2020; Peterson et al. 2017). Even within the UK, considering only white 36 
people of European ancestry, migration and socio-economic position correlate with ancestry 37 
(Abdellaoui et al. 2019; Haworth et al. 2019). 38 
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Recently it has become apparent that GWAS results based on large scale meta-analysis have been at 39 
least partially biased due to inadequate correction for confounding by population stratification. The 40 
Genetic Investigation of ANthropometric Traits (GIANT Consortium 2018) meta-analysis of height 41 
and BMI (Wood et al. 2014; Locke et al. 2015) has led to ambiguous conclusions regarding selection 42 
on height (Yengo et al. 2018)� with Genetic Scores being of particularly discussion vulnerable to this 43 
confounding (Berg et al. 2019; Sohail et al. 2019). Similar issues have been reported for Educational 44 
Attainment (Abdellaoui et al. 2019; Haworth et al. 2019), as well as and diseases including Type 2 45 
diabetes and coronary heart disease (Reisberg et al. 2017). 46 

Latent structure and population stratification are addressed during the discovery of associated 47 
genetic variants by correcting for Principal Components (PCs) of the genetic variation (Price et al. 48 
2006). Historically, only a few PCs were used, increasing with sample size and time from two 49 
(Wellcome Trust Case Control Consortium 2007), five (Warrington et al. 2015) and ten (Okbay et al. 50 
2016) to 40 - the default provided by UK Biobank (Bycroft et al. 2018) – to 100 or more (Abdellaoui 51 
et al. 2019). Yet even 100 PCs are insufficient (Lawson et al. 2020) as important structures may 52 
explain less variation than noise and hence remain uncorrected, which can lead to uneven correction 53 
and bias in meta-analysis. 54 

We propose a simple solution. Correction can be improved and standardized using a large external 55 
reference dataset to define “all human genetic variation”, against which local variation within a 56 
single study can be compared. Thus, whilst population stratification might act as a source of 57 
covariance between genotypes and phenotypes, this can be corrected for. We demonstrate that 58 
meta-analyses corrected for population stratification using a large external reference dataset 59 
(“global” ancestry correction) performs better than meta-analyses corrected for population 60 
stratification using the same dataset (“local” ancestry) in the UK Biobank.  61 

There are alternative methodologies for stratification correction that go beyond PC correction. 62 
Linear Mixed Models (LMMs) have gained popularity since their introduction in genetics (Yu et al. 63 
2006) through easy-to-use software such as GCTA (Yang et al. 2011). LMMs are a “gold-standard” for 64 
GWAS because instead of correcting for only the top few variance components, they correct in 65 
principle for the entire Genetic Relatedness Matrix (GRM) comparing all pairs of individuals. This 66 
allows familial structure to be corrected in the same framework as ancestry. However, whilst 67 
pairwise relationships in the GRM are measured in the data, correlations between them are still 68 
estimated with noise and hence correction performance improves with sample size. We use Bolt-69 
LMM (Loh et al. 2015) throughout and find that correction for external PCs complements, and is not 70 
replaced by, the use of LMMs.  71 

We investigate the relationship between latent genetic structure and phenotypes, i.e. population 72 
stratification, in the UK Biobank. We demonstrate that proper correction for stratification has 73 
implications in the Avon Longitudinal Study of Parents and Children (ALSPAC) (Boyd et al. 2013; 74 
Fraser et al. 2013) in Bristol, UK, especially were the results are to be considered as part of a meta-75 
analysis. These findings provide evidence that similar correction will lead to changes in findings for 76 
large-scale meta-analysis. 77 

Software and appropriate reference data are provided (see Code Availability) to allow others to 78 
easily apply this to their own data. 79 
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Results 80 

Identification of population structure required for correction 81 
Successful identification and prioritization of disease-associated causal variants relies on 82 
understanding the distribution of genetic variants within and between populations. However, the 83 
extent to which ancestry can impact variant frequencies is not always clear. Accurate understanding 84 
and use of methods of correcting for ancestry such as PCs is critical.  85 

We are interested in constructing and improving ancestry inference for all studies. To this aim we 86 
constructed 200 PCs (see Materials and Methods) following the sample and SNP selection and PC 87 
computation methodology of (Bycroft et al. 2018). Critically, PC loadings and eigenvalues are made 88 
available, allowing projection of external datasets into this ancestry measure, which we refer to as 89 
“global” ancestry/PCs. This contrasts to “local” ancestry and PCs, constructed using PC analysis 90 
within a single dataset. 91 

The global moniker implies usefulness outside of the UK. The UK Biobank remains one of the largest 92 
easily accessed resources for worldwide variation, including (with some arbitrary choices of 93 
definition) over 6k Sub-Saharan Africans, 2k East Asians, and 7k South Asians. Naturally, a larger 94 
reference would identify further local structure. Similar to a recent study (Privé et al. 2020), we 95 
found evidence (Supplementary Figure S1) that Linkage Disequilibrium (LD) is important after the 96 
first 18 PCs, that ancestry associations reduce after 40 PCs, and that some population structure is 97 
associated with further PCs (Materials and Methods). 98 

Population Structure in the UK Biobank 99 
We restricted our stratification analyses to 331,890 UK Biobank participants of UK ancestry 100 
excluding Northern Ireland, and ~12M SNPs after quality-control filtering and LD pruning (see 101 
Materials and Methods). For illustration purposes, we clustered individuals using k-means (see 102 
Materials and Methods) into 5 clusters (Figure 1a). The largest cluster represented southern and 103 
eastern England, with northern England, Scotland, North Wales, and South Wales each being 104 
represented (Galinsky et al. 2016) . We are not attempting to infer actual ancestry from these PCs. 105 

PCs are ordered by the total variation explained in the data. Major variation directions are 106 
associated with deep historical splits between populations such as African vs Eurasians (PC1-2), 107 
Europeans vs East Asians (PC1-3), Central Asia (PC3-4), and Europe (PCs 5,8). This contrasts regional 108 
variation within the UK for which the main PCs are 5 and 9 describing variation between English, 109 
Scottish and Welsh ancestry, as we as PCs 11 and 14 which further separate structure within Wales 110 
and England. This is strongly structured by study centre, which captures current living location 111 
(Figure 1b). These and other PCs (Supplementary Figure S2-3) correspond to known historical and 112 
geographical areas (Leslie et al. 2015). 113 

To assess how much of this variation is captured by local PCs, we performed PC projection, i.e. a 114 
regression analysis for each global PC using all local PCs as predictors (see Materials and Methods). 115 
Local PCs capture global variation with varying veracity (Figure 1c). The predictability of global PCs 116 
varies by study centre according to which populations are poorly represented in them. PC5 is best 117 
explained in the West and describes Welsh vs English ancestry. PC9 describes South Wales ancestry; 118 
PC11 describes northern England ancestry; PC14 describes Scottish ancestry; whilst PC16 describes 119 
North Welsh ancestry. Worldwide ancestry PCs are homogeneous within the UK and therefore 120 
cannot be explained (PC1-3,6-8,13,17). Local PCs for all 22 study centres fail to explain some UK 121 
ancestry, and the inverse prediction of explaining local PCs using Global PCs shows that the local 122 
analyses typically contain only 2-4 ancestry related PCs (Figure 1d). 123 
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This observed population structure within the UK provides a source of covariance between 124 
genotypes and phenotypes that can bias epidemiological inference from genetic data. The following 125 
sections establish consequences of unexplained covariance for understanding complex disease. 126 

Stratification correction using global vs local PCs in UK Biobank 127 
The most straightforward measure of stratification is of the total variation in phenotypes explained 128 
by genetic PCs, without attributing this to individual SNPs. Both educational attainment (EA) and 129 
Body Mass Index (BMI) vary by region (Supplementary Figure S4) and show large systematic 130 
differences between local ancestry and global ancestry correction (Figure 2). Several study centres 131 
explain dramatically less variation with local PCs than global, for example for EA in Croydon (0.6% 132 
local vs 3.2% global) and Hounslow (0.8% local vs 3% global). Figure 1c-d explains this as a failure to 133 
identify components corresponding to Scottish, Welsh and other ancestries that are individually rare 134 
but nevertheless important when considered together. Conversely others, especially centres with 135 
small sample sizes such as Wrexham and Swansea, explain more variation in local than global 136 
ancestry. 137 

We tested 24 disease statuses for the amount of variance explained by Local or Global PC correction, 138 
and found that Psoriasis, Hyperthyroidism, and Hypothyroidism were all significant different (Figure 139 
S5) and Multiple Sclerosis and Asthma are implicated though not significant after correcting for 140 
multiple testing. 141 

Our analyses demonstrate two competing effects. Firstly, local PCs in small studies “overfit”, as they 142 
are able to explain much of the variance present regardless of whether it describes real ancestry or 143 
noise.  This is why the number of PCs corrected for is often thresholded using a noise-level 144 
approximation (Lawson and Falush 2012) and justifies the small number of PCs used in early GWAS. 145 
Secondly, some ancestry components will not be recovered in a small dataset due to lack of 146 
statistical power. Mathematically, PC analysis displays a transition as sample size decreases, in which 147 
a particular population structure is identified when enough variation exists for it, and rather abruptly 148 
becomes indistinguishable from noise (McVean 2009). Importantly, local PCs perform worse not 149 
solely in small studies, but in larger but genetically more homogenous populations of the South-East 150 
of England. It is rare shared variation, regardless of the size of the study, that local PCs fail to identify 151 
and hence correct for.  152 

Local vs global correction for individual GWAS Effect sizes in UK Biobank 153 
Meta-analysis is a statistical tool for combining results from coherent studies on different samples. A 154 
fundamental principle in GWAS meta-analysis is that all studies included examined the same 155 
hypothesis, had similar study design and analyzed study-level SNPs in a near-identical way (Zeggini 156 
and Ioannidis 2009; Bush and Moore 2012; Evangelou and Ioannidis 2013), similar imputation (Li et 157 
al. 2009), quality control, large-scale ancestry (Peterson et al. 2017) and of course, population 158 
stratification correction. Meta-analysis is individually important and offers a chance to examine 159 
stratification correction entirely within the (supposedly) homogeneous UK Biobank cohort. 160 

For EA and BMI we estimated effect sizes when performing meta-analysis with global and local PC 161 
correction in the UK Biobank.  Whilst individually, most SNP effect changes are not statistically 162 
significant, three issues arise (Figure 3). Firstly, estimates are systematically larger in magnitude 163 
when correcting with local rather than global ancestry. Secondly, some subsets of SNPs respond in a 164 
systematically different way (Supplementary Figure S6), leading to “clusters” of SNPs that are under, 165 
or over, corrected using local ancestry alone. Finally, smaller effects with the least statistical support 166 
are larger with local correction; by 2% in EA, 0.6% for BMI for genome-wide significant SNPs 167 
(determined by regressing local estimates on global; Supplementary Figure S6). 168 
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These results are consistent with the proportion of variance in different phenotypes (e.g. education 169 
attainment and BMI) being larger when corrected for global PCs than local PCs (Supplementary 170 
Figure S7). The magnitude of the difference varies between phenotypes, and depends on the causal 171 
model i.e. the relationships between phenotype, genotype, ancestry, and geography (Lawson et al. 172 
2019).   173 

Reference PCs can be used to identify structure: a case study in ALSPAC 174 
To test our hypothesis that uncorrected population structure may lead to misleading inference, we 175 
examined the ALSPAC cohort. Local variation is lost when effective sample size for a particular 176 
ancestry reduces beyond a threshold. We compare two studies in Bristol, the UK Biobank (N=27,503) 177 
and ALSPAC (N=7,927 mothers in our analysis). When constructing global ancestry using the entire 178 
UK Biobank variation, the two datasets have very similar genetic variation profiles across all PCs 179 
(Figure 4), including the main structures such as varying Scottish/English ancestry proportions. 180 
However, the datasets differ when projecting local ancestry PCs constructed from within each 181 
dataset into global ancestry (see Materials and Methods). Local PCs of the larger UK Biobank Bristol 182 
centre dataset partially recover most of the UK variation, whilst PCs of the smaller ALSPAC dataset 183 
recover very little. This would lead to systematic under-correction if replicated across a meta-184 
analysis. 185 

But does this matter for understanding phenotypes? To answer this question, we examined several 186 
phenotypes that have been studied with well-powered GWAS, including BMI, Educational 187 
attainment, IQ and C-reactive protein (CRP). We estimated the effect size in ALSPAC for both the 188 
study mothers and study children for SNPs identified by previous studies (see Materials and 189 
Methods) correcting either for local or global PCs. 190 

Summarizing the total variance explained for phenotypes (Figure 5a) we find that the global PCs 191 
explain more variation in EA, IQ and BMI, but not CRP. This is most dramatic for mothers’ EA for 192 
which 7% vs 1% (global vs local) of variation is explained, matching previous estimates using 193 
haplotype information (Lawson et al. 2012) to quantify population structure in ALSPAC (Haworth et 194 
al. 2019; Lawson et al. 2020).  195 

As ALSPAC is a relatively small cohort, the uncertainty involved in SNP effect estimation dominates 196 
the results. However, we found that the more robust estimates (higher Z-scores) changed 197 
systematically between correction models (Figure 5b, Supplementary Figure S8). Intriguingly, the 198 
direction is not the same for all phenotypes; local correction results in relatively larger estimates (i.e. 199 
under-correction) for EA, whilst it results in smaller estimates for BMI, which could imply subtle 200 
relatedness or improved power from correcting for ancestry. 201 

Constructing a Genetic Score using this procedure leads to a similar picture, with systematic biases in 202 
prediction (Figure 5c, Supplementary Figure S9). Whilst there is statistical power to detect some 203 
differences in the scaled scores (e.g. in EA and CRP) these are unlikely to be practically significant 204 
changes. We therefore view the ordering of individuals to have been robust in this example. 205 
However, the raw scores are strongly skewed, again with biases in both directions, and further, the 206 
bias direction appears unrelated to whether SNPs were individually over or under predicted. 207 

Providing an appropriate set of ancestry covariates 208 
The primary barrier to using the UK Biobank PCs is a lack of access to a) SNP loadings, and b) 209 
reference information to scale SNPs and perform QC carefully. We provide the key 18 ancestry PCs 210 
plus SNP information in an R package and script (see Code Availability) which allows trivial access to 211 
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for all datasets in plink bim/bed/fam format of any size (e.g. runs on all 500k UK Biobank individuals 212 
in 6 hours). We further provide up to 200 UK Biobank PCs. 213 

Users with access to UK Biobank data should consider the bigsnpr R package (Privé et al. 2020) which 214 
allows translation of any dataset into UK Biobank PCs with careful quality control assured due to 215 
comparison with the original raw data. Advanced users who do their own quality control and 216 
imputation may wish to directly apply the flashpca software (Abraham, Qiu, and Inouye 2017) to our 217 
provided reference data. Our package provides strand and build checks, automatically merges data 218 
coded with different minor alleles, and accounts for a moderate amount of non-overlapping SNPs.  219 

Above, our UK Biobank results used BoltLMM (Loh et al. 2015). We confirm that these results are not 220 
meaningfully different to what we would have seen using linear regression correcting for PCs with 221 
PLINK (Supplementary Figure S10). The ALSPAC results also used PLINK. Therefore the effects 222 
describe are confirmed to apply to both linear regression and linear mixed models using the 223 
BoltLMM approximation.  224 

Discussion 225 
Population stratification in association studies has received much attention. However, it has typically 226 
been considered as a problem of unintended correlations within the dataset, leading to correction in 227 
the form of a within-sample analysis (using PCA or other approaches). We provide evidence that this 228 
framing is insufficient. Whilst it is indeed unintended correlations that we wish to correct for, 229 
population structure is not always detectible from the dataset being studied. This hard-to-quantify 230 
population structure can be structurally related to phenotypes. 231 

We demonstrated that within the UK Biobank’s individual study centres with samples of tens of 232 
thousands, as well as in the independent ALSPAC cohort, correcting for population stratification with 233 
a high-quality, external measure of population structure is necessary. Population structure exists at 234 
the within-city level and it is not correctly quantified within geographically clustered datasets. We 235 
found considerable residual correlation with phenotypes and identified that the SNP-level estimates 236 
were systematically biased. This resulted in appreciable error at the genome-wide level for the 237 
construction of Genetic Scores.  238 

We identified that, were the UK Biobank to have been analysed as independent study centres 239 
subject to meta-analysis, then Educational Attainment, BMI, Psoriasis, Hyperthyroidism and 240 
Hypothyroidism would all have led to biased inference. This is likely to be the tip of the iceberg in 241 
meta-analyses, since the UK is a rather homogeneous population and the power in rare diseases is 242 
low.  243 

Because global PCs are unarguably a better measure of population structure, it is tempting to 244 
interpret the effect size for the global PC correction as “more correct” than that for the local PC 245 
correction, and therefore the difference as a bias with the traditional approach. However, it is not 246 
that simple. We found little consistency in the direction of the bias; for example, EA for ALSPAC 247 
children appears to be “undercorrected” by local PCs, whereas the mothers EA appeared 248 
“overcorrected”. The reality is that confounding is caused by many sources, and shared ancestry is 249 
just one. Here we suspect that cryptic relatedness may exist, which is captured only by the local PCs. 250 

The informed reader may find these results self-evident. However, the evidence that we provide of 251 
the importance and ease of improved stratification correction has clear implications. Future meta-252 
analyses and association studies should adopt a new protocol for quantifying population 253 
stratification. Further, every analysis of small to medium sized cohorts whose association outputs 254 
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remain of value should be re-considered. Large meta-analyses are particularly valuable and yet 255 
vulnerable to the biases identified here. Similarly, phenotypes with a non-trivial social or 256 
environmental component (Morris et al. 2020) are likely to be influenced by this or other hidden 257 
structural biases. 258 

The new protocol should continue to adjust for relatedness within the cohort, but it must also add 259 
the confounding covariates of ancestry as quantified by a large and hence statistically powerful 260 
external resource. We provide such “genetic measures” for the UK Biobank reference in the form of 261 
PC loadings that can project any individual into this worldwide quantification of genetic variation. 262 

Yet for non-UK individuals, even in the UK Biobank, this may be insufficient. There is no reason that 263 
institutions with access to large limited-access databases could not make and share independent PC 264 
loadings, for every region of the world, that smaller association studies with less power individually 265 
can apply. Although this is a partial solution because a nuanced quantification of ancestry is not 266 
linear, these sharable PCs will improve stratification correction with trivial cost, so the genetics 267 
community can and should implement this immediately.  268 

Data and Code availability 269 
github.com/danjlawson/pcapred: R package for projecting into UK Biobank variation. 270 

github.com/danjlawson/pcapred-script: Script for non-R users to perform command line projection. 271 

github.com/danjlawson/pcapred-data: 200 ancestry PCs for UK Biobank. 272 

ALSPAC (www.bristol.ac.uk/alspac/researchers/access/) and UK Biobank data 273 
(www.ukbiobank.ac.uk/principles-of-access/) are both accessible under their respective data use 274 
policies. 275 

Materials and Methods 276 

Cohorts 277 

UK Biobank 278 
The UK Biobank is a population-based health research resource consisting of approximately 500,000 279 
people, aged between 38 years and 73 years, who were recruited between the years 2006 and 2010 280 
from across the UK (Sudlow et al. 2015), particularly focused on identifying determinants of human 281 
diseases in middle-aged and older individuals, participants provided a range of information (such as 282 
demographics, health status, lifestyle measures, cognitive testing, personality self-report, and physical 283 
and mental health measures) via questionnaires and interviews; anthropometric measures, BP 284 
readings and samples of blood, urine and saliva were also taken (data available at 285 
www.ukbiobank.ac.uk). A full description of the study design, participants and quality control (QC) 286 
methods have been described in detail previously (Bycroft et al. 2018). UK Biobank received ethical 287 
approval from the Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382). Access 288 
was under Application ID 21829. 289 

ALSPAC 290 
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 291 
1992 were invited to take part in the study. The initial number of pregnancies enrolled is 14,541. Of 292 
these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births and 293 
13,988 children who were alive at 1 year of age. When the oldest children were approximately 7 years 294 
of age, an attempt was made to bolster the initial sample with eligible cases who had failed to join the 295 
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study originally. The total sample size for analyses using any data collected after the age of seven is 296 
therefore 15,454 pregnancies, resulting in 15,589 foetuses. Of these 14,901 were alive at 1 year of 297 
age. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 298 
Local Research Ethics Committees. Consent for biological samples has been collected in accordance 299 
with the Human Tissue Act (2004). Informed consent for the use of data collected via questionnaires 300 
and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and 301 
Law Committee at the time. For further details of the cohort please see (Boyd et al. 2013; Fraser et al. 302 
2013). Please note that the study website contains details of all the data that is available through a 303 
fully searchable data dictionary and variable search tool 304 
(http://www.bristol.ac.uk/alspac/researchers/our-data/).  305 

Genotyping, imputation and quality control 306 

PCA Analysis 307 
PCA analysis of the UK biobank was performed with flashPCA (Abraham, Qiu, and Inouye 2017) after 308 
following the procedure described in (Bycroft et al. 2018) to subset SNPs (147604 retained) and 309 
individuals (406758 retained). FlashPCA reports standardized Eigenvectors, unlike FastPCA (Galinsky 310 
et al. 2016) as used and reported by UK Biobank which scales Eigenvectors using the Eigenvalues. For 311 
stratification correction the distinction is not important, and our tool pcapred can translate between 312 
the two. 313 

UK Biobank 314 
The full data release contains the cohort of successfully genotyped samples (n=488,377). 49,979 315 
individuals were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank axiom array. 316 
Pre-imputation QC, phasing and imputation are described elsewhere (Bycroft et al. 2018). In brief, 317 
prior to phasing, multiallelic SNPs or those with MAF ≤1% were removed. Phasing of genotype data 318 
was performed using a modified version of the SHAPEIT2 algorithm (O’Connell et al. 2016). Genotype 319 
imputation to a reference set combining the UK10K haplotype and HRC reference panels 8was 320 
performed using IMPUTE2 algorithms (Howie, Marchini, and Stephens 2011). The analyses presented 321 
here were restricted to autosomal variants within the HRC site list using a graded filtering with varying 322 
imputation quality for different allele frequency ranges. Therefore, rarer genetic variants are required 323 
to have a higher imputation INFO score (Info>0.3 for MAF >3%; Info>0.6 for MAF 1-3%; Info>0.8 for 324 
MAF 0.5-1%; Info>0.9 for MAF 0.1-0.5%) with MAF and Info scores having been recalculated on an in-325 
house derived ‘European’ subset (Mitchell et al. 2019). 326 

Individuals with sex-mismatch (derived by comparing genetic sex and reported sex) or individuals with 327 
sex-chromosome aneuploidy were excluded from the analysis (n=814). 328 

We restricted the sample to individuals of ‘european’ ancestry as defined by an in-house k-means 329 
cluster analysis performed using the first 4 principal components provided by UK Biobank in the 330 
statistical software environment R. The current analysis includes the largest cluster from this analysis 331 
(n=464,708) (Mitchell et al. 2019). 332 

ALSPAC 333 
DNA of the ALSPAC children was extracted from blood, cell line and mouthwash samples, then 334 
genotyped using references panels and subjected to standard quality control approaches. ALSPAC 335 
children were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 336 
23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory 337 
Corporation of America, Burlington, NC, US. The resulting raw genome-wide data were subjected to 338 
standard quality control methods. Individuals were excluded on the basis of gender mismatches; 339 
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minimal or excessive heterozygosity; disproportionate levels of individual missingness (>3%) and 340 
insufficient sample replication (< 0.8). Population stratification was assessed by multidimensional 341 
scaling analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, 342 
Japanese and Yoruba reference populations; all individuals with non-European ancestry were 343 
removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for violations of 344 
Hardy-Weinberg equilibrium (P < 5x10-7) were removed. Cryptic relatedness was measured as 345 
proportion of identity by descent (IBD) > 0.1. Related subjects that passed all other quality control 346 
thresholds were retained during subsequent phasing and imputation. 9,115 participants and 500,527 347 
SNPs passed these quality control filters. ALSPAC mothers were genotyped using the Illumina 348 
human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with 349 
Illumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial set 350 
of 10,015 subjects and 557,124 directly genotyped SNPs. SNPs were removed if they displayed more 351 
than 5% missingness or a Hardy-Weinberg equilibrium P value of less than 1.0e-06. Additionally, SNPs 352 
with a minor allele frequency of less than 1% were removed. Samples were excluded if they displayed 353 
more than 5% missingness, had indeterminate X chromosome heterozygosity or extreme autosomal 354 
heterozygosity. Samples showing evidence of population stratification were identified by 355 
multidimensional scaling of genome-wide identity by state pairwise distances using the four HapMap 356 
populations as a reference, and then excluded. Cryptic relatedness was assessed using an IBD estimate 357 
of more than 0.125 which is expected to correspond to roughly 12.5% alleles shared IBD or a 358 
relatedness at the first cousin level. Related subjects that passed all other quality control thresholds 359 
were retained during subsequent phasing and imputation. 9,048 subjects and 526,688 SNPs passed 360 
these quality control filters. 361 

We combined 477,482 SNP genotypes in common between the sample of mothers and sample of 362 
children. We removed SNPs with genotype missingness above 1% due to poor quality (11,396 SNPs 363 
removed) and removed a further 321 subjects due to potential ID mismatches. This resulted in a 364 
dataset of 17,842 subjects containing 6,305 duos and 465,740 SNPs (112 were removed during liftover 365 
and 234 were out of HWE after combination). We estimated haplotypes using ShapeIT (v2.r644) which 366 
utilises relatedness during phasing. The phased haplotypes were then imputed to the Haplotype 367 
Reference Consortium (HRCr1.1, 2016) panel of approximately 31,000 phased whole genomes. The 368 
HRC panel was phased using ShapeIt v2, and the imputation was performed using the Michigan 369 
imputation server. This gave 8,237 eligible children and 8,196 eligible mothers with available genotype 370 
data after exclusion of related subjects using cryptic relatedness measures described previously. 371 
Principal components were generated by extracting unrelated individuals (IBS < 0.05) and 372 
independent SNPs with long range LD regions removed, and then calculating using the `--pca` 373 
command in plink1.90. 374 

Association analysis: statistical methods 375 
Genome-wide association analysis (GWAS) was conducted using linear mixed model (LMM) 376 
association method as implemented in BOLT-LMM (v2.3) (Loh et al. 2015). To model population 377 
structure in the sample we used 143,006 directly genotyped SNPs, obtained after filtering on MAF > 378 
0.01; genotyping rate > 0.015; Hardy-Weinberg equilibrium p-value < 0.0001 and LD pruning to an r2 379 
threshold of 0.1 using PLINKv2.00. Genotype array and sex were adjusted for in the model. BOLT-LMM 380 
association statistics are on the linear scale. As such, test statistics (betas and their corresponding 381 
standard errors) were transformed to log odds ratios and their corresponding 95% confidence 382 
intervals on the liability scale using a Taylor transformation expansion series (Loh et al. 2015).  383 
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Meta-analysis 384 
Meta-analysis for variance explained was conducted using rma from the “metafor” package for R 385 
(Viechtbauer 2010) using the normal distribution approximation. P-values for the difference in R2 were 386 
calculated by computing the difference in the estimates, and the variance of the difference (the sum 387 
of the individual variances) and using the null that the R2=0 again using rma. For binary traits, only 388 
study centres with at least 20 cases were considered. We also implemented a bootstrap procedure 389 
that did not make the normal distribution approximation, in which study centres were resampled 500 390 
times with replacement. However, the results were not qualitatively different (not shown). 391 

Polygenic scoring 392 
Genetic scores were created in the ALPAC cohort using PLINK (Purcell et al. 2007) based upon the list 393 
of SNPs identified to associate with educational attainment (Lee et al. 2018), BMI (Yengo et al. 2018), 394 
IQ (Lee et al. 2018) and CRP (Ligthart et al. 2018) in previous GWAS. All SNPs were weighted by their 395 
effect size in the replication cohort of the GWAS, and these sizes were summed using allelic scoring. 396 
The genetic scores were generated using GWAS results which had removed the ALSPAC cohort where 397 
included in the original GWAS, and therefore the scores are not perfectly comparable to those 398 
reported in the published meta-analysis. Where the lead SNPs from GWAS were not available in 399 
ALSPAC, we instead used the SNPs in highest linkage disequilibrium. Genetic score analysis in ALSPAC 400 
was run on age and sex standardised phenotypes controlling for either local PCs (the first 20 principal 401 
components of ancestry as identified within the ALSPAC cohort) or global PCs (the first 20 principal 402 
components of ancestry constructed from UK Biobank loadings).  403 

ALSPAC phenotypes 404 
For ALSPAC mothers, years of education was determined by recoding highest level of education 405 
reported during pregnancy. Response were coded as basic formal education (7 years), certificate of 406 
secondary education (10 years), O-levels and vocational qualifications (11 years), A-level (13 years), 407 
and degree (16 years). Mother’s BMI was measured during the ‘Focus on Mothers 1’ direct assessment 408 
when the study offspring were aged 17 (mother ages 34-63).  409 

For ALSPAC children, education was measured using average fine graded point scores in age 16 410 
educational examinations, which represents final compulsory schooling examinations. Scores were 411 
obtained through data linkage to the UK National Pupil Database (NPD), which represents the most 412 
accurate record of individual educational achievement available in the UK. Intelligence was measured 413 
during the direct assessment at age eight using the short form Wechsler Intelligence Scale for Children 414 
(WISC) (Wechsler 1992) from verbal, performance, and digit span tests and administered by members 415 
of the ALSPAC psychology team overseen by an expert in psychometric testing. Raw scores were 416 
recalculated to be comparable to those that would have been obtained had the full test been 417 
administered and then age-scaled to give a total overall score combined from the performance and 418 
verbal subscales. BMI was measured during the direct assessments at ages 7, 8, 9, 10 and 11. In order 419 
to increase sample size, where BMI data were not available at age 7 we used BMI measured at the 420 
earliest available subsequent measurement. C-reactive protein (CRP) was measured from non-fasting 421 
blood assays taken during direct assessment when the offspring were aged 9.  422 

Detecting bias in scores and SNP effects 423 
To assess statistical power, we work with z-scores, i.e. 𝑧! = 𝛽$!/𝜎"' , where 𝛽$!  is the estimate of the 424 
effect of SNP I and 𝜎"'  is the estimate of the standard deviation of this estimate. To compare the 425 
global (g) and local (l) effects we consider the mean estimate 𝑧!̅ = )𝑧#,! + 𝑧%,!+/2 and difference 𝜕! =426 
)𝑧#,! − 𝑧%,!+ for each SNP i. To prevent the large number of barely-significant estimates from 427 
dominating the signal, we assign a weight to each SNP 𝑤! = 1/𝜌!  where 𝜌!  is the density estimate 428 
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taken from a 5 nearest-neighbour estimate using “knnDE” from the R Package “TDA”. We then 429 
perform robust regression for 𝜕~𝑧 and report the regression estimate and confidence interval. We 430 
further checked that our conclusions are not impacted by these choices by performing regular 431 
unweighted regression for 𝜕~𝑧.  432 

UK Biobank trait definition 433 
Years of education was determined by recoding highest level of education reported in a questionnaire. 434 
Response were coded as basic formal education (7 years), O-levels/GCSEs/CSEs or equivalent (10 435 
years), A-level/AS levels or equivalent (13 years), NVQ or HND or HNC or equivalent (19 years) and 436 
College/University degree (20 years). We also binary studied educational attainment (EA), which is 437 
measured as 1 for people who have obtained a College or University degree. 438 

Height and weight were measured during the participants’ baseline visit to a UK Biobank assessment 439 
center.  440 

Heel bone mineral density (eBMD) was estimated based on an ultrasound measurement of the 441 
calcaneus by UK Biobank. The T-score is the number of standard deviations for bone mineral density 442 
relative to the mean. Consistent with the criteria established by Kemp et al., individuals were 443 
excluded that exceeded the following thresholds for eBMD: males, ≤0.18 or ≥1.06 g/cm2; females 444 
≤0.12 or ≥1.025 g/cm2. 445 

Other traits were self-reported at the verbal interview and coded as yes/no. If the participant was 446 
uncertain of the type of illness they had had, then they described it to the interviewer (a trained 447 
nurse) who attempted to place it within the coding tree. If the illness could not be located in the 448 
coding tree then the interviewer entered a free-text description of it. These free-text descriptions 449 
were subsequently examined by a doctor and, where possible, matched to entries in the coding tree.  450 
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Figure 1. UK Biobank PCs by study centre 622 
Global (i.e. inferred in the full UK Biobank) genetic ancestry PCs (Principal Components) is 623 
incompletely captured by local ancestry. a) The Global (whole biobank) PC analysis reveals 624 
British ancestry primarily in PCs 5,9,11 and 14 (see Supplementary Figure S2). b) Retaining 625 
PCs only for one geographical study centre at a time shows that many ancestries are under-626 
sampled. c) Conducting a PC analysis within a single study centre, and trying to recover the 627 
PCs (see Methods), leads to low variance explained (R2) for many PCs. d) Predicting in 628 
reverse, only the first 2-5 PCs of a local analysis capture ancestry, with the remaining PCs 629 
being non-significant and are shown in pale with a white border (see Methods). 630 
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Figure 2. Stratification correction bias seen in Proportion of Variance Explained (PVE) 634 
Meta-analysis of UK Biobank study centres demonstrates stratification problems. a) Proportion of 635 
Variance Explained (PVE) in Educational attainment corrected for 40 global vs 40 local PCs, split by 636 
study centre. The point size indicate sample size per study centre, and colours show geography (d). 637 
b) Proportion of Variance Explained in BMI (Body Mass Index). c) Pooled PVE and 95% Confidence 638 
Intervals, with p-values for a paired t-test for a difference in mean. d) The Geographical locations of 639 
the study centres explaining the colour gradient: from Scotland/North (blue) to Midlands (red), via 640 
South-East (orange) to Wales/South-West (yellow) . 641 
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Figure 3. Stratification of SNP effect size bias in UK Biobank (education years) 644 
Stratification correction changes UK Biobank effect size estimates and the magnitude of the change 645 
varies by significance threshold. a) The mean absolute effect size for educational years and its 646 
median value as a function of p-value threshold, for Global or Local PC corrected meta-analysis. b) 647 
Mean absolute difference in effect size (Global – Local) effect size.  648 
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Figure 4. Population structure is lost in the ALSPAC cohort using local PCs. 650 
Local variation is lost when sample size reduces beyond a threshold as demonstrated by two studies 651 
in Bristol, the UK Biobank (N=27,503) and ALSPAC (N=7,927). a) Using global PCs constructed from 652 
UK Biobank variation, the two datasets have very similar genetic variation profiles across the first 20 653 
global PCs. b) Comparing PC5 (high values associated with Scottish ancestry) and PC9 (high values 654 
associated with Welsh ancestry) the structure is similar. c) When projecting local PCs into global PCs, 655 
the proportion of variance explained is high for Bristol UK Biobank but very low within ALSPAC, due 656 
to sample size. 657 
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Figure 5. Stratification correction affects SNP inference in the ALSPAC cohort 660 
Stratification correction choice makes a measurable impact on inferences from the ALSPAC cohort. 661 
a) Total variance in phenotype explained by global or local PCs (log scale). b-c) Weighted linear 662 
regression coefficients for measuring local PC bias. The regression coefficient 𝛽$  (and 95% confidence 663 
interval) from 𝛿! = 𝑧!,#%&'(% − 𝑧!,%&)(% = 𝛼 + 𝛽𝑧! + 𝜀!, with 𝑧! = (𝑧!,#%&'(% + 𝑧!,%&)(%)/2 and in b) 𝑧!  is 664 
the SNP effect size for each GWAS. In c) 𝑧!  is the individual’s Genetic Score, either raw (summing the 665 
effect of each SNP present in the individual) or scaled to have mean 0 and s.d. 1 independently for 666 
both GWAS. 667 
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