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Abstract: 49 
 50 
The SARS-CoV-2 virus is the causative agent of the global COVID-19 infectious disease 51 
outbreak, which can lead to acute respiratory distress syndrome (ARDS). However, it is still 52 
unclear how the virus interferes with immune cell and metabolic functions in the human body. 53 
In this study, we investigated the immune response in 10 acute or convalescent COVID19 54 
patients. We characterized the peripheral blood mononuclear cells (PBMCs) using flow 55 
cytometry and found that CD8+ T cells were significantly subsided in moderate COVID-19 and 56 
convalescent patients. Furthermore, characterization of CD8+ T cells suggested that patients 57 
with a mild and moderate course of the COVID-19 disease and convalescent patients have 58 
significantly diminished expression of both perforin and granzyme B in CD8+ T cells. Using 1H-59 
NMR spectroscopy, we characterized the metabolic status of their autologous PBMCs. We 60 
found that fructose, lactate and taurine levels were elevated in infected (mild and moderate) 61 
patients compared with control and convalescent patients. Glucose, glutamate, formate and 62 
acetate levels were attenuated in COVID-19 (mild and moderate) patients. Our findings reveal 63 
patients who suffer from an over activation of the immune system, a change of composition in 64 
infusion/intravenous fluids during infection with the aim to lower blood levels of glucose, 65 
glutamate, acetate and formate could avoid a life-threatening cytokine storm. In summary, our 66 
report suggests that SARS-CoV-2 infection leads to disrupted CD8+ T cytotoxic functions and 67 
changes the overall metabolic functions of immune cells.  68 
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Introduction: 97 
The first cases of severe acute respiratory coronavirus-2 (SARS-CoV-2) infection appeared in 98 
December 2019, in Wuhan, China1. This zoonotic virus has infected by now more than 26.1 99 
million people (03.09.2020) and killed more than 0.86 million2,3 worldwide. The containment of 100 
the pandemic is challenging and is still continuing with roughly 200,000 or more new infections 101 
being reported daily since July 20202,3. There is an urgent need for a better understanding of 102 
the immunopathology, as SARS-CoV-2 has become the leading cause of morbidity and 103 
mortality in many countries.  104 
 105 
Coronaviruses (CoV) are a large family of viruses that can cause illnesses such as the 106 
common cold and seasonal influenza4. Pathologically, SARS-CoV-2 infects angiotensin-107 
converting enzyme 2 (ACE2)-expressing nasal epithelial cells in the upper respiratory tract 108 
and type II alveolar epithelial cells in patients exhibiting pneumonitis1,5. The most severe 109 
disease courses led to death frequently but not exclusively in older patients with and without 110 
risk conditions. The primary symptoms of SARS-CoV-2 infections are fatigue, fever, sore 111 
throat, dry cough, loss of smell and taste within 5-21 days of incubation of the virus6-9. COVID-112 
19 symptoms are heterogeneous and range from asymptomatic to mild, moderate, and severe 113 
pathological symptoms, presenting with or without pneumonia10,11, however, most infected 114 
people develop mild to moderate illness and recover without hospitalization12,13. Primarily the 115 
older COVID-19 patients can develop acute severe respiratory distress syndrome (ARDS) due 116 
to a cytokine storm which is a life-threatening situation, requiring ventilation and intensive care 117 
support14-18. High serum levels of IL-6, IL-8, IL-10, TNF-α cytokines and an immune hyper-118 
responsiveness referred to as a 'cytokine storm' is connected with poor clinical outcome19,20.  119 
 120 
Several break-through discoveries have extended our understanding how the virus takes 121 
advantage of the host and modulates immunity12,17,21-25. Recovered COVID-19 patients have 122 
an increased number of antibody-secreting cells, activated CD4+ and CD8+ T cells, and 123 
immunoglobulin M (IgM) and SARS-CoV-2 reactive IgG antibodies were detected in blood 124 
before full symptomatic recovery26-28. Most severely affected COVID-19 patients had a lower 125 
T cell but elevated B cell counts13,19,29,30. Interestingly, patients with mild symptoms were 126 
shown to have increased T and B cells compared with severely affected patients26,29-31. There 127 
could be several reasons for different disease outcomes including over-activated innate or 128 
hyper-activated adaptive immune responses leading to cytokine storms and resulting in 129 
severe injury to the lungs10,13,25,32. Despite of several ongoing efforts, the immunological 130 
mechanisms of the host-pathogen interaction are not well understood33.  131 
 132 
There is an intricate balance between the metabolic state of immune cells and generation of 133 
immune response17,34-37. CD8+ T cells require energy to proliferate and accomplish their 134 
effective functions38. Most propagating cells such as lymphocytes utilize the most abundant 135 
energy substrates including, glucose, lipids, and amino acids39. In response to SARS-CoV-2 136 
and other virus infections, CD8+ T cells play a pivotal role in profound growth and proliferation 137 
to generate their effective functional cells which can produce copious amounts of effector 138 
molecules such as cytokines and cytotoxic granules30,38-40. An activated immune system is 139 
coupled with a change in metabolic reprogramming to produce enough energy needed during 140 
(viral) infection38,39. Proliferating T cells ferment glucose to lactate even in the presence of 141 
oxygen to meet high energy demands34,37-39. Furthermore, glucose and glutamine are involved 142 
in the hexosamine biosynthetic pathway, which regulates the production of uridine 143 
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diphosphate N-acetyl glucosamine necessary for T cell clonal expansion and function41. The 144 
synthesis of lactate intracellularly is crucial for T cells to have an increased glycolytic flux38. 145 
 146 
Peripheral blood mononuclear cells (PBMCs) can be analyzed to measure the health status 147 
of an individual and can serve as a health biomarkers42. Therefore, the metabolic status of 148 
lymphocytes could help to predict disease severity or to select the optimal therapeutic 149 
intervention to boost the immune function during infection. Generally, most of the metabolism-150 
related functions in PBMCs during SARS-CoV-2 infections were inferred based on 151 
transcriptomics analysis34,43 and no functional data (biochemical level) have been presented. 152 
Thereof, understanding the kinetics of adaptive immune response as well as the metabolic 153 
functions during SARS-CoV-2 infections will help to elucidate the host immune response to 154 
SARS-CoV-2 infection. In this study, using flowcytometry and proton nuclear magnetic 155 
resonance (1H-NMR) spectroscopy, we characterized the PBMCs from SARS-CoV-2 infected 156 
and convalescent patients for the their immunophenotypic and metabolic functions.  157 
 158 
Results: 159 
 160 
Characteristics of study participants 161 
 162 
PBMCs were isolated and cryopreserved from blood samples obtained from COVID-19 163 
patients suffering from mild (‘Mild (outpatient)’) or moderate/severe (‘Moderate (inpatient)’) 164 
disease or were already recovered (‘Convalescent’) and from healthy controls (‘HC’) . 165 
Classification of disease severity for this analysis was based on the requirement of 166 
hospitalization. Patients with mild COVID-19 were recruited within three days after 167 
confirmation of infection by RT-qPCR. From moderate to severe COVID-19 patient blood 168 
samples were collected one week after their admittance. The moderate patients were admitted 169 
to the hospital requiring medical care, however, they did not need ventilation or O2 supply. 170 
Recovered patients were included based on a positive SARS-CoV-2 antibody testing. Study 171 
participant characteristics are described in Table 2.  172 
 173 
Immunophenotyping of COVID-19 mild, moderate and convalescent COVID-19 patients 174 
 175 
To compare the number of lymphocytes and monocytes amongst the four study groups, 176 
PBMCs were stained and analysed by flow cytometry. Both, lymphocytes (p=0.005) and 177 
monocytes (p=0.04), were significantly decreased in moderate COVID-19 patients compared 178 
with HC (Suppl. Fig. 1a, b). However, mild and convalescent patients also had a reduced, but 179 
not significantly reduced, count of lymphocytes/monocytes compared to HC. 180 
 181 
Increased inflammatory monocytes and reduced NK cells in moderate COVID-19 patients 182 
 183 
Monocytes were further classified into classical, non-classical and intermediate based on 184 
expression of CD14 and/or CD16 and we used the same gating strategies as described 185 
earlier44 (Suppl. Fig. 1c). We found that CD16++CD14+ patrolling (non-classical) monocytes 186 
were significantly increased (p=0.0008) in numbers in moderate patients compared to HC, 187 
whereas this number is decreased again significantly compared with convalescent patients 188 
(p=0.01) (Fig. 1a). The percentage of CD16++CD14+ monocytes was also significantly 189 
increased (p=0.006) in mild patients (outpatients) compared with moderate patients (Fig. 1a 190 
Panel I). Interestingly, CD16++CD14++ pro-inflammatory monocytes (intermediate) were again 191 
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significantly increased in moderate (p=0.003) compared with HC as well as between mild and 192 
HC (p=0.02) (Fig. 1a panel II). Furthermore, we observed a significantly reduced percentage 193 
of CD14++CD16- phagocytic monocytes (classical) in moderate compared with mild 194 
(p=0.0009), HC (p<0.0001) and convalescent (p=0.0003) patients (Fig. 1a Panel III). Finally, 195 
we explored the lymphoid cells compartment for NK cells (CD56+CD3-CD19-). We found that 196 
both mild (p=0.0003) and moderate (p=0.0002) patients were significantly different from 197 
convalescent and HC (p<0.0001; HC vs mild or moderate) patients (Fig. 1b). 198 
 199 
Dynamics of B and T cells in mild, moderate and convalescent patients 200 
 201 
Both T and B cells are indispensable for the immune response against viral infections such as 202 
SARS-CoV-2. Firstly, we compared the number of B cells amongst the study groups, which 203 
give rise to virus-specific antibodies (see gating strategy in Suppl. Fig. 1c). The CD19+CD3- 204 
cells (B cells) were significantly increased in mild (p=0.008; 1.7x times) and moderate 205 
(p=0.0008; 1.9x times) patients compared with HC (Fig. 2a). Whilst, B cells were significantly 206 
decreased in moderate compared to convalescent (p=0.03) patients (Fig. 2a). Comparing 207 
CD3+CD19- lymphocytes among the different patient groups we observed no significant 208 
difference. However, there was an increased trend of CD3+ cells in the outpatients, inpatients 209 
and convalescent groups compared with HC.  210 
 211 
CD3+ cells were analysed for the CD4+ and CD8+ T cell compartment. There was a tendency 212 
of increased CD4+ T cells for outpatients, inpatients and convalescent patients compared to 213 
HC, but no significant difference was observed among any of the groups. CD8+ T cells were 214 
significantly different between HC compared to moderate (p=0.04) or convalescent (p=0.04) 215 
patients (Fig. 2b). Finally, we characterized CD4+Foxp3+CD45R- regulatory T cells (Tregs), 216 
however, no significant difference was observed among the different groups (Suppl. Fig. 2). 217 
 218 
Impaired activation and defective cytotoxic functions of CD8+ T cells 219 
 220 
We found that the percentage of CD8+ T cells was decreased in mild and convalescent 221 
patients compared to HC. Thus, we explored the activation status of CD8+ T cells based on 222 
HLA-DR expression. We found that CD8+ T cell activation status in all three groups of infected 223 
patients were significantly different from HC (mild p=0.01, moderate p=0.009, and 224 
convalescent p=0.008, Fig. 3a). We characterized the cytotoxic potential of CD8+ T cells based 225 
on granzyme B and perforin levels and found that there was a tendency of decreased 226 
granzyme B expression in mild, moderate and convalescent patients compared with HC (Fig. 227 
3b), however it did not reach significance. Perforin was significantly decreased in convalescent 228 
(p=0.03) patients compared with HC (Fig. 3b), although mild patients also had borderline 229 
significantly reduced levels (p=0.06). Furthermore, we studied the expression of CD38, a 230 
marker of cell activation, which was significantly upregulated in convalescent patients 231 
compared with HC (p=0.01), mild (p=0.03) and moderate (p=0.02) patients (Fig. 4a). Similarly, 232 
convalescent patients had significantly increased numbers of CD38+PD-1+ cytotoxic CD8+ T 233 
cells compared with HC (p=0.005), moderate (p=0.002) and mild (p=0.002), which reflects the 234 
exhaustion and non-responsiveness (anergy) of CD8+ T cells (Fig. 4b). Overall, our data 235 
suggested that CD8+ T cells have reduced activation, diminished expression of cytotoxic 236 
molecules such as perforin and granzyme B and severely exhausted phenotype. 237 
 238 
Dynamics of metabolites production in mild, moderate and convalescent patient 239 
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PBMCs from all patient groups were subjected to 1H-NMR spectroscopy analysis. We 240 
identified and quantified a total of 18 metabolites (Fig. 5a). Hereby, unsupervised PCA showed 241 
that spectral data from mild and moderate patients formed overlapping clusters clearly distinct 242 
from a cluster formed by HC and convalescent patients (Fig. 5b), indicating a strong difference 243 
in metabolite levels between infectious state compared to healthy or recovered state. 244 
Statistical analysis of the four different groups, revealed that 15 metabolites showed p-values 245 
< 0.05, with highest significance for metabolites from the energy metabolism (Fig. 5c, Suppl. 246 
Fig. 3 & Table 1). The data indicate a strong consumption of glucose, acetate, formate during 247 
infection, while with lactate levels are increased. Furthermore, we also found very high levels 248 
of fructose in PBMCs from mild patients, medium concentrations in moderate and, low levels 249 
in HC and convalescent patients (Fig. 5c). Furthermore, glutamate was almost abolished in 250 
mild and moderate patients, potentially as a consequence of enhanced production of α-251 
ketoglutarate in the TCA cycle in PBMCs via glutamate dehydrogenase (Fig. 5c).  252 
 253 
To find an association between different metabolites, we applied the variable importance of 254 
projection (VIP) score. We found that formate and glucose had the highest score compared to 255 
another other metabolites (Fig. 6A). In order to determine if additional metabolites are 256 
positively associated with changes in glucose, lactate and fructose, we performed a pattern 257 
hunter analysis for all metabolites. We found that high glucose levels correlated with high 258 
formate, acetate and glutamate and low lactate and fructose (Fig. 6b), indicating enhanced 259 
glycolysis and TCA cycle in PBMCs. Similarly, fructose, that is entered via fructose-1-260 
phosphate and dihydroxy acetone phosphate (DAP) into the glycolysis, is correlated positively 261 
with lactate and citrate and a decrease in acetate and formate, respectively (Fig. 6b). 262 
Interestingly, levels of the ROS scavenger taurine are only positively correlated with lactate 263 
and fructose, but not glucose (Fig. 6).   264 
 265 
Table 1: Summary of metabolites dysregulated in PBMCs 266 
 267 

No Metabolites HC Mild Moderate Convalescent 
1 Glucose ↑↑ ↓↓ ↓↓ ↑↑ 

2 Formate ↑↑ ↓↓↓ ↓↓ ↑↑ 
3 Acetate ↑ ↓↓ ↓ ↑ 
4 Lactate ↓↓ ↑↑ ↑↑ ↓↓ 
5 Fructose ↓ ↑↑ ↑ ↓ 
6 Glutamate ↑ ↓ ↓ ↑ 
7 Citrate ↓ ↑↑ ↑ ↓ 
8 Taurine ↓↓ - ↑↑ ↓ 
9 Creatine ↓ ↑ - - 

10 Alanine ↓ - ↑↑ ↓ 
11 Glycine ↑ ↓ ↓ - 
12 Isoleucine - ↓↓ ↓ ↑ 

 268 
To find an association between different metabolites, we applied the variable importance of 269 
projection (VIP) score. We found that formate and glucose had the highest score compared to 270 
other metabolites (Fig. 6A). In order to determine if additional metabolites are positively 271 
associated with changes in glucose, lactate and fructose, we performed a pattern hunter 272 
analysis for all metabolites. We found that high glucose levels correlated with high formate, 273 
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acetate and glutamate and low lactate and fructose (Fig. 6b), indicating enhanced glycolysis 274 
and TCA cycle in PBMCs. Similarly, fructose, that is entered via fructose-1-phosphate and 275 
dihydroxy acetone phosphate (DAP) into the glycolysis, is correlated positively with lactate 276 
and citrate and a decrease in acetate and formate, respectively (Fig. 6b). Interestingly, levels 277 
of the ROS scavenger taurine are only positively correlated with lactate and fructose, but not 278 
glucose (Fig. 6).   279 
 280 
Discussion: 281 
 282 
SARS-CoV-2 infections are an intense and rapidly evolving area of research due to the 283 
ongoing global pandemic19,25. In this study, we used flow cytometry and 1H-NMR to decipher 284 
the cell proportions and functional state of immune cells (PBMCs) in mild, moderate and 285 
convalescent COVID-19 patients compared to HC. Recent reports from COVID-19 patients 286 
suggested that mild and severe patient had lymphopenia11,45-47. Here, we found that mild 287 
patients have reduced lymphocyte numbers whereas convalescent patients have recovered 288 
the total lymphocyte counts. Similarly, monocytes were also reduced in mild patients, which is 289 
in agreement with other recent studies29,48,49. Importantly, our characterization of myeloid cell 290 
compartment based on CD16 and CD14 markers suggested that non-classical and 291 
intermediate monocytes were increased during an active mild or moderate SARS-CoV-2 292 
infection, once infections are cleared the monocyte numbers return to normal. These results 293 
are in accordance with some of the recent published studies48,50,51, while another study 294 
suggested the opposite52.  295 
 296 
In our cohort, specifically CD56+NK cells were dramatically decreased during the course of 297 
active SARS-CoV-2 viral infections (mild and moderate), while during recovery the numbers 298 
were comparable to HC as report by others53. Similarly another recent study suggested the 299 
decrease in number of NK cell subsets in COVID-19 patients, with no change in CD56bright or 300 
CD56dim cells54. Thus, these data point to a crucial role of CD56+NK cells in eliminating SARS-301 
CoV-2 infections47. CD19+ B lymphocytes were increased during the course of infection and 302 
remain slightly higher than HC, thus reflecting the antibody response against the COVID-19 303 
virus. Thus, this data implicated that these patients were able to generate the SARS-CoV-2 304 
specific B cells. 305 
 306 
A major difference was found in the T lymphocytes compartment. On the one hand, CD4+ T 307 
cells were increased during infection, but not dramatically. On the other hand, CD8+ T cells 308 
were significantly decreased in moderate and convalescent patients as reported earlier53. 309 
Thus, it appears that during viral infection non-virus specific CD8+ T cells are dead, while the 310 
viral-specific surviving CD8+ T cells are clonally expanded but appeared to lost their effector 311 
functions55. To confirm this, we first measured the activation status of CD8+ T cells and found 312 
that CD8+ T appeared to be less activated based on their HLA-DR activation marker26. Further, 313 
CD8+ T cells were examined for another activation marker CD38 which is involved in cell 314 
adhesion, signal transduction and calcium signalling56 and was found to be upregulated in 315 
convalescent patients but not during active infection. These CD38+CD8+ T cells, were also 316 
expressing higher levels of PD-1, which is an immune checkpoint and marker of 317 
exhaustion24,30,49,57,58. It guards against autoimmunity, promotes apoptosis of antigen-specific 318 
T cells and promotes self-tolerance by suppressing T cell inflammatory activity. Thus, viral 319 
infection leaves convalescent patients with exhausted phenotypes. We found that although 320 
there was not a significant change in the numbers of Tregs in COVID-19 patients, there was 321 
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a trend towards elevated levels of Tregs in COVID-19 patients and rescued Tregs in 322 
convalescent patients, in agreement with previous studies57.  323 
 324 
A key finding of our study was the surprising observation that granzyme B and perforin 325 
secreting CD8+ T cells were significantly reduced in convalescent patients. The possible 326 
implication of our finding is that convalescent patients, specifically including cancer patients 327 
under treatment, could be susceptible to future opportunistic infections with other viruses 328 
including different strains of SARS-CoV-2. 329 
 330 
To date, the general metabolic physiology of PBMCs is not well defined in literature. However, 331 
it is clear that PBMCs are dependent on circulating nutrients and hormones in the blood 332 
system59. The defective immune response in COVID-19 patients prompted us to investigate 333 
the metabolic functions of these immune cells. Our metabolomics data indeed shows that 334 
PBMCs from actively infected patients have a distinct metabolic profile from convalescent or 335 
healthy individuals. The most notable difference we observed were for metabolites from the 336 
glycolysis and oxidative phosphorylation (TCA cycle) pathway, which is in accordance with 337 
recently published transcriptome data for PBMCs39,43. Metabolites such as glucose, formate, 338 
acetate and choline were also reduced in PBMCs in infected patients whereas, HC and 339 
convalescent patients had a normal profile. Accordingly, the glycolytic pathway end products 340 
such as lactate were higher in active mild and moderate COVID-19 patients compared with 341 
HC and convalescent individuals. Therefore, our data suggests that PBMCs (which constitute 342 
a major fraction of T lymphoid cells: 70- 80%) may have changed their metabolic functions, 343 
particularly favouring the oxidative phosphorylation pathway over the glycolytic pathway, to 344 
meet the high demands of energy needed to combat the ongoing viral infection.  345 
 346 
A recent report suggested that elevated glucose levels enhance SARS-CoV-2 replication and 347 
cytokine expression in monocytes and glycolysis sustains the viral-induced monocyte 348 
response60. Recently, it was emphasized that glucose consumption in PBMCs during COVID-349 
19 disease could be also a read-out of cytokine storms34. Further, a higher abundance of 350 
citrate in PBMCs suggested that perhaps T cells could use the oxidative phosphorylation 351 
pathway for energy consumption to endure the infection, as recent transcriptomic data also 352 
suggested that higher expression of genes related to oxidative phosphorylation both in 353 
peripheral mononuclear leukocytes and bronchoalveolar lavage fluid (BALF) could play a 354 
crucial role in increased mitochondrial activity during SARS-CoV-2 infection34.  355 
 356 
Another interesting finding of our study was the increase of fructose levels in PBMCs during 357 
the course of infection. Previous findings suggested that fructose is involved in the 358 
inflammatory pathways for the production of IL-1β and IL-6 production61. Thus, it is possible 359 
that the immune cells (most probably monocytes) could be triggered by higher fructose and 360 
simultaneously induce inflammation and IFN-γ production by T cells61. These findings are 361 
correlating with recent transcriptomic studies on the BALF from infected COVID-19 patients 362 
and plasma of COVID-19 patients that also identified changes in fructose metabolism34,62.  363 
 364 
We finally observed a reduction of granzyme B and perforin in CD8+ T cells and detected the 365 
antioxidant amino acid taurine, which could be involved in the cytotoxic functions of CD8+ T 366 
cells. Both granzyme B and perforin are involved in ROS production and taurine serves as 367 
ROS scavenger63,64. Thus, decreased granzyme B and perforin could be implicated in reduced 368 
ROS production for the impaired effectiveness of CD8+ T cells in convalescent or COVID-19 369 
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patients. This should be the case, as taurine levels that are generally increased during an 370 
active infection in mild patients compared to healthy controls are not specifically decreasing 371 
due to granzyme B and perforin lacking ROS activity in COVID-19 patients. However, this 372 
finding needs further investigation to validate this hypothesis. In summary, the metabolomics 373 
data generated in this study provides first and crucial insights into the complex metabolic 374 
changes of PBMCs during SARS-CoV-2 infections, warranting further investigation.  375 
 376 
Conclusions: 377 
Using immunophenotyping and metabolomics approaches we detected significant changes in 378 
PBMC samples of mildly and moderately affected COVID-19 as well as convalescent patients 379 
compared to healthy controls. The significantly reduced amount of NK cells in both mild and 380 
moderate patient groups corresponded with the clustering of PBMCs metabolite levels in the 381 
principal component analysis distinct from the cluster formed by healthy and convalescent 382 
individuals. The dramatic changed metabolic activity and pathways, such as glycolysis and 383 
TCA cycle, might not only lead to a vulnerability of COVID-19 patients to subsequent 384 
infections, but can also offer insights into how PBMCs could be manipulated towards a better 385 
survival and personalized treatment of moderate and severe COVID-19 patients.  386 
 387 
Materials and Methods: 388 
 389 
Ethics statement 390 
The study protocols were approved by the University of Tübingen, Germany Human Research 391 
Ethics Committee (TÜCOV: 256/2020BO2 (convalescent study), COMIHY: (225/2020AMG1) 392 
(outpatient study)-COMIHY, EUDRA-CT: 2020-001512-26, ClinicalTrials.gov 393 
ID: NCT04340544, and COV-HCQ: (190//2020AMG1) (inpatient study)-COV-HCQ, EUDRA-394 
CT: 2020-001224-33, ClinicalTrials.gov ID: NCT04342221, 556/2018BO2) and all associated 395 
procedures were carried out in accordance with approval guidelines. All participants provided 396 
written informed consent in accordance with the Declaration of Helsinki. 397 
 398 
Study participants 399 
 400 
SARS-CoV-2 positive patients were used for this study and no other virus species were 401 
analysed in this study (COMIHY and COV-HCQ). Blood was collected from COVID-19 patients 402 
enrolled into two different prospective randomized, placebo-controlled, double blind clinical 403 
trials evaluating safety and efficacy of hydroxychloroquine in COVID-19 outpatients 404 
(COMIHIY) and hospitalized patients (COV-HCQ). We analysed subsets of these study cohort 405 
and used outpatient (n=3; COMIHY) which came to a specified outpatient ward at in the 406 
Institute of Tropical Medicine with mild symptoms and blood was taken and usually defined as 407 
D1 outpatients. Inpatients (n=3; COV-HCQ), blood was taken after 7-9 days after study 408 
inclusion defined as D7. These patients had moderate symptoms needing hospital care, 409 
however not being transferred to the intensive care unit in the hospital. Furthermore, 410 
convalescent COVID-19 patients (n=4) were defined as positive for serum antibody reactive 411 
to SARS-CoV-2 and blood was taken when they visited the Institute of Tropical Medicine for 412 
testing of antibody levels.  Amongst this cohort, 3 persons reported mild fever for 10-11 days 413 
and 1 individual reported no fever but found positive for SARS-CoV-2 antibodies. Blood from 414 
healthy controls (n=5) was obtained from the hospital blood bank.  415 
 416 
 417 
 418 
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Table 2: Overview of study participants  419 
 420 

No COVID-19 status 
Blood 
sampling 

COVID-19 
severity Sex Age 

1 Outpatient (mild) Day1 mild F 21 
2 Outpatient (mild) Day1 mild M 59 
3 Outpatient (mild) Day1 mild F 40 

4 
Inpatient  

(moderate) Day7 Moderate M 57 

5 
Inpatient  

(moderate) Day7 Moderate M 47 

6 
Inpatient  

(moderate) Day7 Moderate F 78 

7 
Convalescent  

(Sero +ve) Convalescent 
Recovered, 

healthy F 50 

8 
Convalescent  

(Sero +ve) Convalescent 
Recovered, 

healthy F 24 

9 
Convalescent  

(Sero +ve) Convalescent 
Recovered, 

healthy M 50 

10 
Convalescent  

(Sero +ve) Convalescent 
Recovered, 

healthy F 51 
11 HC1 - None F 36 
12 HC2 - None M 60 
13 HC3 - None M 40 
14 HC4 - None M 37 
15 HC5 - None M 47 

 421 
Flow cytometry 422 
 423 
PBMCs were isolated by standard Ficoll method65. A total of 1-2 x106 PBMCs per participants 424 
were used for three FACS panels (Table 2).  In brief, cells were stained with surface markers 425 
in DPBS (Sigma) with Super Bright stain Buffer (ThermoFisher) for 30 minutes at room 426 
temperature (RT). To distinguish between live from dead, the cells were also incubated with 427 
LIVE/DEAD Fixable Infra-Red Dead stain (ThermoFisher). After surface staining cells were 428 
also stained for intracellular (IC) markers. Before IC staining, cells were fixed for 30-45 minutes 429 
and permeabilized for 5 minutes followed by IC antibody incubation for additional 30 minutes 430 
at RT. Cells were washed and resuspended in DPBS containing 2%FBS. Fixing of cells was 431 
performed irrespective of whether panel was used for IC staining or not to prevent the possible 432 
contamination during acquisition of the samples. For each sample 200,000 cells were acquired 433 
using BD LSRFortessa (core facility) equipped with 4 lasers (violet, blue and yellow-green and 434 
Red). Data were analysed using Flow Jo (Tree Star) and fluorescence minus one controls 435 
(FMO) were used for setting up the arbitrary gates for the major cell markers. 436 
 437 
 438 
 439 
 440 
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Table 2: Antibodies and other reagents used for Flow cytometry 441 
 442 
No. Product Name Clone Fluorochrome Product ID Company   

NK cells and Monocytes 
(Panel 1) 

    

1 CD3 UCHT1 eFluor 450 48-0038-42  Thermofisher 
2 CD4 SK3 SuperBright 600 63-0047-42  Thermofisher 
3 CD8a SK1 PerCP-eFluor 

710 
46-0087-42  Thermofisher 

4 CD19 HIB19 eFluor 506 69-0199-42 Thermofisher 
5 CD45-RA HI100 PE-Cy7 25-0458-42  Thermofisher 
6 HLA-DR L243 Alexa Fluor647 A51010  Thermofisher 
7 CD38 HIT2 PE-eFluor610 61-0389-42  Thermofisher 
8 CD56 MEM188 PE MA119638  Thermofisher 
9 CD16 3G8 Super Bright702 67-0166-42  Thermofisher 
10 CD14 61D3 Alexa Fluor700 56-0149-42  Thermofisher 
11 Foxp3 (IC) PCH101 FITC 11-4776-42  Thermofisher   

CD8 exhaustion, T helper 
follicular cells (Tfh) and 
antibody secreting cell 
(ASC) (Panel 2) 

    

1 CD3 UCHT1 eFluor 450 48-0038-42 Thermofisher 
2 CD19 HIB19 eFluor 506 69-0199-42 Thermofisher 
3 CD4 SK3 Super Bright 

600 
63-0047-42  Thermofisher 

4 CD8a SK1 PerCP-eFluor 
710 

46-0087-42  Thermofisher 

5 CD38 HIT2 PE-eFluor 610 61-0389-42 Thermofisher 
6 CD27 O323 Alexa Fluor700 56-0279-42  Thermofisher 
7 CXCR5 (CD185) MU5UBE

E 
FITC 11-9185-42   Thermofisher 

8 ICOS (CD278) C398.4A PE 12-9949-81   Thermofisher 
9 PD-1 (CD279) eBioJ105 

(J105) 
PE-Cy7 25-2799-42   Thermofisher 

10 HLA-DR L243 Alexa Fluor647  A51010 Thermofisher
    

Cytotoxic potential 
  

    

1 CD4 SK3 SuperBright600 63-0047-42  Thermofisher 
2 CD8 SK1 PerCP-

eFluor710 
46-0087-42  Thermofisher 

3 CD19 HIB19 eFluor 506  69-0199-42 Thermofisher 
4 CD38 HIT2 PE-eFluor 610 61-0389-42 Thermofisher 
5 HLA-DR L243 Alexa Fluor 647  A51010 Thermofisher 
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6 GZMA (IC) CB9 Alexa Fluor 488   Thermofisher 
7 GZMB (IC) GB11 PE MA523639  Thermofisher 
8 Perforin (IC) dG9 PE-Cy7 12-9177-42  Thermofisher 
  Other Flow reagents   
1 Ultracompensation 

bead 
  01-2222-42  

 
Thermofisher 

2 FOXP3/TRN 
FACTOR STAIN 
BUFFER SET  

  00-5523-00  
 

Thermofisher 

3 FLOW STAIN 
BUFFER SOLN  

  00-4222-57  
 

Thermofisher 

4 SB COMPLETE 
STAINING 
BUFFER 

  SB-4401-42  Thermofisher 

5 DPBS   D8537 Sigma 
6 Pancoll human   P04-601000 Pan Biotech 

 443 
1H-NMR metabolomics 444 
 445 
To obtain PBMCs metabolites, PBMCs were suspended in an optimized solvent extraction 446 
mixture of 9:1 (methanol:chloroform) as described elsewhere in detail66 and extracted with a 447 
focused ultrasound system (Covaris E220, Woburn, USA). The extraction solutions were 448 
evaporated to dryness for 4 hours in a vacuum concentrator and afterwards pellets 449 
resuspended with 45 µL in a 1 mM TSP containing deuterated phosphate buffer. After 450 
centrifugation at 20,000 x g for 10 min to remove residual macromolecules, 40 µL of the clear 451 
supernatant were transferred to 1.7 mm NMR tubes. Spectra were recorded on an 452 
ultrashielded 600 MHz spectrometer (Bruker AVANCE III HD, Karlsruhe, Germany) with a 453 
triple resonance 1.7 mm room temperature probe. Spectra used for analysis were acquired 454 
with a 2h 55min lasting CPMG pulse program. Metabolite annotation and quantification was 455 
done with ChenomX NMR Suite 8.3. 456 
 457 
Statistical analysis 458 
 459 
Bar diagrams were prepared using GraphPad Prism 6.0. FACS data were analysed using one-460 
way ANOVA for multiple group comparisons (mild, moderate, convalescent and HC) in 461 
GraphPad Prism software. No matching or pairing was used. Assumed Gaussian distribution 462 
with equal standard deviations (SDs) for experimental design. Mean of each group was 463 
compared with the mean of every other group and Tukey’s post-hoc tests for multiple 464 
comparisons. P value considered significant less than 0.05. Metabolites data were analysed 465 
with MetaboAnalyst 4.0 software. 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
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Figure legends: 474 
 475 
Fig. 1: Comparison of monocytes and NK cell percentage amongst study groups. 476 
 477 

A. The stained PBMCs were gated on the monocyte population and CD3+CD19+ cells 478 
were excluded. Cell populations are displayed for CD16 and CD14 expression (upper 479 
FACS panel). One exemplary dot plot is shown per study group. The bar diagrams 480 
(lower panel) show the non-classical (CD16++CD14+), intermediate (CD16++CD14++) 481 
and classical (CD16-CD14++) monocytes. *P value <0.05, **P value <0.01 and ***P 482 
value <0.001. 483 

B. The stained PBMCs were gated on lymphocyte population and further excluded the 484 
CD3+CD19+ cells and examined for the CD56 and CD16 expression in HC, mild, 485 
moderate and convalescent (upper FACS panel). One exemplary dot plot is shown per 486 
study group. The bar diagram shows the CD56+CD3-CD19- NK cells. **P value <0.01 487 
and ****P value <0.0001. 488 

 489 
Fig. 2: Increased B cells in mild and moderate patients and reduced CD8+ cytotoxic T cells in 490 
mild and convalescent patients 491 
 492 

A. The stained PBMCs were gated on lymphocyte population and examined for the CD19 493 
and CD3 expression in HC, mild, moderate and convalescent (upper FACS panel). 494 
One exemplary dot plot is shown per study group. The bar diagram shows CD3-CD19+ 495 
B cells. *P value <0.05, **P value <0.01 and ***P value <0.001. 496 

B. The CD19-CD3+ lymphocytes were examined for CD4+ and CD8+ T marker expression. 497 
One exemplary dot plot is shown per study group. There was statistically significant 498 
difference among HC, mild, moderate and convalescent (upper FACS panel). 499 
However, CD8+ T cells were significantly reduced in outpatient and convalescent 500 
patients. *P value <0.05. 501 

 502 
Fig. 3: Decreased activation and cytotoxic functional protein expression of CD8+ T cells in 503 
convalescent patients 504 
 505 

A. CD8+ T cells were examined for the expression of activation marker HLA-DR (upper 506 
FACS panel). One exemplary dot plot is shown per study group. The bar diagram 507 
(lower panel) shows that HLA-DR was significantly lower on CD8+ T cells in mild, 508 
moderate and convalescent COVID-19+ patients compared with HC. 509 

B. CD8+ T cells were examined for the expression of their cytotoxic potential using 510 
granzyme B and perforin expression using IC staining (upper FACS panel). One 511 
exemplary dot plot is shown per study group. There was statistically significant 512 
difference among HC, mild, moderate and convalescent (upper FACS panel) for 513 
granzyme B. The bar diagram (lower panel) shows that perforin expression was 514 
significantly lower on CD8+ T cells in convalescent COVID-19+ patients compared with 515 
HC, though mild and moderate represent lower expression of perforin, but it did not to 516 
a significant level. *P value <0.05. 517 

 518 
Fig. 4: Increased exhausted CD8+ T cells in convalescent patients 519 

 520 
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A. Expression of activation marker CD38 on CD8+ T cells (upper FACS panel). One 521 
exemplary dot plot is shown per study group. The bar diagram (lower panel) shows 522 
that CD38 expression was significantly higher on CD8+ T cells in convalescent COVID-523 
19+ patients compared with HC. *P value <0.05. 524 
 525 

B. Expression of activation marker CD38 and PD-1 on CD8+ T cells (upper FACS panel). 526 
One exemplary dot plot is shown per study group. The bar diagram (lower panel) 527 
shows that PD-1+CD38+ expression on was significantly higher on CD8+ T cells in 528 
convalescent COVID-19+ patients compared with HC. *P value <0.05, **P value <0.01. 529 

 530 
Fig. 5: 1H-NMR spectroscopy of PBMC extracts  531 

A. Heatmap of featured metabolites’ concentrations plotted with SARS-CoV-2 532 
progression group clustering. 533 

B. Principle component analysis (PCA) was performed to identify the clustering of two 534 
different groups. HC and convalescent COVID-19 patient samples cluster together 535 
while SARS-Co-2 infected mild and moderate patients cluster in a separate cluster with 536 
PC1: 90.7% and PC2: 2.6%. 537 

C. Box plots for differentially abundantly present metabolites in different group including 538 
HC, mild, moderate, and convalescent COVID-19 patient. *P value <0.05, **P value 539 
<0.01 and ***P value <0.001. 540 
 541 

Fig. 6: Pattern hunter plots provide an insight of close correlations with other metabolites 542 
during COVID-19 infection. 543 

A. Variable Importance in Projection (VIP) scores for all metabolites in the four studied 544 
groups.  545 

B. Pattern hunter plot for glucose.  546 
C. Pattern hunter plot for lactate and fructose. 547 

 548 
Suppl. Fig. 1: Total % counts of monocytes and lymphocytes from PBMCs of COVID-19 549 
patients.  550 

A. Fixed PBMCs samples were acquired on flow cytometry on 2-3 different days for the 551 
entire experiments. Total 200,000 cells were acquired by flow cytometry and gating 552 
was performed based on FSC and SSC parameters for lymphocytes, monocytes and 553 
dead cells as described earlier67-69.  554 

B. The bar graphs represent the % of lymphocytes and monocytes. 555 
C. Gating strategy for T lymphocytes (CD3, CD4 and CD8) monocytes (CD14 and 556 

CD16)44, NK cells (CD56) using FMO controls. 557 
 558 
Suppl. Fig. 2: Kinetics of regulatory T cells is not affected significantly in mild, moderate and 559 
convalescent patients.  560 
 561 
Foxp3+ expression on CD19-CD3+CD4+CD45RA- T cells to identify the regulatory T cells in 562 
HC, outpatient, outpatient and convalescent (upper FACS panel). There was statistically 563 
significant difference among HC, mild, moderate and convalescent (upper FACS panel).  564 
 565 
Suppl. Fig. 3: Metabolite analysis in COVID-19 patients 566 

A. Analysis of Variance (ANOVA) for multi-group comparisons 567 
B. Partial Least Squares Discriminant Analysis (PLSDA) scores plot 568 
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C. Hierarchical clustering of metabolites (distance measured with Pearson r correlation 569 
coefficient)   570 

D. Boxplots for branched chain amino acids valine and leucine 571 
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Suppl. Fig. 1
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Suppl. Fig. 2
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Suppl. Fig. 3
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