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Abstract

Inferring the demographic history of species is one of the greatest challenges

in populations genetics. This history is often represented as a history of size

changes, thus ignoring population structure. Alternatively, structure is defined a

priori as a population tree and not inferred. Here we propose a framework based

on the IICR (Inverse Instantaneous Coalescence Rate), which can be estimated

using the PSMC method of Li and Durbin (2011) for a single diploid individual.

For an isolated population, the IICR matches the population size history, which

is how the PSMC outputs are generally interpreted. However, it is increasingly

acknowledged that the IICR is a function of the demographic model and sampling

scheme. Our automated method fits observed IICR curves of diploid individuals

with IICR curves obtained under piecewise-stationary symmetrical island models,

in which we assume a fixed number of time periods during which gene flow

is constant. We infer the number of islands, their sizes, the periods at which

connectivity changes and the corresponding rates of connectivity. Validation

with simulated data showed that the method can accurately recover most of

the scenario parameters. Our application to a set of five human PSMCs yielded

demographic histories that are in agreement with previous studies using similar

methods and with recent research suggesting ancient human structure. They

are in contrast with the widely accepted view of human evolution consisting of

one ancestral population branching into three large continental and panmictic

populations with varying degrees of connectivity and no population structure

within each continent.

Word count: 9 906 words in main text.
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1. Introduction

Reconstructing the demographic history of populations from the analysis of genomic data is

one of the greatest challenges of population geneticists (Goldstein and Chikhi, 2002; Hey and

Machado, 2003; Beaumont, 2004; Li and Durbin, 2011). It is an important and challenging

statistical problem, but it is also central to our understanding the evolutionary history of species.

Indeed, the demographic history that we assume or infer for a particular population or species

implicitly or explicitly provides the null model against which selected loci could in theory be

identified (Cavalli-Sforza, 1966; Rogers and Harpending, 1992; Beaumont and Nichols, 1996;

Wakeley, 1999; Goldstein and Chikhi, 2002). In a period of global environmental change, the

reconstructed demographic history should allow evolutionary biologists to correlate changes in

population size or connectivity with past environmental changes or species association and

interactions (Goossens et al., 2006; Quéméré et al., 2012; Salmona et al., 2017; Hecht et al.,

2018, 2020).

In other words, we expect to increase our understanding of the environmental (including

species interaction) and anthropogenic factors that have influenced genomic diversity in

various species. Understanding how past climatic events or human activities have influenced

genomic diversity may become particularly illuminating for conservation biologists regarding

the likely long-term consequences of ongoing climate change and human actions.

However, to understand how the past influenced the present patterns of genomic diversity one

major question is whether our conclusions or inferences may fundamentally change depending

on the family of models assumed and the questions asked (Wakeley, 1999; Beaumont, 2004;

Chikhi et al., 2010; Mazet et al., 2016; Chikhi et al., 2018; Rodríguez et al., 2018; Poelstra

et al., 2020). Currently, the solutions to this complex inferential problem have been to either

ignore population structure (i.e., assume that differentiation between geographic locations can

be neglected and panmixia assumed) and infer population size changes, or to assume simplified
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tree models with a priori fixed numbers of populations (i.e., the population tree used in these

studies is assumed, not inferred). Additionally, in the case of human evolutionary history, the

branches of the assumed tree may represent predefined continental populations. Such models

thus assume panmixia over large geographic regions and long periods (Gutenkunst et al., 2009;

Mazet et al., 2016; Noskova et al., 2019; Scerri et al., 2019). Panmictic and tree models

are useful approximations, and in the last decades they have proven their utility in building

stories of human expansions and population splits (Gutenkunst et al., 2009; Li and Durbin,

2011). However, most tree models assume the existence of clear splitting events similar to

those separating species. Also, some tree models assume, as in most species trees, that there

is no gene flow between branches (even when they represent populations or continents). The

latter assumption may then require the inference of admixture events (Kuhlwilm et al., 2016)

in order to explain the presence of outlier or divergent alleles that cannot be explained by the

tree models if they exclude population structure and gene flow.

Methods can also be classified by the type of data used. Currently, most genomic methods

use the allele frequency spectrum (AFS) (Gutenkunst et al., 2009; Excoffier et al., 2013; Liu

and Fu, 2015) or the AFS combined with other summary statistics (Boitard et al., 2016).

The AFS can be computed from RAD-Seq data for many non-model species or from full

genome for a still limited number of species. We stress though that this research field is very

active and new methods are regularly proposed that go beyond the simplified classifications

proposed here. For instance, a recent method implemented in the diCal2 software allows to

infer complex demographic histories from full genomes (Steinrücken et al., 2019).

Authors have focused on panmictic models to infer population size changes (Li and Durbin,

2011; Schiffels and Durbin, 2013) but we note that this is not always the case. For instance,

the MSMC methods developed in Schiffels and Durbin (2013); Wang et al. (2020) also

allow inferring migration history between a pair of populations considered isolated from the

others, which allows to estimate the splitting time between these populations and to build
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assumptions about admixture events involving only one of them.

Here, we propose to use a different strategy based on the IICR (Inverse Instantaneous

Coalescence Rate) introduced by Mazet et al. (2016). We propose to perform demographic

inference under the piecewise stationary n-island model (Rodríguez et al., 2018), based on the

symmetrical n-island model (Wright, 1931), using the IICR or estimates of it. The IICR, as

defined by Mazet et al. (2016) for a sample of size two, is equivalent to the full distribution

of coalescence times for that sample (i.e., the distribution of T2). Simulations by Chikhi et al.

(2018); Rodríguez et al. (2018) under various models of population structure suggest that

it is also a highly informative statistical summary of the genomic data on the demographic

history. This makes the IICR a good choice for use in inference applications particularly due

to its sensitivity to population structure or fluctuations in migration rates (i.e., changes in

connectivity). In figure 1, we present an example from Mazet et al. (2016) where a spurious

bottleneck effect due to population structure is so strong that it hides the increase in size of

all demes in the recent past. This example stresses how it could be misleading to interpret the

IICR as a change in population size, but also how structure can profoundly impact genomic

patterns of diversity.

The approach presented in the present study differs from the approaches mentioned above

in several ways. First, we aim at inferring the number of populations rather than setting it a

priori. Second, we ask whether it is possible to date and quantify changes in connectivity (i.e.,

gene flow) rather than changes in population size. For that we use the piecewise stationary

n-island model in which continuous gene flow happens between populations at a constant rate

during specific periods (called components) but is allowed to change between periods (see

below and Rodríguez et al. (2018)). This model differs from tree models in that we do not

estimate parameters such as splitting times which may or may not be meaningful or appropriate

for various species (Scerri et al., 2019) depending on their actual (unknown) demographic

history. Our approach could be extended to more complex models. We acknowledge the
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Figure 1: A reading of this IICR curve as a size change function would indicate that the population has
decreased in size in the recent past, where in fact the opposite is true and the population has experienced
a doubling of size in the recent past.

limitations of the n-island model as it ignores spatial distances and other complexities of

real species (Chikhi et al., 2018), but our choice for the current study is also guided by

simplicity and computational considerations. See Rodríguez et al. (2018) for a more complex

scenario involving two piecewise stationary n-island models connected by a tree structure.

That study also shows that the IICR can be efficiently computed for the piecewise stationary

n-island, where the number of components thus corresponds to the number of piecewise

periods of constant gene flow. This means that it is possible to predict the shape of the IICR

for any reasonably large number of islands and any rate of gene flow for a fixed number of

components. It is thus theoretically possible to increase our understanding of ancient patterns

of connection and disconnection by using a single genome and the corresponding IICR under

the n-island model. Given that such changing patterns of connectivity may have been crucial

in the recent evolutionary history of many species (Goldstein and Chikhi, 2002; Quéméré

et al., 2012; Mazet et al., 2016; Salmona et al., 2017; Scerri et al., 2018; Steinrücken et al.,

2019; Fenderson et al., 2020), particularly in the context of Pleistocene climate change and

habitat fragmentation, the work presented here may represent an interesting endeavour.
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To use the IICR as a summary of genomic information we first assume that an IICR curve can

be obtained, which we will use as the target for demographic inference. With simulated data

(sequences or T2 values) this target curve can be obtained under any pre-defined coalescent

model that could be expressed with a simulation tool (e.g., the ms program). With real

genome-wide sequence data, the curve can be estimated with the PSMC method of Li and

Durbin (2011). We then try to identify a piecewise stationary n-island model that generates

an IICR that is identical or similar to the target IICR (or PSMC curve). The similarity between

the two IICR curves is quantified with a distance metric defined below. We use a genetic

algorithm to explore the parameter space (number of populations, migration rate within a

time component, and timing of these changes assuming a fixed number of components for

each independent analysis) and minimize that distance. We compute the IICR under the

non-stationary structured coalescent (NSSC) of Rodríguez et al. (2018). The inferential

method is first validated on simulated data across a wide range of parameter values, spanning

many values for the number of islands, the number of demographic events which define the

model components and the values of the migration rates during these components. We

compare estimated and simulated parameter values and also infer what we call connectivity

graphs which are a visual representation of the times at which gene flow changed and the

magnitude of these changes. We limit ourselves to validating the method with data simulated

under piecewise stationary n-island models due to the very large parameter space explored

here. We then apply our approach to human genomic data using five published PSMC

curves (Prado-Martinez et al., 2013), allowing in each case the number of components to

vary between analyses, and compare the inferred histories and connectivity graphs between

individuals and with previously inferred scenarios by Rodríguez et al. (2018) and Noskova

et al. (2019).

Altogether our simulation results are promising as they show that the IICR is a highly

informative summary statistic. We find that most parameters are extremely well estimated
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when the IICR is well estimated and the number of components is less than five or six

depending on the timing of events. For scenarios with many components our results suggest

that the connectivity graphs can be used to identify meaningful models (see §4). For the

human data we find that the inferred scenarios are similar and consistent with previous

scenarios by Rodríguez et al. (2018) across most individuals.

Beyond human data we find that a crucial issue is the estimation of the IICR from genomic

data. Indeed, the stochasticity generated during the estimation of the IICR in very ancient

times, and possibly recent times, with humps that are difficult to interpret, may lead to the

inference of events that may never have taken place.

2. Methods

2.1. The structured coalescent and the IICR

The theoretical framework we use for modelling structure is based on the finite Herbots

model of the structured coalescent (Herbots, 1994), where we have n populations or demes

that are assumed to behave as haploid Wright-Fisher models of size Ni = 2siN genes, where

si is the relative deme size and N is large. Migration occurs between demes as in each

generation a proportion qi j of lineages migrates from deme i to deme j . Herbots denoted

by mi the proportion of the population of deme i that was received from other demes in

any given generation, such that mi =
∑

i 6=j qj i sj/si . She also showed that measuring time

in units of 2N generations and making N go to infinity in such a way that the number of

migrants stays bounded, the model converges to a continuous-time Markov process with a

known transition rate matrix Q that is a good approximation of this discrete time model. In

this transformation, qi j goes to zero in such a way that the product 2Nqj i sj/si converges

and has limit Mi j/2. Thus we can express the transition rates in Q in terms of n, si and
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Mi j . In the case of the symmetrical island model (Wright, 1931), all the migration rates Mi j

between any pair of islands i and j are equal, so we use the notation M = (n − 1)Mi j to

denote the migration rate perceived by any given island. In addition to this base model, we

use an extension presented in Rodríguez et al. (2018) which allows to introduce demographic

events that change the rate M or relative deme size s at certain points in time (see §2.2). We

note however that throughout the manuscript we will only focus on symmetrical models with

constant size (see §4 for extensions to symmetrical models with population size changes).

For the demographic histories under these models, we study the IICR of a sample of size 2

(see §2.2.2), and we use it as a statistic for demographic inference. We do this by comparing

the IICR of many hypothetical demographic scenarios to a target IICR curve. This target

IICR may be simulated, or it may be obtained from diploid individuals via full genome studies

(Prado-Martinez et al., 2013). In such cases, these target IICRs are themselves inferred

demographies under the assumptions of a particular model. For example, the PSMC method

(Li and Durbin, 2011) uses the population size change model, where a single panmictic

population varies in size according to a function N(t) = N(0)λ(t) (see Tavaré (2004)). It

was shown by Mazet et al. (2016) that the IICR of a sample of size 2 under this model is

exactly the λ(t) relative size changing function, and it relates to the distribution of the time

to coalescence T2 as:

P(T2 > t) = exp

∫ t

0

−dx

λ(x)
,

IICR(t) = λ(t) =
P(T2 > t)

fT2
(t)

. (2.1)

The IICR is not tied to any particular model, structured or otherwise. It is defined using

the distribution of the coalescent times of a sample of size two. It can be approximated to

arbitrary numerical precision under the assumptions of the NSSC (Rodríguez et al., 2018); it

can also be computed empirically by simulating a sample of coalescent times (Chikhi et al.,
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2018); or it can be read from full sequence genomic data using the appropriate methods (Li

and Durbin, 2011). Such sequences can be real or simulated.

2.2. The piecewise stationary n-island coalescent

2.2.1. The parameter space

We first define the parameter space, as this directly determines the family of demographic

histories that we can explore and infer from. In this work we limit our scope to piecewise-

stationary symmetrical n-island models. The piecewise stationarity refers to the fact that,

although migration rate is constant and identical between any pair of islands, this rate may be

different between consecutive time periods (components), and there is a fixed number γ that

represents the number of demographic events. To say that there are γ changes of gene flow

thus means that there are γ + 1 components or periods of constant gene flow. Likewise, the

deme size, which is the same for all islands, may in theory change through time in the general

model presented in Rodríguez et al. (2018). In the present study we focus on models with

constant population size but we present here a more general model where deme sizes could

change between components. In this more general case, the parameter space for defining any

given model includes the number of islands n, the times ti for the demographic events, and

the values of both the migration rate Mi and the local deme size si at each new demographic

period (see Rodríguez et al. (2018) for a more general introduction to these types of models).

As noted above, there are c = γ + 1 components, between which the migration rate Mi

and local deme size si can change. The number of islands is inferred as one of the model

parameters, but it does not change through time, so it remains constant across components.

We thus assume no extinction, no population split and no creation of new populations, but

we try to find the number of islands that best explains the data, and this is not fixed a priori.

To formalize the notion of parameter space, given a fixed integer γ of demographic events

10
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to consider (γ > 0) and a collection of bounds B in the form of:

B =
(

[nmin; nmax], [t1min; t1max] . . . [tγmin; tγmax],

[M0min;M0max] . . . [Mγmin;Mγmax], [s0min; s0max] . . . [sγmin; sγmax]
)
, (2.2)

we define the parameter space Φγ,B as:

Φγ,B =
{
ϕ = (n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ N× R3γ+2, s.t. ∀i :

2 6 nmin 6 n 6 nmax; 0 < timin 6 ti 6 timax;

0 < Mimin 6 Mi 6 Mimax; 0 < simin 6 si 6 simax

}
. (2.3)

We define bounds for each variable because we use a constrained optimization algorithm, for

which all parameters must be bounded (see §2.3). Also, since we focus on the case where

there are no deme size changes, we enforce this by using B, as making simin = simax = 1 for

M0
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M2

10−1 100 101 102

100

101

102

M
ig

ra
ti
on

ra
te

s0

s1 s2

t1 t2

10−1 100 101 102

1

2

3

Coalescent time

R
el

at
iv

e
de

m
e

si
ze

Figure 2: Connectivity and population size graphs. Visual representation of the ti , Mi and si of a
demographic model with c = 3 components. We refer to the upper part of the figure as a connectivity
graph. The lower part represents population size changes of the general model. In the present study
the si are identical and equal to 1 and will not be represented with connectivity graphs. The number
of islands is inferred but constant, and it is not shown in this figure (although it is usually shown in a
separate figure or panel).
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all 0 6 i 6 γ effectively fixes all deme sizes to 1.

2.2.2. Computing the IICR

Given any demographic scenario from Φγ,B, the associated coalescent process is an instance

of the NSSC of Rodríguez et al. (2018). Since our main object of interest regarding these

scenarios is the IICR, we proceed with a brief overview of how to perform its computation for

any given ϕ ∈ Φγ,B.

Considering again the c components which constitute the model, we note that during

component i , taking 0 6 i 6 γ, the underlying coalescent process Xt is being governed by

an n-island model which has transition rate (see Rodríguez et al. (2018) for details and a

more general approach):

Qi =


−Mi − 1

si
Mi

1
si

Mi

n−1
− Mi

n−1
0

0 0 0

 ,

where the three states in the matrix Qi are sorted, both by row and column, as:

1. the two sampled lineages are in the same deme (configuration ‘same’);

2. the two sampled lineages are in different demes (configuration ‘diff.’);

3. the sampled lineages have coalesced (absorption).

Additionally, the rates in this matrix are active during the time interval [ti ; ti+1), where we

understand t0 and tγ+1 to be 0 and +∞ respectively.

We know from that the probability distribution of T2 is given by the cumulative effects

of the exponential functions etQi (see Hobolth et al. (2019) for an extensive review). More
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formally, given any t > 0, let i be the largest index such that ti 6 t, for which case we have:

P (t) =

( i∏
k=1

e(tk−tk−1)Qk−1

)
e(t−ti )Qi ,

D(t) =
dP (t)

dt
=

( i∏
k=1

e(tk−tk−1)Qk−1

)
Qi e(t−ti )Qi . (2.4)

Since component (p, q) in matrix P (t) gives the probability P(Xt = q | X0 = p), then the

random variable T2,same of the time until coalescence of two lineages sampled in the same

deme (initial state 1) has distribution Fsame(t) = P (t)(1,3) and density fsame(t) = D(t)(1,3),

and for the case where we sample in two different demes (initial state 2), then T2,diff. would

have its distribution given by Fdiff.(t) = P (t)(2,3) and its density by fdiff.(t) = D(t)(2,3).

The factor matrices in (2.4) can be computed in several ways in the general case (see

Herbots (1994) or Hobolth et al. (2019)), but considering this particular instance of size

3× 3, they may also be computed directly given an arbitrary ∆t and rate matrix Q:

e∆t Q =


F11 F12 1− F11 − F12

F21 F22 1− F21 − F22

0 0 1

 , (2.5)

where:

F11 =
(δ + α− 2Ms)exp2 + (δ − α+ 2Ms)exp1

2δ
,

F12 = (n − 1)F21,

F21 =
Ms(exp1 − exp2)

δ
,

F22 =
(δ + α− 2Ms)exp1 + (δ − α+ 2Ms)exp2

2δ
,

exp1 = exp
(∆t(δ − α)

2s(n − 1)

)
,

exp2 = exp
(∆t(−δ − α)

2s(n − 1)

)
,

δ =
√
α2 − 4Ms(n − 1),

α = Mns + n − 1.

(2.6)
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With this we can efficiently compute either IICR functions:

IICRsame(t) =
1− Fsame(t)

fsame(t)
, IICRdiff.(t) =

1− Fdiff.(t)

fdiff.(t)
. (2.7)

2.2.3. The scaled IICR

Note that in the previous definitions (and in accordance with the definitions in §2.1), the

functions in (2.5) receive the time t in units of 2N generations, and return values in units of

N generations per coalescence, so these IICR functions are dimensionless in the sense that

they operate in a relative frame of reference.

In order to get the IICR in an absolute frame of reference, which is useful for example

when comparing it with PSMC inferences, we need to properly re-scale both the time and the

IICR values themselves by a reference deme size N which specifies how many haploid genes

correspond to a local deme size of 1. Given any positive value for N, the scaling would be

carried out as follows:

sIICR(g) = N IICR(g/2N);

where sIICR(g) refers to the scaled IICR, and IICR(t) to the unscaled (dimensionless)

one. Note that we use g for generations as the variable name for sIICR to further stress

the difference. The returned values of the sIICR functions may be interpreted in units of

generations per coalescences. The parameter space for the sIICR can be thought of as a

simple one-dimensional addition to Φγ,B:

Φ̂γ,B =
{
ϕ̂ = (N,ϕ) ∈ R×Φγ,B such that 0 < Nmin 6 N 6 Nmax

}
.

It is important to point out that, in contrast with the parameter space for the unscaled IICR

(Φγ,B) in which there is a one-to-one correspondence between a parameter tuple and the

corresponding IICR curve, there are only 3γ + 3 independent degrees of freedom in Φ̂γ,B,
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even though there are 3γ + 4 parameters. This notion is formalized by the following lemma.

Lemma 1. Given any ϕ̂ = (N, n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ Φ̂γ,B, then the parameter

tuple:

ϕ̂0 =
(N
C
, n, Ct1 . . . Ctγ,

M0

C
· · ·Mγ

C
,Cs0 . . . Csγ

)
is such that:

sIICRϕ̂(g) = sIICRϕ̂0
(g) ∀g > 0,

where C is any rescaling factor for which the coordinates of ϕ̂0 are within the bounds B.

A proof for this lemma can be found in §1 of the supplementary materials.

The implication of Lemma 1 is that when trying to infer all the parameters of ϕ̂ simul-

taneously, the only parameter for which we may get an absolute estimate is n, as the rest

of them can only be distinguished up to an unknown re-scaling factor C. Note that this

un-identifiability issue is different from the one identified in Mazet et al. (2016) regarding the

inability to discriminate between panmictic and non-panmictic demographies with a single

IICR. However, we stress here that in practice this is not necessarily an issue because it

suffices to fix one of the model parameters (for instance, s0 = 1) to be able to uniquely map

any sIICR curve to its parameters. In the case of constant size this is even less of an issue,

since all deme sizes are fixed to si = 1 and thus no further considerations are necessary.

2.3. Optimization framework: search algorithm and optimality

criteria

In this section we describe the search algorithm used to explore the parameter space and

the optimality criteria used to select the structured scenario that best explains a given IICR

curve. We first assume that there is a known target IICR curve, either scaled or unscaled.

This curve can originate from a PSMC analysis of a real or simulated genome, or it may be
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obtained after simulating T2 values or exact IICR curves (following the approach in §2.2.2)

from an arbitrarily chosen demographic model. In this section we denote the target IICR

exclusively with IICR0 for the sake of brevity, but the same constructions are valid for scaled

IICRs. We also assume that the underlying coalescence times for these IICRs have distribution

F0 and density f0.

Given a target IICR and a parameter space Φγ,B, we want to find a parameter tuple ϕ in

Φγ,B such that the exact IICR curve corresponding to the model defined by ϕ (henceforth

denoted by IICRϕ) approximates the target IICR as best as possible. We can express this

more formally with the following optimization problem statement:

min
ϕ∈Φγ,B

d
(

IICR0, IICRϕ
)
. (2.8)

Thus, our tasks are reduced to finding an appropriate definition for the distance function d ,

and solving problem (2.8).

Regarding the distance d , a straightforward definition would be:

d
(

IICR0, IICRϕ
)

=

∫ ∞
0

∣∣IICR0(t)− IICRϕ(t)
∣∣w(t) dt, (2.9)

where w(t) is a weight function that should take into account the natural distribution of the

information in an IICR. One reasonable solution for w is to take a quantity proportional to the

density f0 of the coalescence rate because it ensures that the integral in (2.9) is finite, and

also because it assigns more weight to the temporal periods where the target IICR is expected

to be more accurate and reliable since more coalescences are likely to have happened.

We thus consider the family of weight functions:

w(t) =
f ω0 (t)

‖f ω0 ‖1

, (2.10)
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where ‖ · ‖1 is the L1-norm and ω > 0 is a weight-shifting parameter, with the purpose of

dampening (if ω < 1) or exaggerating (if ω > 1) the effect of the weight f0. Unless otherwise

noted, we take ω = 1, which corresponds in practice to giving more weight to recent periods

of the IICR. The inference may thus ignore the most ancient parts of an IICR or PSMC curve

as they are based on much fewer coalescent events.

In practice, we need to consider that all we know about IICR0 is a stepwise discretization

over a bounded interval of time, so a numerical approximation of the distance (2.9) is required.

This includes approximating the density f0 of the underlying T2 distribution. Given a division

of time into I intervals
{

[τj−1; τj)
}
for 1 6 j 6 I, where τ0 = 0 and τI <∞, we can consider

a discrete representation of IICR0 in the form of a collection of I values {yj} such that:

IICR0(t) = yj , ∀t ∈ [τj−1; τj), 1 6 j 6 I. (2.11)

We can use this form to compute a numerical approximation for the integral in (2.9). For

instance, a first degree approximation would yield:

d
(

IICR0, IICRϕ
)

=

I∑
j=1

∣∣yj − IICRϕ(τj)
∣∣w(τj−1) (τj − τj−1).

As for the values of w(τj), notice that from (2.1) we have the identity:

f0(t) = exp
(∫ t

0

−dτ

IICR0(τ)

)/
IICR0(t),

which, using the representation (2.11), can be discretized into:

f0(0) = 1/y0,

f0(τj) = exp

( j∑
k=1

τk−1 − τk
yk

)/
yj , 1 6 j 6 I.
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We then have that for any given ω, w(τj) can be expressed as:

w(τj) = f ω0 (τj)

/ I∑
k=1

f ω0 (τk).

An alternative option for the definition of d in (2.8) could be one that takes into account

the ultimate visual nature of the curve fitting task. Assuming that the points {τj} are

somewhat log-distributed and that they will be used for visualization purposes in a horizontally

log-scaled plot like Figure 1, then the definition:

d(IICR0, IICRϕ) =

I∑
j=1

∣∣yj − IICRϕ(τj)
∣∣, (2.12)

captures the perceived visual difference between the plots of the two curves. We distinguish

distance (2.9) from (2.12) by denoting them dω and dvisual respectively. We keep both

definitions because we found that the weighted family of distances generally performs better

than the visual distance under certain validation tests, but also that the dvisual distance might

be used to choose the optimal weight parameter in dω (see §4).

Regarding the optimization problem (2.8) itself, we use the Differential Evolution method

(Storn and Price, 1997). As a genetic meta-heuristics, this algorithm maintains and evolves

(using mutation and recombination parameters) a population of solutions iteratively. As

a global optimization algorithm, it features mechanisms for escaping local optima of the

parameter space. In §2 of the supplementary materials we explore the potential effects on the

inference results of tuning some of the parameters provided by this algorithms implementation.

For our validations, we run the method multiple times and we refer to these repetitions

as rounds. We set a maximum number of allowed rounds, as well as a tolerance ε for the

distance which controls the minimum number of rounds.
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2.4. Validation framework

For the purpose of validation we applied our inferential method to target IICRs generated

under piecewise stationary n-island models of increasing complexity (i.e., number of com-

ponents) and with known parameter values (N, n, ti , Mi) and then compared the inferred

parameter values to those actually used.

In what follows we present various ways of generating random demographic scenarios and

then computing appropriate IICR curves from them for use in validation.

Φ̂γ,B

Continuous
sampling

Discrete
sampling

ϕ̂
(N,n,ti ,Mi )

Exact
IICR

{xi} ∼ T2

110010011· · ·
001101101· · ·

T-sim
IICR

Seq-sim
IICR

SNIF ϕ̂0
(N0,n0,t0

i
,M0

i
)

Compare!

Figure 3: Flowchart of the validation procedures. Starting from a parameter space Φ̂γ,B we use one of
two sampling methods (§2.4.1) to generate a demographic history ϕ̂ defined (for the scaled case) by the
parameters (N, n, ti ,Mi). We then compute the IICR of that demographic history using one of three
methods (§2.4.2) to obtain the target IICR. After that, we run the inference algorithm on this target
IICR curve (using wider bounds than those in B) to obtain an estimated (or inferred) demographic
history ϕ̂0 = (N0, n0, t0

i ,M
0
i ), which we then compare to the known ϕ̂ in order to assess the accuracy

of the inference methodology (§3).

2.4.1. Sampling the parameter space

Given a parameter space Φγ,B (we only discuss the unscaled case here for brevity, but the

same principles apply to a scaled parameter space), we sample demographic scenarios from

which we compute the corresponding IICRs. We used two sampling strategies which call

continuous and discrete sampling.

Continuous sampling. Assuming that we want to realise L independent tests, this sampling

strategy consists in using uniform or log-uniform distributions for each of the 3γ + 3 random
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variables:

n ∼ U{nmin, nmin + 1, . . . , nmax},

t1 ∼ LU10[t1min; t1max], . . . , tγ ∼ LU10[tγmin; tγmax],

M0 ∼ U[M0min;M0max], . . . ,Mγ ∼ U[Mγmin;Mγmax],

s0 ∼ U[s0min; s0max], . . . , sγ ∼ U[sγmin;Mγmax], (2.13)

where U denotes a uniform distribution (discrete in the case of n and continuous for the

rest) and LU10 denotes a log-uniform distribution of base 10. This distribution is used for

sampling the times of changes in a logarithmic space in order to take into account the natural

distribution of information in an IICR.

In order to construct a valid demographic scenario from these realisations, we need to

enforce that the event times are in increasing order. Consider then for every 1 6 j 6 L the

sorted times {t̄ ji } such that:

t̄ j1 6 t̄
j
2 6 · · · 6 t̄ jγ and {t̄ j1, t̄ j2, . . . , t̄ jγ} = {t j1, t j2, . . . , t jγ}. (2.14)

With this, we can define the L sampled scenarios as those corresponding to the tuples:

(
nj , t̄ j1 . . . t̄

j
γ,M

j
0 . . .M

j
γ, s

j
0 . . . s

j
γ

)
, 1 6 j 6 L.

This sampling strategy provides a comprehensive coverage of the parameter space and

allows for an easy visualization for the sampled-versus-inferred scenarios (see §3.1). It also

makes it very unlikely to sample exactly the same parameter values twice or to sample

exactly the same Mi values in two consecutive components. However, it sometimes produces

demographic scenarios in which consecutive ti and/or Mi values may be close to each other,
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and thus difficult to distinguish. This makes it thus harder on our inferential framework

compared to cases where we would chose contrasted scenarios with clearly separated events

with major changes in migration rates. In other words, our inferential method was sometimes

trying to infer parameters in the case of extremely difficult scenarios as we show below.

In §3.1 we show the results obtained using this sampling method with L = 400 scenarios

and the following values for the sampling bounds and the slightly larger inference bounds:

simulation inference
min max min max

n 2 40 2 50

ti 0.1 50 0.01 100

Mi 0.1 50 0.05 60

si 1 1 1 1

Discrete sampling. Here we sampled L = 100 independent scenarios from the same

parameter space, but using the following set of predefined values:

n ∈ n = {2, 5, 10, 15, 20},

ti ∈ t = {1/10, 1/2, 1, 2, 5, 10, 20, 50} ∀i ,

Mi ∈M = {1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50} ∀i ,

si ∈ s = {1} ∀i ;

The inference process was, however, done within the continuous space. For instance, under

this validation scheme (see §3.2) we only simulated data with 2, 5, 10, 15, 20 islands but the

inference process always allowed n to take any value between 2 and 50. The choice of the L

independent simulated data sets was done using the following procedure. We first considered
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the following cartesian product of dimension 3γ + 3:

K = n × tγ ×Mγ+1 × sγ+1.

and then uniformly drew L tuples from K without substitution. We then sorted the sampled

event times as in (2.14), hence obtaining a set of L demographic scenarios. Note that it is

then straightforward to include additional filtering rules when sampling from K to discard

undesired scenarios, such as one containing two consecutive components with the same

migration rate or two consecutive values from t. In our simulations, we drew randomly

(without replacement) from the set K, rejecting scenarios with identical Mi values in two

consecutive components, until we reached L accepted scenarios.

2.4.2. The three types of target IICRs

We aim to generate target IICRs from a known demographic model in order to compare

the model inferred from this IICR curve to the correct one (see Figure 3). Here we explore

three different types of target IICRs (see Figure 4) that could be obtained given a scenario

ϕ ∈ Φγ,B. Note that all IICRs are discretized so as to be comparable to PSMC plots (see

equation 2.11).

Validating our approach on PSMC plots across the parameter space described above would

be extremely time consuming as it would require simulating genomes and then running the

PSMC method (or other related methods) on these genomes before applying our approach.

We stress here that we will only run the PSMC method in the case of the scenarios inferred for

the human data so as to integrate the uncertainty due to the PSMC inferential process. This

is a crucial issue but here our aim is not to test the PSMC or other inferential methods, but

rather build a framework based on the IICR to identify models with changes in connectivity.

To clarify this we explain below the different types of IICR that could be computed given a
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Figure 4: The three ways of obtaining a target IICR. The panels represent different types of discretised
target IICRs for the same two-components demographic history with N = 103, n = 4, t1 = 7,
(Mi) = (0.5, 1.0) and (si) = (1.0, 1.0). (a) Exact IICR, computed as per §2.2.2 and discretized to 32
intervals. In gray we show a smoother discretization and keep it in the other panels for reference. This is
obtained using the approach of Rodríguez et al. (2018). (b) T-sim IICR, obtained by simulating 2× 104

T2 samples using the ms command ms 2 20000 -T -L -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN 3.5 1 and
later scaling the IICR using the value of N. This is the approach used in Chikhi et al. (2018) (c) Seq-sim
IICR, obtained by running PSMC on a genome simulated using the ms command ms 2 100 -t 100 -r
20 2000000 -p 8 -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN 3.5 1 and later scaling with mutation rate
µ = 1.25× 10−8. This is obtained by running the PSMC method of Li and Durbin (2011)

scenario ϕ ∈ Φγ,B.

Exact IICR We saw in §2.2.2 how to compute the IICR for any n-island model at any

time value t, but to generate input data we need a discretization as in (2.11), so considering

that we take a log-distributed sample of size I in the interval [tmin, tmax], we end up with a

suitable IICR0. Note that even though this IICR has been discretized, its values are exact

within machine precision, so it is still an artificial product compared to real data.

For the validations using the exact IICR in §3.1 we chose for the distance tolerance between

a target and an inferred IICR a value of ε = 10−10 for the unscaled IICRs and an equivalent

value of ε = 10−7 for the scaled IICR (since the simulated N was always 1000). It should be

noted that this value of ε is quite small even for double-precision floating-point arithmetic,

and thus is only a reasonable choice for validation using exact IICRs (i.e., those where the
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distance could theoretically be zero).

T-sim IICR The T-sim IICR is obtained by simulating a finite collection of T2 realizations

using ms and then building an empirical IICR as in Mazet et al. (2016), using the Kaplan–Meier

estimator (Kaplan and Meier, 1958), with log-distributed times. We stress that ms scales

time in units of 4N generations whereas our models use a scale of 2N generations (see the

example in Figure 4), so this must be kept in mind when writing ms commands.

Seq-sim IICR In order to closely follow the pipeline of real genomic data, we simulate

genomic sequences with ms and then apply the PSMC method for obtaining the IICR to be

used by the inference method. Since simulating genomes and performing PSMC analyses is

significantly more time consuming than the other two methods used for obtaining a simulated

IICR, we limited ourselves to validating the Seq-sim IICR for the human PSMC based scenarios

that we obtain after performing the demographic inference described in §2.5.

2.5. Application to humans

We applied our method to the human genomes published in the great apes study by

Prado-Martinez et al. (2013). Namely, we used the PSMC files of five sampled humans

identified as Dai, French, Karitianan, Sardinian and Yoruban (see Figure 5). For each human

PSMC curve we performed demographic inference independently within the following bounds:

n ∈ {2, 3, . . . , 100};

ti ∈ [4× 102, 4× 105] ∀i ;

Mi ∈ [1/20, 20] ∀i ;

si = 1 ∀i ;

N ∈ [102, 104].
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The bounds for the ti are specified in generations, so given a generation time of 25 years,

we effectively allowed for the inference of demographic events between 10 thousand and

10 million years ago. Regarding the number of components, we choose c ∈ {2, 3, 4, 5};

i.e., between one and four demographic events in agreement with Mazet et al. (2016) who

suggested that a minimum of three events were necessary to explain the two humps, and in

agreement with our validation simulations which suggest that inference above five components

is difficult.

104 105 106 107
0

0.2

0.4

0.6

0.8

1
·105

Time in years (25 y/gen)

IIC
R/

PS
M

C

Dai French
Karitiana Sardinian
Yoruba

Figure 5: Five human PSMC plots. All five PSMC curves were obtained from the study of Prado-
Martinez et al. (2013). The scaling was done as recommended by Li and Durbin (2011) (see equation
2.15 and surrounding explanation). No further processing was necessary since .psmc files contain the
final result of the effective size or IICR estimate.

Some of the analyzed IICR curves exhibit an increase in effective size in the recent past,

which could be due to a genuine population growth as noted by Mazet et al. (2016). Given

that we choose to specifically rule out changes in deme sizes, we account for this fact by

running every inference a second time, ignoring this period of possible recent expansion. This

is accomplished using an option that allows to limit the interval where the distance function is

computed. In this case, we restricted both this range and the bounds for the ti to be between

50 thousand and 10 million years ago, thus ignoring any population size change that may

have happened in the last 50,000 years. Note that this option is also useful to ignore very

ancient sections of the PSMC plots which may be difficult to trust.
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Since these inferences are based on real human PSMCs which are unlikely to have been

generated by an n-island model—as opposed to the inferences described in §2.4 where

the underlying model was in fact a piecewise stationary n-island coalescent—the default

value used for ω may not be the most appropriate and we thus performed inferences with

ω ∈ {1, 0.5, 0.2}. Decreasing values of ω give increasing weight to the most ancient part of

the PSMC (see the weighted distances (2.10)). The resulting inferred demographic scenarios

are shown in section §3.3.

As a way of validating the inference process using PSMC outputs, we generated 10

Seq-sim IICRs corresponding to the inferred demographic scenarios for the French, Karitianan

and Yoruban individuals (the inferred histories for the Dai and Sardinian are similar enough to

the other three that they don’t warrant a separate analysis). For each one of these scenarios

we simulated nreps = 30 chromosomes of length L = 108 base pairs, using the effective size

N inferred by the method, a per-base per-generation mutation rate of µ = 1.25× 10−8 and

a scaled recombination rate of ρ = θ/5 (as in Li and Durbin (2011)), then we run the ms

command with θ = 4µLN using:

ms 2 nreps -t θ -r ρ L -p 8 -I . . .

where the rest of the command follows according to the inferred demography (see Figure 4

for a reference). After that we prepared a .psmcfa file as input for PSMC, always choosing a

bin size of s = 100. Then we ran the PSMC with the command:

psmc -N25 -t15 -r5 -p "4+25*2+4+6" . . .

following Li and Durbin (2011) on human data. We then applied the final step required to

obtain a scaled IICR by applying the following scaling to the data in the resulting .psmc file:

τi = 2N0Ti , yi = N0λi , (2.15)
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where the Ti and λi are the time and size data from the .psmc file, and N0 corresponds

to the population size at time T = 0 in the panmictic model underlying the PSMC, and is

computed as N0 = θ0/(4µs), where θ0 is the one given in the .psmc file and s is the bin

size for preparing the input to PSMC (in our tests we took s = 100). Finally, we used these

PSMC curves as targets to determine whether we could indeed infer the parameters used for

such complex scenarios.

We also applied our method to genomic data simulated under the scenarios used to describe

recent human evolutionary history by Gutenkunst et al. (2009); Noskova et al. (2019). Here,

we thus ask the following two questions: if human evolution were indeed closer to such

splitting models, would our method infer again an n-island model with similar parameters to

those inferred from the humans PSMCs? additionally, do these models generate IICR plots

that are similar to the human PSMCs?

3. Results

In this section we show the results of validating the inference method using target IICRs

from known demographic histories; the application of the method to real human data; and the

comparison of the obtained results with previously published demographic histories for humans.

When performing validation, both the source and the inferred demographic models are known,

which allows us to assess the accuracy of the inference in the parameter space, i.e., we can

compare the values of the inferred parameters to those of the simulated parameters. This is

not possible when performing an analysis of real genomic data since the model is unknown.

Therefore, we always include comparisons of inferred and observed of IICR curves since for

real data, what is observed is an estimated IICR (possibly in the form of a PSMC curve),

and as such this is the type of visualization that is always possible to do. The results of the

validations are presented in Figures 6 to 8 in the main manuscript and Figures S3 to S29 in
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the supplementary materials. Another set of figures (Figures 9 to 13 and Figures S30 to S36)

present the results of the application to human data.

3.1. Validation using exact target IICRs

A first set of figures (Figure 6 and Figures S3 to S14) represents the simulated and inferred

parameter values on the horizontal and vertical axes, respectively, using the continuous

sampling strategy. As explained in §2.4.1, the range of possible values in the inference

process was always wider than the range used for the simulated values. For instance, we

simulated models with a number of islands varying between n = 2 and n = 40, but the

search space for the inferred number of islands varied between n = 2 and n = 50. Altogether

these figures always show a diagonal line corresponding to y = x , hence suggesting that the

inferred parameter was identical or very close to the simulated parameters. This is particularly

obvious for all the parameters corresponding to scenarios with up to four components. For

instance, Figure 6a shows the results for a model with three components, in which there is

a nearly perfect match between the simulated and inferred values for the three migration

rates (M0,M1,M2) and the times at which migration rates changed (t1, t2). For five- and

six-component scenarios the results are still nearly perfect for most of the simulated scenarios

but we observe an increasing number of cases (i.e., simulated scenarios) where the parameters

are poorly estimated, with the exception of n, M0 (and N for scenarios with scaled IICRs)

which are almost always well estimated also in such cases. These cases can be identified

by the dots scattered in the different panels. They start to appear in scenarios with three

components, but their number grows with the number of components.

These poorly estimated scenarios are surprising given the near perfect estimation obtained

for most parameter combinations. This is particularly striking because these dots do not seem

to be distributed in any clear area of the parameter space. We see at least two possible and
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Figure 6: Scatter plots of simulated and inferred parameters. Panel (a) corresponds to scenarios with
c = 3 components, and (b) to scenarios with c = 6 components. The different sub-panels represent the
simulated (horizontal axis) versus inferred (vertical axis) parameter values for all the parameters (or a
representative selection of parameters in the case of panel (b)) of L = 400 unscaled simulated scenarios.

non-exclusive interpretations for this result. One is that the search algorithm had not yet

converged when the maximum number of rounds was reached.

The maximum number of rounds was set to 500 in all simulations because we had found

that less than 50 rounds were more than enough in the first tests carried out with one or two

components. The search algorithm might however need more than 500 rounds to reach the

optimal solution for scenarios of increasing complexity. We thus asked whether the maximum

the number of rounds had been reached in the scenarios analysed and whether the proportion

of scenarios with 500 rounds increased with the number of components. We found indeed

that the proportion of simulations for which that maximum was reached increased with the

number of components. For instance, all five- and six-component scenarios stopped their

parameter search at 500 rounds, hence suggesting that at least some had not yet reached an
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optimum solution. For the cases with one- and two-component scenarios, all 800 independent

simulations reached convergence in less than 150 rounds (see Figure S1). Again, the choice

of the tolerance ε plays a role in these results, and selecting larger tolerances will tend to

produce earlier convergence in general, but not necessarily better results.

As a test we randomly identified a couple of scenarios with six components that had

bad estimates and re-ran the algorithm with 5000 rounds. We found that the distance

value consistently decreases with more rounds (see Figure S2), but the inferred parameter

values may not converge to the simulated ones because with more components there is a

higher probability that two consecutive simulated Mi values are very close, thus making the

corresponding event time challenging to infer. Likewise, some simulated components may

have a short duration that don’t leave a significant mark on the IICR curve, thus leading them

to be “skipped”. We refer to this issue as component miss-identification, which could lead to

a particular estimated parameter to be plotted in the wrong panel. For instance, the method

may miss the first change in migration rate at t1 and identify the second change in migration

at t2. In such a case the method will assign the inferred t2 value to the set of inferred t1

values and plot it in the t1 panel. This wrongly assigned t2 value will thus appear away from

the diagonal in the t1 panel. Such miss-assignment cases for one parameter will also have

consequences for the Mi plots, and thus will generate several miss-assignments across panels.

They are also expected to increase in frequency as the number of components increases and

as the ti values become closer to each other (this phenomenon can be observed clearly in the

right panels of Figure 7). One way to mitigate the effect of this miss-assignment issue in the

analysis of the results is to visualize the simulated and inferred scenarios using what we call a

connectivity graph. This connectivity graph represents the times at which migration changes

against the values of the migration rates. Such connectivity graphs are featured in the next

section.
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3.2. Validation using T-sim IICRs

The connectivity graphs and IICR plots obtained from simulated T2 values show that again

the scenarios are generally very well reconstructed (Figure 7 and Figures S15 to S29).

In Figure 7 the connectivity graphs obtained for all the scenarios simulated with three and

four components show that the inferred times at which migration rates changed (green vertical

lines) and the inferred migration rates (green horizontal lines) are generally overlapping close

to the simulated values (dotted vertical and horizontal gray lines). In the right panels of

this figure, we show a subset of the inferred migration histogram. Namely, we show the

distributions of the migration values that were inferred for components with a simulated

migration value of Mi = 10 for panel (a) and Mi = 1 for panel (b). This allows us to better

appreciate the variance of the inferred migration values in the context of the simulated ones,

as well as the component miss-assignment effect mentioned earlier. Indeed, we note here

that the incorrectly inferred migration values are clustered around other simulated values,

indicating a mismatch in a particular component assignment which does not affect the rest of

the inferred demographic history.

For example, consider that in the right sub-panel of (a), most repetitions correctly inferred

a value close to M = 10 for the components with that simulated migration rate. However,

there were cases where a given component i was simulated with a migration rate of Mi = 10,

but it was missed entirely (maybe because it did not generate a very different IICR or because

it had a short duration), and thus the inferred migration value for component i ultimately

reflected either Mi−1 or Mi+1. In panel (b) we can observe the same effect with higher

intensity because with more components it is more likely for them to be miss-aligned or

miss-identified during inference.

These connectivity graphs (and the one obtained for five components shown in Figure S27)

also show that there are regions of the parameter space where the green lines are more
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widely distributed. For instance, in the recent past of Figure 7b (ti < 10−3 generations)

when the simulated Mi value was 0.1 or 0.2 the inferred values seem to vary between 0.05

and 0.3, suggesting that the method identifies periods with low migration rates but that

the exact value is difficult to estimate properly, at least in the recent times. These graphs

however summarize extremely different scenarios, including scenarios in which consecutive Mi

values may be similar. It is thus important to stress that the quality of the inference is likely

dependent on the timing of the changes in migration rates and on the size of the change in

Mi values.

(a)

(b)
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Figure 7: Connectivity graphs of 100 independently inferred histories obtained by sampling for each
scenario from the values indicated by the dotted lines. (a) scenarios with c = 3 components. (b) scenarios
with c = 4 components. The right sub-panels show a side histogram with only the inferred migration
rates for those components with a specific simulated migration rate (10 for (a) and 1 for (b)).
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Figure 8 shows the results for four different scenarios. In each of the four panels, we

represented the inferred and target IICR plots, connectivity graphs, N (the size of each the

islands) and n (the number of islands) for the corresponding model. Panels (a) and (b)

correspond to three- and four-component scenarios, whereas panels (c) and (d) show the

results for two five-component scenarios, one for which we obtained very good estimates

and one for which the estimates are not very good. In panels (b) and (c) the inferred and

simulated Mi and ti values are on top of each other as can be seen in the connectivity graphs.

Similarly, N and n are also well estimated. Here, the IICR plots also overlap, although this

does not always guarantee perfect parameter estimation, as is the case in panels (a) and

(d). Interestingly, in panel (a) the first change in migration rate (at t1 = 200 generations) is

estimated at around 900 generations due to the stochasticity of the IICR plot. This appears

to generate some variance in the estimates of N and n but the connectivity graph shows the

same trend (increasing connectivity) as in the simulations. In the case of panel (d) we can see

that the method had some difficulty in estimating several of the changes in Mi values. This

is not surprising as some of the randomly simulated changes do not seem to lead to major

changes in the IICR curves. This generates again some variance in the N and n estimates.

We also observe a significant variance in the connectivity graph even if several runs overlap

nearly perfectly with the simulated connectivity graph.

Altogether the validation tests and figures above suggest that our framework is able to infer

changes in connectivity under the n-island model, and that some scenarios can be extremely

well inferred whereas others may be more difficult depending on their effect on the IICR plots.

We also observe that for real data it may be helpful to run the analyses for a varying number

of rounds, since too few rounds may negatively affect the quality of the fit. Also, once a

scenario has been inferred it is crucial to test whether this scenario could indeed be properly

inferred with data simulated under the newly inferred scenario. This is what we do with the

real human data in the next section.
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Figure 8: Simulated and inferred IICR plots, connectivity graphs, N and n. The four panels correspond
to four different scenarios. (a) a c = 3 components scenario (b) a c = 4 components scenario (c) a
c = 5 components scenario (d) a c = 5 components scenario. The left part of each panel represents
the target and inferred IICRs (top), and the connectivity graphs (down). The right half of each panel
shows the simulated and inferred values for n (top) and N (down). In each IICR graph, the ragged blue
line represents the target IICR whereas the red lines represent 10 independently inferred IICRs. The
vertical blue and red lines represent the simulated and inferred ti values, respectively. In the connectivity
graphs, the black and green lines represent the simulated and inferred connectivity scenarios, respectively.
The simulated n and N values are represented by black open circles whereas the inferred values for the
corresponding parameters are represented by red and green full circles and by grey histogram bars.
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3.3. Application to humans

Here we show the results of using our inferential method on the human data and compare

the obtained demographic scenarios with others recently published in the literature. The

demographic stories for the human populations are partially found in Figures 9 and 10 (a

more comprehensive set of results can be found in the supplementary materials, Figures S28

to S33).

In Figure 9, each sub-panel of panel (a) shows the PSMC curve of a human individual

from a specific “population” together with the best fitting IICRs for models with c = 2, 3, 4

and 5 components. The different sub-panels cover the different values for the weight-shifting

parameter ω (from left to right: ω = 1, 0.5 and 0.2); and the three humans we selected

(from top to bottom: French, Karitiana and Yoruba) as explained above. The most striking

feature of these plots is the sensitivity of the fit to the value of the weight-shifting parameter

ω. Smaller values of this parameter allow the optimizer to distribute more of the demographic

events towards the ancient past and thus allows this region to be better fitted by the inferred

IICR. This functionality (together with being able to ignore certain parts of the plots for

the computation of the distance function) can be used to make explicit the knowledge (or

beliefs) of the researcher regarding the accuracy of the PSMC curve. We notice that the

Yoruba population cannot be well fitted in the recent past for any value of ω, even outside

of the designated period of recent population expansion. Panel (b) shows the connectivity

graphs of the same inferred demographic scenarios. Again, the effects of varying ω are readily

noticeable. It is also of interest that the pattern of a period of relatively high connectivity

between roughly 500 kya and 2 Mya agrees with previous results published in Rodríguez et al.

(2018).

Figure 10 shows in panel (a) the number of demes n and in panel (b) the reference size

N that was inferred from each of the five fitted human PSMCs. Of note here is that all
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Figure 9: Results of performing demographic inference on three representative human PSMC curves. (a)
shows the various IICR plots inferred for the different populations, numbers of components c and weight
parameters ω used, together with the target IICR curves (or PSMC plots) on which these estimations
are based. (b) shows the connectivity graphs for the same set of inferred scenario. As a reference point,
the connectivity graph of the scenario proposed in Rodríguez et al. (2018) is also shown. The vertical
axes represent migration rates (M).

individuals except the Yoruba show a consistent value for these inferred parameters across

both number of components and value of ω. The larger variance of the estimated values for
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Figure 10: (a) Inferred number of islands (n) and (b) inferred reference sizes (N) for each human
population and each used combination of the weight parameter ω, number of components (only 4 and 5
are shown here), and with or without the option of ignoring recent population expansion.

the Yoruba individual suggests that a symmetrical island model may not be enough to explain

the patterns of diversity in all five sampled human IICRs.

Figure 11 shows the results of the validations using seq-sim IICRs. For the three chosen

representative human populations (French, Karitiana and Yoruba), we selected the SNIF

inferences obtained with the parameter values c = 5 components and ω = 0.2. The selection

of these values as the preferred ones was supported by the fact that the dvisual distance

(see Figure S36) was best for them. For each of these inferred models we generated two

independent genomic sequences of length 3× 109 base pairs and applied the PSMC method

to obtain two independently estimated target IICRs. These seq-sim IICRs are shown in blue

on the left panels of Figure 11. The connectivity graphs associated with these inferred models

are represented in the middle panels by the red curves. The corresponding inferred values of

n and N are marked as the black reference circles in the right panels of the figure.

After obtaining the seq-sim IICRs, we applied again our inference method. The goal is

to validate whether it would be able to consistently infer the same parameter values of
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Figure 11: Results of the validation using Seq-sim IICRs. The left panels show two independently
simulated seq-sim IICRs (obtained using the demographic scenario inferred with c = 5 and ω = 0.2 for
each of the indicated human population) alongside 10 independent inferred IICRs. The rest of the panels
show the connectivity graphs, number of islands, and local deme size of these seq-sim IICRs and their
corresponding inferences.

the demographic history regardless of the origin of the source IICR curve. To this end we

performed 10 independent inferences from each of the two target IICRs. The inferred IICRs

are superimposed on the left panels of Figure 11 (transparent red curves, 20 per population).

The inferred connectivity graphs are shown in the middle panels (transparent green curves)

and the inferred values of n and N are presented in the right panels. We observe a general

agreement with the previously inferred histories, which suggests that if the real history of
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human evolution were close to piecewise n-island models like those used in this work, our

method would be able to infer the parameters properly, and they would be similar to those

shown in Figures 9 and 10.
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Figure 12: Application of our inference method to a generally-accepted tree-like human demographic
scenario with three modern populations. (a) IICR plots showing the resulting IICR curves for this model
and the inferred IICR curves obtained with our method (where the recent period of human expansion
was ignored) for varying number of components c and weight parameters ω. For reference purposes, we
also show the real PSMC curve of a human individual for each of the corresponding C3PO populations.
(b) Connectivity graphs of the inferred scenarios.

Figures 12 and 13 show the results of applying our method to the IICR curves associated

with the demographic model for human expansion published by Noskova et al. (2019), which
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we will refer to as the Classical 3-Populations model—C3PO for short. The C3PO model is a

tree-like model with three modern populations that exchange gene flow asymmetrically. It

is based on the model of Gutenkunst et al. (2009) and has the same structure but with a

higher likelihood and thus can be seen as an improved model with a better fit to the data.

The model stipulates the existence of an ancestral population that experienced an increase in

size around 275 thousand years ago (Kya), and the a splitting event at about 150 Kya. This

split resulted in two populations that exchanged gene flow asymmetrically: a large one that

eventually became the modern African population, and a smaller one ancestral to the modern

Eurasian population. This ancestral lineage split about 22 Kya into the precursors of the

European and Asian populations, which at this point began an exponential increase in size

that continued to present day. During this period, all three lineages continued to exchange

gene flow asymmetrically. The times for these resize and splitting events are represented as

dotted vertical gray lines in Figure 12.

It is clear that the nature of this model does not lend itself to be exactly modelled by a

symmetrical n-island model, but the piecewise-stationarity of our family of models should still

be able to pick up the main demographic events. For example, from an n-island perspective,

a merger or joining of two populations (going backwards in time) may be represented by an

increase in gene flow, although this effect may be confounded by the actual changes in both

the sizes of the populations and migration rates taking place during these events. Also of

note is the fact that the first merger event is not visible to our method because it marks the

start of the recent population expansion and is thus excluded from the distance computation.

As can be seen in panel (a) of Figure 12, these IICRs do not exhibit any major features

past the 300 Kya mark, so they don’t agree with the human PSMCs of Figure 5 (of which

the representative ones are again shown in Figure 12 in dashed trace for reference), and

they also don’t generate significant events in the inferred demographic histories. Particularly,

varying the value of the weight-shifting parameter ω did not make a great effect in this set of
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inferences (which is in contrast with the results shown in Figure 9). This inferred demographic

history can be roughly summarized from panel (b) as having a period of relative high gene

flow followed by a sharp decrease near the 300 Kya mark, which can be very clearly attributed

to the size decrease of the ancestral population in the C3PO model.
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Figure 13: Application of our inference method to a generally-accepted tree-like human demographic
scenario with three modern populations. (a) Inferred number of islands for each modern population.
(b) Inferred local size of each island.

The inferred number of demes and their relatives sizes for each population can be observed

in Figure 13. The numbers for the African population is in sharp contrast with the other

two populations. We can also observe that for the three populations there is more variance

(compared to the results from Figure 10) in the inferred values of n and N across the different

values of c and ω. This may indicate a weaker link to an underlying n-island model.

In general, there is little agreement between the demographic histories inferred by our

method from the PSMC data and the simulated IICRs from the C3PO model. This is expected

because of how the two models have fundamentally incompatible structures, not only regarding

the island versus tree aspect, but also due to the size changes in the C3PO model that affect

the IICR potentially as much as gene flow does. However, we do identify the approximate
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timings of the two visible demographic events when using c = 5 components and the more

recent-weighted value of ω = 1. These results also serve as additional validation that our

method will not return the same parameter values regardless of the source of the data. They

also suggest that the C3PO model is unlikely to be a good model to understand questions

about ancient human structure and evolution.

4. Discussion

Our validations show that the inference framework presented here is able to accurately

infer structure parameters (number of islands and their sizes) within a symmetrical island

model given an IICR estimate like the PSMC. It is also able to date up to five events of

changes in migration rate (i.e., six components) with good precision and consistency, as long

as the underlying model is compatible with a symmetrical island model. The migration rates

themselves are inferred as well.

Human evolution

An application of our method to five publicly available human PSMCs suggests that the

backwards long term history of the sampled individuals, when accounting for possible recent

expansions and the noise introduced by the PSMC method, can be accurately modelled in the

framework of a symmetrical island model of approximately 10 to 12 demes with varying levels

of connectivity through time. Only one of the five samples (Yoruba) displayed less consistent

evidence of this finding, which may indicate that more complex models (possibly including

asymmetric gene flow, spatial modelling of the environment, or changes in deme sizes) could

be needed to explain the full complexity of the data.

These findings are in agreement with the results of Rodríguez et al. (2018), in which a

hand-fitting approach of the IICRs was used to arrive at an estimate of 10 islands with a

similar value of N and a comparable period featuring a significant increased of gene flow
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between 600 Kya and 2 Mya.

We also compared our results with the tree model for human evolution published by Noskova

et al. (2019) (the C3PO model), which is a revision of the model from Gutenkunst et al.

(2009) and represents a widespread view of human evolution (Jouganous et al., 2017; Kamm

et al., 2019). The C3PO model proposes an ancestral human population that experiences

two splits: an old one that resulted in the current African “population” and another more

recent one that resulted in the current European and Asian “populations”. The parameters of

this model include the times of these events, the population size history of these populations

and their ancestral branches, and the migration rates between them. The summary statistic

targeted by these methods is the Allele Frequency Spectrum (AFS), and we see that a fitting

AFS does not guarantee a fitting IICR and vice versa (Chikhi et al., 2018). Indeed, the IICRs

of the populations from the C3PO model do not resemble those of the real humans. Likewise,

the inferred demographic history from the IICRs curves generated from the C3PO model

are less consistent across the various runs of our method and they do not resemble those

obtained from the human IICRs.

These findings suggest that tree models fitted with the AFS like those considered here do

not offer a definitive answer to the question of human evolution and other families of models

should be explored (Goldstein and Chikhi, 2002; Scerri et al., 2018, 2019). It remains to

be seen however how well do the models inferred with our method fit the real AFS of their

respective human populations, but this would be beyond the work presented here.

Future work

One novel aspect of our approach is that the number of demes gets inferred as one of

the model parameters, and it is in fact the best estimated parameter, in the sense that the

robustness of the estimated value scales well with increasing model complexity. A similar

consistency can be observed with the deme size parameter N. We give up some flexibility in
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the model by keeping the number of demes constant throughout the history of the population,

so the timed demographic events cannot represent splits or joining of lineages. Additionally, in

the n-island model we do not account for possible asymmetrical gene flow or different deme

sizes, even when the theoretical framework does allow for such representations. However, it is

a more challenging problem to validate due to the fact that during any given component,

changing both the migration rate and the deme size have confounding effects on the IICR curve

which can be hard to separate. This requires a dedicated study with a different methodology

which we will explore in a future work.

Another potential direction is to use multiple IICR curves simultaneously during the inference

process. These multiple IICRs may come in the form of more than one IICR sampled from an

asymmetrical demographic model (for which the initial sampling deme does result in different

curves (Chikhi et al., 2018), as opposed to the n-island model where demes are by definition

indistinguishable). They may also be in the form of multiple IICRk curves where k is the

number of sampled haploid genomes. Indeed, the IICR of Mazet et al. (2016) was defined for

k = 2, and this is the IICR that we have been studying in our previous works. However, the

concept can be extended to more haploid genomes in the same way that the MSMC method

(Schiffels and Durbin, 2013) is an extension of the PSMC to multiple genomes, which takes

into consideration the distribution of the coalescent time Tk . The precise concept of the IICRk

is currently being developed in a separate paper (Rodríguez et al., 2020). These approaches

may prove beneficial in choosing between structured and non-structured models. Indeed,

Grusea et al. (2018) shows that using more than one IICR curve can help discriminate between

structured and non structured scenarios in the n-island model. Finally, the incorporation

of larger samples not only enables exploring more complex scenarios, but it also allows for

using other summary statistics to complement the IICR, most notably among them the Allele

Frequency Spectrum (AFS), which is widely used for the purposes of demographic inference.

44

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 4, 2020. ; https://doi.org/10.1101/2020.09.03.282251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.282251
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Conclusion

In summary, we have presented here an inference method for automatically estimating

demographic parameters under a piecewise stationary symmetrical island model that uses

the IICR as its summary statistic. The underlying methodology consists in quantifying the

discrepancy between a target IICR and many simulated IICR curves for a large number of

candidate scenarios, and using this metric to drive a global optimization process. With a large

number of validations we have shown that the method works accurately and consistently for a

diverse range of parameter values, and we additionally showed an application to human data

that agrees with and improves upon previously published results using similar approaches.

We believe that despite it’s current scope, our method can be of great value during the

initial exploration of the parameter space for simple models, and thus can also provide a

starting point for manually fitting the IICR with models that could express spatial structure

and varying N (Rodríguez et al., 2018).
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