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ABSTRACT 50 

Little is known of the geospatial architecture of individual cell populations in lung 51 

adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 52 

186,916 cells from five early-stage LUADs and fourteen multi-region normal lung tissues 53 

of defined spatial proximities from the tumors. We show that cellular lineages, states, 54 

and transcriptomic features geospatially evolve across normal regions to the LUADs. 55 

LUADs exhibit pronounced intratumor cell heterogeneity within single sites and 56 

transcriptional lineage-plasticity programs driven by KRAS mutations. T regulatory cell 57 

phenotypes are increased in normal tissues with closer proximity to LUAD, in contrast to 58 

diminished signatures and fractions of cytotoxic CD8+ T cells, antigen-presenting 59 

macrophages and inflammatory dendritic cells. Further, the LUAD ecosystem harbors 60 

gain of ligand-receptor based interactions involving increased expression of CD24 61 

antigen on epithelial cells and SIGLEC10 on myeloid subsets. These data provide a 62 

spatial atlas of LUAD evolution, and a resource for identification of targets for treatment. 63 

Statement of significance: The geospatial ecosystem of the peripheral lung and early-64 

stage LUAD is not known. Our multi-region single-cell sequencing analyses unravel cell 65 

populations, states, and phenotypes in the spatial and ecological evolution LUAD from 66 

the lung that comprise high-potential targets for early interception.  67 
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INTRODUCTION 69 

 70 

Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer 71 

and accounts for most cancer deaths (1,2) Over the past decade and following results 72 

from the National Lung Screening Trial, annual low dose CT screening was endorsed in 73 

an effort to reduce lung cancer mortality (3). Since then, an increasing number of early-74 

stage LUAD diagnoses has warranted the need for novel personalized early-treatment 75 

strategies, which in turn heavily rests on an improved understanding of the molecular 76 

and cellular processes underlying early LUAD development.  77 

 78 

Previous studies have identified molecular alterations in histologically normal-appearing 79 

epithelial fields that are close to solid tumors including those of the lung and that are 80 

less prevalent or absent in relatively more distant (from the tumor) regions -- suggesting 81 

geospatial heterogeneity in the uninvolved lung that is pertinent to development of a 82 

nearby tumor (4). While these studies have provided valuable insights into the spatial 83 

development of cancer from a particular niche in the lung, they have been mainly 84 

guided by bulk profiling approaches (4,5). It is now appreciated that editing of the 85 

immune microenvironment towards protumor phenotypes including escape of immune 86 

surveillance portends the underlying biology, development, and progression of LUAD 87 

(5). Yet, the interplay between individual immune cell populations (and other cell 88 

subsets) in spatial development of early-stage LUAD is not known. Technologies that 89 

profile tissues at single-cell resolution have permitted delineating the molecular and 90 

cellular complexity of tumor ecosystems. Recent reports have employed single-cell 91 

sequencing technologies to chart the immune microenvironment of advanced lung 92 

cancers as well as to probe mechanisms underlying lung tumor metastasis and 93 

response to targeted therapies (6-9). Yet, the complex spatial evolution of 94 

heterogeneous cellular populations and their interactions, and as an early-stage LUAD 95 

develops from the peripheral lung, has remained largely unresolved.   96 

 97 

Here, we sought to discern the spatial atlas of the peripheral lung and early-stage LUAD 98 

at single-cell resolution to better understand the topological architecture of LUAD 99 
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evolution. We performed deep scRNA-seq analysis of 19 spatial regions, including 100 

enriched epithelial populations, from five early-stage LUADs and 14 multi-region 101 

normal-appearing lung tissues with differential and defined spatial proximities from the 102 

tumors. Our study unravels tumor evolutionary trajectories as well as geospatial 103 

evolution in cell populations, their expression signatures, and ligand-receptor based 104 

interactions that portray how early-stage LUAD develops from the lung ecosystem.  105 

 106 

 107 

RESULTS 108 

 109 

Single-cell spatial landscape of early-stage LUAD  110 

To begin to chart a comprehensive single-cell atlas of early-stage LUAD and the 111 

peripheral lung, we performed scRNA-seq on all cells from a freshly resected early-112 

stage LUAD (P1) as well as matched tumor-adjacent and relatively more distant normal 113 

lung tissues (Fig. 1A). The spatial locations of multi-region normal tissues were 114 

carefully defined with respect to the tumor edge (Supplementary Methods), such that 115 

the studied samples span a spatial continuum and, thus, enable interrogation of 116 

geospatial relationships among early-stage LUAD and the peripheral lung tissues, 117 

hereby defined as LUAD “field”. Unsupervised clustering of 15,132 QC-passed cells 118 

revealed cell clusters representing 5 major cellular lineages, namely epithelial, 119 

endothelial, myeloid, lymphoid, and stromal cell subsets (Fig. 1B, Supplementary Fig. 120 

S1). Epithelial (EPCAM+) cell fractions were 3.7%, 5.4%, and 3.5% for tumor, tumor-121 

adjacent and -distant normal samples, respectively, at an average of 4.2% and in line 122 

with previous studies interrogating different subtypes and/or stages of lung cancer 123 

((8,10); Fig. 1B and C). 124 

 125 

To increase the throughput and to better capture patterns of cellular heterogeneity 126 

based on distance from LUADs, in particular within the epithelial lineage, we performed 127 

separate scRNA-seq analysis on epithelial (EPCAM+) and non-epithelial (EPCAM-) 128 

single cells enriched from early-stage LUADs of four additional patients (P2-P5, 129 

Methods), each with three matching normal lung tissues of defined spatial proximities to 130 
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LUADs: tumor-adjacent, -intermediate and -distant (total of 19 samples and 35 scRNA-131 

seq libraries from P1-P5; Fig. 1A). A total of 186,916 cells were retained for subsequent 132 

analyses with a median of 1,844 genes detected per cell (Supplementary Fig. S1A-133 

S1C; Supplementary Table S1). By single-cell sequencing two separate fractions 134 

(EPCAM-positive and EPCAM-negative), we were able to profile samples markedly 135 

enriched with epithelial cells (37.6%, n = 70,030 epithelial cells) in comparison to the 136 

unbiased approach (4.2%, non-EPCAM-enriched) in P1 (Fig. 1D). Cells were uniformly 137 

derived from all spatial samples and their lineage cluster fractions spatially distributed 138 

along the continuum of LUAD-to-distant normal tissues (Fig. 1E). We next computed 139 

the Euclidean distance metric and from this inferred hierarchical relationships among 140 

major cell lineages across the spatial fields (Fig. 1F, see Methods). Overall, cells of the 141 

LUAD tumor samples were transcriptomically distinct from those of the normal samples 142 

across major cell lineages. Of note, we found that cells from adjacent normal samples in 143 

3 out 5 patients (P2, P4 and P5) were clustered more closely with those of LUAD tumor 144 

samples (i.e. lymphoid and myeloid lineages) than those of intermediate and distant 145 

normal tissues, thereby reflecting possible transcriptomic gradients (Fig. 1F). 146 

 147 

We then further classified lymphoid and myeloid lineages and determined major cell 148 

types, such as T cells, B cells, natural killer (NK) cells, macrophages, or dendritic cells 149 

(DC) based on expression of canonical marker genes (Fig. 1G; Supplementary Fig. 150 

S1E, Methods). Analysis of spatial cell composition revealed distinct topological 151 

gradients including greatly increased fractions of B cells and decreased abundance 152 

levels of NK cells with greater proximity to the tumors (Fig. 1H; Supplementary Table 153 

S2), which were evident and consistent across patients (Fig. 1I). These observations 154 

highlight geospatial transcriptomic heterogeneity in single-cell tumor microenvironment 155 

landscape of early-stage LUADs.  156 

 157 

Spatial diversity and intratumoral heterogeneity of lung epithelial lineage  158 

We next interrogated spatial epithelial features of the LUADs and multi-region normal 159 

tissues. The 70,030 epithelial cells formed 10 distinct clusters representing different 160 

airway lineages including alveolar type I (AT1; C2, AGER+), AT2 (C3; SFTPC+), basal 161 
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(C4; KRT15+), bronchioalveolar (C5; SFTPC+/SCGB1A1+), ciliated (C6; PIFO+) and 162 

club/secretory (C7; BPIFB1+) cells (Figs. 2A and B; Supplementary Fig. S2A; 163 

Supplementary Table S3). We also identified, as distinct clusters, the recently-164 

described and rare ionocytes (C8; FOXI1+/CFTR+; (11)), understudied bipotent alveolar 165 

progenitors (C1; (12)), as well as unique cell states such as proliferating basal cells 166 

(C10; TOP2A+). In addition, we noted a cluster of malignant-enriched (C9) cells of 167 

mixed lineage (8) mostly from the LUADs (Fig. 2A-C). Cells from the five LUADs were 168 

predominantly, yet not exclusively, comprised of C9 cells (Fig. 2B; Supplementary Fig. 169 

S2B; Supplementary Table S4). Interestingly, few cells from the normal tissues were 170 

found in the C9 cluster (Fig. 2A-C). Therefore, to distinguish bona fide malignant cells 171 

from non-malignant subsets, we employed a strategy that infers copy number variations 172 

(CNVs) from scRNA-seq data in every epithelial cell (13) (Methods). We found overall 173 

high CNV (inferCNV) scores in cells from C9 (Fig. 2A, right), thereby supporting the 174 

overall malignant assignment of this cluster. We also noted pronounced steady-state 175 

enrichment or depletion of epithelial subsets with closer spatial proximity to the tumors 176 

(Fig. 2C and D). Relative to cells from tumor-intermediate or -distant normal sites, cells 177 

from tumor-adjacent normal tissues were, overall, more transcriptomically similar 178 

(clustered closely) to those from the LUADs (Fig. 2E), signifying spatial epithelial 179 

patterns that are possibly tumor-pertinent.  180 

 181 

Alveolar differentiation hierarchies have been shown to partake in lung tumor 182 

development in vivo (12,14,15). In our cohort, alveolar cells with definitive lineage 183 

features (e.g. AT1, AT2, and alveolar progenitors) were marked depleted in LUAD 184 

tissues (Fig. 2C and D), which prompted us to dissect potential alveolar differentiation 185 

trajectories. Pseudotemporal ordering of alveolar cells revealed a developmental 186 

hierarchy that was initiated by AT2 cells and that followed a main trajectory of 187 

differentiation into AT1 cells (Supplementary Fig. S2C and S2D) in close agreement 188 

with previous studies in mice (12,14,15). The differentiation trajectory included 189 

increased NOTCH signaling score (Supplementary Fig. S2E and S2F) in line with 190 

previously reported role of NOTCH in AT2-to-AT1 differentiation and alveolar repair 191 

(16). 192 
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 193 

To further investigate malignant programs, we performed subclustering of malignant-194 

enriched C9 cells (n = 10,667 cells) while projecting inferCNV scores, which separated 195 

likely malignant cells from subsets of normal tissues such as those evident in P2 (Fig. 196 

2F; Supplementary Fig. S2G; Supplementary Table S5). We noted overall low 197 

inferCNV scores in malignant-enriched cells derived from the LUAD of P2 (Fig. 2F). 198 

Interestingly, among all P2 epithelial subsets, 29% of malignant-enriched cells (160 of 199 

547) harbored the KRAS G12D mutation (Fig. 2F and G; Supplementary Fig. S2H). 200 

These cells exhibited distinctively high expression of MUC5AC (Fig. 2G) and tumor 201 

markers (e.g., CEACAM5, Supplementary Fig. S2I; Supplementary Table S6). They 202 

also displayed elevated levels of LCN2 and reduced expression of NKX2-1 when 203 

compared to KRAS wild type cells from the same LUAD (Supplementary Fig. S2I; 204 

Supplementary Table S6), suggestive of mucinous differentiation (17,18) and in line 205 

with the histological (mucinous) pattern of this tumor (Supplementary Table S1). These 206 

findings underscore spatial heterogeneity dynamics comprising driver mutation, lineage 207 

plasticity, and stable chromosomal alterations that are unique to the cellular ecosystem 208 

of KRAS-mutant LUAD. 209 

 210 

Unlike P2, C9 cells in P3 and P5 were almost exclusively derived from the LUAD 211 

tissues (Fig. 2F). In P3 LUAD, we identified large-scale chromosomal alterations 212 

(Supplementary Fig. S2G; Supplementary Table S5), based on which unsupervised 213 

clustering analysis revealed 4 clusters with differential CNV profiles. Among them, three 214 

clusters (C2, C3, and C4) exhibited pronounced CNVs that were indicative of malignant 215 

cell features (Fig. 2H, left). Notably, we found an additional CNV event (i.e. gain of 1p) 216 

unique to cells of cluster C4 but not C2 or C3, possibly signifying a late event in the 217 

evolutionary trajectory of P3 LUAD. When inferCNV clusters were projected on the 218 

pseudotime trajectory plot, we observed a branched differentiation trajectory that mainly 219 

started with cells of C2 and C3 and comprised few “normal cells” with club and 220 

secretory lineage, and that later branched into cells of inferCNV cluster C4 (Fig. 2I, top) 221 

-- suggesting that P3 LUAD perhaps originated from club/secretory cells and that indeed 222 

C4 evolved from C2 and C3. P5 LUAD comprised 6 distinct inferCNV clusters that are 223 
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indicative of high degree of genotypic heterogeneity within the same tumor region (Fig. 224 

2H, right). Among these clusters, cells of C1 had more intensive CNVs, while cells of C4 225 

clustered the closest to those of C3 which comprised mostly non-malignant cells (Fig. 226 

2H, right). Pseudotime trajectory analysis revealed a C4-to-C1 evolutionary path, which 227 

in contrast to P3 was unidirectional and unbranched, suggesting that C4 and C1 in P5 228 

signified malignant cells from early and late developmental states, respectively (Fig. 2I, 229 

bottom). Together, our single-cell interrogation of a large number of epithelial cells from 230 

multi-region tissues identified diverse epithelial identities, developmental malignant 231 

trajectories, as well as high resolution intratumor cell heterogeneity. 232 

 233 

Lymphoid reprogramming towards a protumor microenvironment  234 

We further characterized lymphoid spatial dynamics (Fig. 1H and I), including unique 235 

cellular states across all lymphoid clusters (n = 53,882 cells) in the LUAD field samples 236 

(see Methods; Supplementary Fig. S3A). This clustering analysis unveiled 10 237 

transcriptomically distinct lymphoid cell types/states (Fig. 3A and 3B, Supplementary 238 

Table S7) that were, overall, spatially modulated by tumor proximity (Fig. 3C; 239 

Supplementary Fig. S3B). Relative to normal tissues, LUADs were heavily enriched 240 

with plasma cells (SDC1+/MZB1+), B cells (CD19+/CD22+), and regulatory T cells 241 

(Treg; FOXP3+) (Fig. 3A-C). With increasing tumor proximity, we noted a gradual 242 

decrease in NK cells (GNLY+), innate lymphoid cells (ILCs), both GZMA-hi and GNLY-243 

hi CD4+ cytotoxic T lymphocytes (CTL; CD40LG+, BATF+), and GNLY-hi CD8+ CTLs, 244 

all of which were, overall, depleted in the LUADs (Fig. 3A-C). 245 

 246 

We further performed subclustering analysis of CD8+ T cells, which revealed 3 247 

subpopulations, naïve CD8+ T cells, GZMK-hi CD8+ CTLs, and GNLY-hi CD8+ CTLs, 248 

with differential expression of cell state signatures (Fig. 3D; Supplementary Tables S8 249 

and S10). We also computed the naïve and cytotoxic T cell scores using curated gene 250 

signatures of naïve and cytotoxic T cells (see Methods), respectively. Consistently, the 251 

naïve CD8+ T cells showed high naïve T cell scores but low cytotoxic T cell scores and 252 

were composed of cells across all samples in the LUAD fields. In contrast, the GNLY-hi 253 

CD8+ CTLs exhibited high expression levels of cytotoxicity genes (TBX21, KLF3, 254 
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FCGR3A, KLRG1, KLRB1) and high cytotoxic activity but were specifically depleted in 255 

LUAD samples of all patients (Fig. 3C-E). In line with this, we also observed a 256 

significant spatial pattern of reduced cytotoxic activity in P3 and P4 (Supplementary 257 

Fig. S3D). Overall, CD8+ CTLs showed significant and spatially-modulated reduction in 258 

cytotoxic signature score (depleted in tumors of all patients) and decreased expression 259 

of major cytotoxicity genes, including reduced NKG7 and GNLY expression levels (Fig. 260 

3E).  261 

 262 

Spatial analysis of CD4+ T cell states (Supplementary Tables S9 and S10) showed 263 

that LUAD tissues were specifically enriched with FOXP3+ Tregs (Fig. 3F and 3G; 264 

Supplementary Table S11) and the Treg signature scores were significantly and 265 

spatially increased with closer proximity to all LUADs (Supplementary Fig. S3E). The 266 

Tregs cells also expressed high levels of pro-tumor immune checkpoints including 267 

TIGIT, CTLA4, LAG3, or PDCD1 (Fig. 3G). Of note, the fraction of Tregs co-expressing 268 

both CTLA-4 and TIGIT immune checkpoints was progressively higher along the 269 

spectrum of distant normal sites to more adjacent (to the tumor) regions up to the 270 

LUADs (Fig. 3G, bottom). In contrast, we noted a significant reduction of cytotoxic 271 

CD4+ CTLs characterized by high expression of GZMA, GNLY, or both GZMA and 272 

GZMH, with increasing proximity to all LUADs (Supplementary Fig. S3F-H).  273 

 274 

We further examined the spatial enrichment of LUADs with plasma cells and B cells 275 

(Fig. 3A-C; Supplementary Table S11). Expression profiling of plasma cells revealed 276 

spatial changes in isotype-switching, such as increased IGHA1/2 and decreased 277 

IGHG1/3 with increasing proximity to P3 and P5 LUADs (Supplementary Fig. S3I-K; 278 

Supplementary Table S12). Based on differential gene expression profiles, we 279 

identified 3 distinct subsets of B cell states (Supplementary Table S13), including a 280 

LUAD-enriched subcluster (C0) with high expression levels of RAC2+ and ACTG+ 281 

(Supplementary Fig. S3L-N), that are known to play key roles in synapse formation in 282 

B cells (19). Importantly, when analyzed in an external cohort of matched normal lung, 283 

preneoplasia and LUAD (20), the B cell signature (C0) was progressively increased 284 

across atypical adenomatous hyperplasias (AAH), the preneoplastic precursors of 285 
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LUAD, and invasive LUAD lesions compared to matched normal lung tissues 286 

(Supplementary Fig. S3O). Taken together, these analyses propose spatial properties 287 

in lymphoid cell states that underlie pro-tumor immune remodeling in early-stage LUAD.  288 

 289 

Depletion of antigen presenting macrophages and inflammatory dendritic cells  290 

Spatial LUAD field patterns in myeloid cells (Fig. 1H and 1I) prompted us to further 291 

investigate myeloid subsets and cellular states in the early-stage LUADs and their 292 

normal multi-region tissues (Supplementary Fig. S4A). In total, 45,803 myeloid cells 293 

were clustered into 13 distinct subsets: classical monocytes (S100A8+, S100A9+), non-294 

classical monocytes (CDKN1C+), mast cells (MS4A2+), neutrophils (IL1A+), M2-like 295 

macrophages C1 (TREM2+), M2-like macrophages C5 (CD163+), alveolar 296 

macrophages (MARCO+), classical dendritic cells 1 (cDC1; CLEC9A+), cDC2 297 

(CLEC10A+), plasmacytoid DC (pDC; PLD4+), other DCs (CCL22+) and proliferating 298 

myeloid cells (TOP2A+) (Fig. 4A and 4B; Supplementary Tables S14 and S15). 299 

Mapped to the field samples, M2-like macrophages C5, monocytes (classical and non-300 

classical), and mast cells were gradually depleted with increasing tumor proximity, 301 

whereas M2-like macrophages C1, proliferating myeloid subsets and cDC2 cells were 302 

steadily enriched in the tumors (Fig. 4A and 4C; Supplementary Fig. S4B and S4C).  303 

 304 

We next performed subclustering analysis of monocytes and macrophages (n = 27,664 305 

cells) which revealed five distinct subclusters, and confirmed the unique enrichment of 306 

M2-like macrophages C1 in the LUAD tissues (Fig. 4D; Supplementary Tables S14). 307 

Further, we characterized monocyte and macrophage subsets by antigen presentation 308 

capability (i.e. antigen presentation signature score), and found that the M2-like 309 

macrophages C1 showed diminished antigen presentation scores compared to cells of 310 

M2-like macrophages C5 which were mainly enriched in normal samples (Fig. 4D; 311 

Supplementary Table S16). In addition, we interrogated the spatial expression of 312 

antigen presentation-related genes in this cluster. We found markedly reduced 313 

expression levels of antigen presentation signature genes, including MHC class I and 314 

MHC class II members with increasing spatial proximity to the LUADs (Fig. 4E and 4F). 315 

Furthermore, the spatially-driven pattern of macrophage antigen presentation depletion 316 
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was evident across M2-like macrophages combined from both clusters C1 and C5 and 317 

was statistically significant in 4 of the 5 LUAD patient fields (Fig. 4G).  318 

 319 

To characterize spatial DC dynamics in early-stage LUAD with respect to cellular states, 320 

we first examined gene and signature score differences between different subsets of 321 

DCs (n = 8,694). Spatial field patterns were evident in cDC2 and pDC subsets (Fig. 4H). 322 

We observed differential expression of an inflammatory gene signature between the 323 

three cDC2 subclusters with C1, cells of which exhibited the lowest inflammatory 324 

scores, heavily enriched in the LUADs (Fig. 4I and 4J). In addition, unsupervised 325 

subclustering analysis of cDC2 cells using a different approach (SC3, see Methods) 326 

identified three distinct cDC2 subclusters, characterized by differential expression of the 327 

chronic inflammatory gene signature (highly enriched in C2) and MHC class II genes 328 

(enriched in C0/1) (Supplementary Fig. S4D; Supplementary Table S17) that were 329 

previously shown to discriminate inflammatory from non-inflammatory cDCs (21). 330 

Reduced expression of pro-inflammatory genes and increased expression of anti-331 

inflammatory genes was evident in all cDC2 cells along the continuum of normal-to-332 

LUAD space (Fig. 4K). cDC2 subcluster with the highest inflammatory score (C2) was 333 

markedly under-represented in the LUADs and was further characterized by a spatially 334 

diluted inflammatory signature score with increasing tumor proximity (Fig. 4L and 4M). 335 

Notably, the inflammatory signature score significantly and progressively decreased 336 

along the continuum from normal lung tissues, to matched premalignant AAHs and 337 

invasive LUADs (Fig. 4N) in sharp contrast to non-inflammatory DC expression 338 

components (Supplementary Fig. S4E). We also studied pDC subsets and found 339 

spatial enrichment of FOS, FOSB, and JUN with increasing proximity to the tumors 340 

(Supplementary Fig. S4F and S4G). Altogether, these data describe spatial immune 341 

remodeling dynamics comprising gradual loss of antigen presentation in macrophage 342 

subclusters and of inflammatory phenotypes in subsets of DCs in early-LUAD 343 

microenvironment. 344 

 345 

We also identified multiple stromal populations in our dataset (Supplementary Fig. 346 

S5A-S5C), including tumor enrichment of vascular and airway smooth muscle cells, 347 
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adventitial fibroblasts C5, and endothelial cell (EC) venule clusters (Supplementary 348 

Fig. S5D and S5E). We pinpointed significantly differentially expressed gene sets in the 349 

EC venule subpopulation and altered stromal signatures (Supplementary Fig. S5F) 350 

that support the observed immune-related changes in the LUAD field, and that are in 351 

line with previous observations in a cohort of lung cancers of multiple subtypes (10). 352 

These comprised tumor-specific activation of extracellular matrix reorganization, 353 

syndecan-2 pathway, and neutrophil degranulation, as well as decreased JAK-STAT 354 

signaling and reduced antigen-processing cross-presentation (Supplementary Fig. 355 

S5G and S5H). 356 

 357 

Ligand-receptor based cell-cell communication networks  358 

Crosstalk between tumor cells and elements in the tumor microenvironment, such as 359 

immune cells, has been implicated in the progression of solid tumors largely in part by 360 

mediating immune-evasive and pro-tumor phenotypes (22). To profile cell-cell 361 

communication networks in early-stage LUAD space, we utilized iTALK (23) to leverage 362 

signals from our scRNA-seq dataset and visualize ligand-receptor (L-R)-mediated 363 

intercellular cross-talk that is spatially modulated within the tumor microenvironment 364 

(Fig. 5A; Supplementary Table S18). Computational analysis and annotation were 365 

carried out using the iTALK’s built-in database focusing on immune checkpoint-receptor 366 

pairs (n = 55) and cytokine-receptor pairs (n = 327) (Fig. 5A). Overall, we found 367 

reduced overlap of L-R interactions between the tumor and distance normal tissues 368 

than that between the tumor and more proximal (adjacent, intermediate) regions (Fig. 369 

5B).  370 

 371 

By comparative analysis, we identified altered cellular interactions that were significantly 372 

and differentially increased or decreased in LUADs versus their respective spatial 373 

normal tissues (Fig. 5C; Supplementary Fig. S6A). Specifically, we noted increased 374 

interactions between immune checkpoint proteins CD24 or LGALS9 (Galectin-9) on 375 

tumor epithelial cells, and SIGLEC10 on macrophages or HAVCR2 (TIM-3) on DCs, 376 

respectively, and which were shared across multiple patients (Fig. 5C and 5D; 377 

Supplementary Fig. S6A and S6B; Supplementary Table S19). These interactions 378 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2020. ; https://doi.org/10.1101/2020.09.04.283739doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283739


14 

 

were differentially enriched in tumors versus normal tissues at different distances from 379 

the tumor (Fig. 5C; Supplementary Fig. S6A). Expression levels of the checkpoints 380 

CD24 and LGALS9 (Galectin-9) were increased in epithelial cells from LUAD tissues in 381 

general, and in malignant epithelial cells in particular, and accompanied by increased 382 

expression of their cognate predicted ligands SIGLEC10 and HAVCR2 (TIM-3), 383 

respectively, on myeloid cells and with increasing tumor proximity (Fig. 5D; 384 

Supplementary Fig. S6B). These interactions suggest a spatial pattern of modulation 385 

in cell-cell communication that is mediated by epithelial inhibitory checkpoint signaling to 386 

myeloid cells. Targeted analysis of CD24 expression in an external cohort using the 387 

Nanostring platform revealed progressively and markedly increased expression of the 388 

antigen across normal lung tissues, AAHs, and LUADs (Fig. 5F). CD24 positively 389 

correlated with expression of the epithelial marker EPCAM as well as with levels of pro-390 

tumor and immune suppressive features (TIGIT, CTLA4, FOXP3, CCL19), in contrast to 391 

negatively correlating with anti-tumor immune markers (GZMB, GZMH, PRF1) (Fig. 5F; 392 

Supplementary Fig. S6G). These pro-tumor and epithelial patterns of CD24 were 393 

further validated in LUADs (n = 51) from The Cancer Genome Atlas (TCGA) cohort (24) 394 

compared to matched adjacent normal lung tissues (Fig. 5G and 5H; Supplementary 395 

Fig. S6H), thereby suggesting a potential role for epithelial CD24 signaling in pro-tumor 396 

immune reprogramming in LUAD evolution. 397 

 398 

We also identified cytokine-receptor pairs that were differentially modulated in the LUAD 399 

space, such as communication between tumor epithelial cells with high expression of 400 

the cytokine CX3CL1, and DCs or macrophages expressing increased levels of its 401 

cognate receptor CX3CR1 (Supplementary Fig. S6C, S6D, S6E, S6F; 402 

Supplementary Table S18). CX3CR1 was increasingly expressed on macrophages 403 

and DCs but decreased on CD8 T cells of tumor samples (Fig. 5F), in line with previous 404 

reports implicating macrophage CX3CR1 with pro-tumor features (25). These findings 405 

signify a potential spatial enrichment of pro-tumorigenic and tumor-mediated cytokine 406 

signaling to macrophages infiltrating the LUAD space. 407 

 408 

 409 
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DISCUSSION 410 

 411 

Previously, spatial molecular changes have been documented in the local niche of 412 

LUAD including loss-of-heterozygosity in 3p and 9p, point mutations and tumor 413 

suppressor methylation (26,27). Earlier work also underscored transcriptome profiles, 414 

somatic driver variants, as well as genome-wide allelic imbalance that are shared 415 

between lung cancer and adjacent normal-appearing airway cells but that are absent in 416 

distant normal cells, thereby pointing to putative drivers of lung oncogenesis (4,5). As 417 

such, the interrogation of spatial dynamics in LUADs has been a topic of interest, 418 

particularly owing to its utility as a surrogate for studying difficult-to-obtain longitudinal 419 

patient (including precursor) samples. However, much of these studies have focused on 420 

understanding, by bulk profiling methods, spatiotemporal profiles in an aggregate of 421 

cells, thereby inadvertently obscuring the individual contributions of epithelial and tumor 422 

microenvironmental cues to the pathogenesis of lung cancer. Our knowledge of the 423 

spatial architecture of individual cell populations in the evolution of this malignancy 424 

remains poorly understood. By single-cell interrogation of multi-region samples, we here 425 

characterized spatial and ecological maps comprising many epithelial and non-epithelial 426 

subsets and underlying emergence of early-stage LUAD from its local niche.  427 

 428 

Multi-region or spatial analyses have been employed to interrogate intratumor 429 

heterogeneity (ITH) in solid tumors including LUADs, in order to understand 430 

evolutionary trajectories and therapy response (28). Cohorts based on multi-region 431 

sampling and microdissection strategies have increased the resolution for detecting 432 

subtle, rare and subclonal events by bulk sequencing approaches. Our analyses here 433 

showed that ITH is evident at the tumor epithelial cell and intra-site level, i.e. within the 434 

same tumor region or tissue. We applied an integrative approach to dissect ITH of 435 

malignant cells and characterized cell clusters with differential transcriptomic profiles, 436 

evolution trajectories, CNV burdens, and/or driver mutations. We also found “normal” 437 

cells in the LUAD tissues themselves that are close in the inferred trajectory paths to 438 

specific malignant cell subsets (e.g. club/secretory cells for the mucinous LUAD in P2) 439 

and perhaps represent the cells-of-origin for tumor cells. It is noteworthy that we found 440 
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in the normal-appearing samples cells with features of malignant-enriched subsets and 441 

demonstrating heterogeneous CNV profiles. Whether these cells comprise early LUAD 442 

precursors, mutagenic clones that do not progress to malignancy (e.g. negatively 443 

selected by the immune microenvironment), or putative molecular field cancerization 444 

remains to be investigated. It is important to mention that LUAD exhibits remarkable 445 

inter-patient heterogeneity in histological differentiation patterns, driver alterations and 446 

suggested tumor cells-of-origin (29). We could not characterize the full spectrum in the 447 

heterogeneity of these features (e.g., programs in tumor cells-of-origin of different 448 

lineages) given the limited number of patients profiled. Nonetheless, our in-depth 449 

analysis of a relatively large number of epithelial cells unveiled different characteristics 450 

(airway lineage trajectories, malignant cell programs, potential tumor cells-of-origin, and 451 

cellular ITH) of the epithelial architecture of early-stage LUAD development that could 452 

be extended in the future to a larger and more diverse array of LUADs.   453 

 454 

We pinpointed G12D mutations in KRAS, the most frequently mutated oncogene in 455 

LUAD, to a unique subset of malignant cells within P2 tumor. These cells had overall 456 

low copy number alterations, perhaps reminiscent of findings in LUADs driven by strong 457 

driver genes in vivo (30). These cells comprised increased expression of genes 458 

associated with KRAS-mutant cancer such as LCN2 which is a marker of inflammation 459 

(17,31) and elevated levels of genes associated with hyper-mutation such as CDA (32). 460 

KRAS-mutant cells, compared to other malignant-enriched cells from P2, exhibited 461 

reduced expression of the lineage-specific oncogene NKX2-1 (33). Earlier studies 462 

demonstrated that increased LCN2 and reduced NKX2-1 is observed in mucinous 463 

KRAS-mutant LUADs or those undergoing gastric differentiation (17,18), which is in line 464 

with the histological variant of P2 LUAD. It is noteworthy that NKX2-1 exhibits context-465 

dependent roles in LUAD development. While Nkx2-1 was shown to enhance Egfr-466 

driven lung tumorigenesis (34), Winslow et al demonstrated that the transcription factor 467 

suppresses Kras-mutant LUAD by controlling tumor differentiation as well as limiting 468 

progression and metastatic potential (35). This is in line with our finding of reduced 469 

expression of airway lineage-specific genes (e.g. SCGB3A1, SFTPB) suggestive of loss 470 

of differentiation in the KRAS-mutant cells compared to other malignant-enriched cell 471 
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subclusters from the same LUAD tissue. Our observations are also in accordance with 472 

the acquisition of a mixed-lineage phenotype by malignant lung epithelial cells recently 473 

reported by Laughney and colleagues (8). Our findings also allude to the possibility that 474 

tumor cell lineage plasticity may occur at the early stage of KRAS-mutant LUAD 475 

carcinogenesis – a supposition that can be better explored with sequencing of a larger 476 

and more diverse repertoire of KRAS-mutant cells.  477 

 478 

Earlier studies have shown that immunosuppressive T regulatory cells are crucial for 479 

immune evasion in lung cancer (36,37). By single-cell analysis of diverse lymphoid 480 

subsets, we found Tregs co-expressing both TIGIT and CTLA-4 immune checkpoints 481 

and that were progressively enriched with increasing geospatial proximity to the LUADs 482 

– suggesting a value in combinatorial targeting of multiple checkpoints for 483 

immunotherapy of early-stage LUAD. We pinpointed B cell signatures implicated in actin 484 

remodeling and immunological synapse formation that are spatially enriched in the 485 

LUADs and progressively increased along the course of normal to preneoplasia and 486 

invasive LUAD. These data suggest important yet unexplored roles for B cell 487 

phenotypes in immune evolution of LUAD. Our spatial single-cell analysis also pointed 488 

to mechanisms by which the myeloid immune microenvironment permits LUAD 489 

pathogenesis. Our interrogation of macrophage subsets revealed downregulation/loss 490 

of antigen presentation in tumor-specific M2-like macrophages, whereby expression 491 

levels of MHC genes as well as genes involved in peptide transport and loading (TAP1, 492 

TAP2, TAPBP; (38)) were markedly reduced. Our study also unveiled relatively 493 

understudied immune subsets in LUAD. We found DC subclusters and programs that 494 

were recently reported in other sites (21), including a non-inflammatory cDC signature 495 

with higher expression of MHC class II genes and that is enriched in LUAD relative to 496 

matched preneoplastic or normal tissues, thereby possibly informing of immune cues 497 

that could be harnessed to manipulate the immunogenicity of tumors. We also identified 498 

an inflammatory tumor-depleted cDC cluster with increased expression of CD163, 499 

CD36, CD14, S100A9, and S100A8. Interestingly, dendritic CD36 is a scavenger for the 500 

acquisition and presentation of cell surface antigens and subsequent sculpting of the 501 

Treg repertoire (39), yet the precise consequences of its stark absence in a LUAD-502 
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specific cDC subset and the effect(s) on the tumor immune microenvironment warrant 503 

further investigation. Nevertheless, these findings, along with our observation of 504 

decreased expression of the inflammatory DC signature across normal lung to 505 

premalignant AAH up to LUAD, suggest that unique cDC subsets play critical roles in 506 

LUAD pathogenesis and, thus, could be potential targets for immune-based 507 

interception. 508 

 509 

Ligand-receptor mediated interactions are known to be the main forms of interactions 510 

responsible for cellular signaling mechanisms and cell-to-cell communication, which is 511 

especially important during carcinogenesis and immune response (22). A better 512 

understanding of cell-to-cell communication networks, particularly ligand-receptor 513 

mediated interactions, may help elucidate tumor-immune co-evolution and immune 514 

reprogramming, and thus, help identify potential therapeutic targets. However, this has 515 

been hampered by the lack of bioinformatics tools for efficient data analysis and 516 

visualization. In this study, we applied the iTALK tool (23) developed by our group and 517 

performed a deep analysis of cellular interaction networks. We identified significant 518 

immune checkpoint- (e.g. CD24, Galectin-9, or TIM-3) and cytokine- (e.g. CX3CL1) 519 

receptor interactions whose enrichment or depletion in the LUAD space signified a 520 

highly pro-tumorigenic milieu. These findings are in accordance with the CD24–Siglec-521 

10 interaction and subsequent “do not eat me” signal recently highlighted in breast 522 

cancer (40). Additionally, our findings of prominently increased expression of CD24 in 523 

hyperplastic precursors (AAH) and LUADs compared to normal lung, and its association 524 

with pro-tumor and immunosuppressive phenotypes in this pathologic continuum, 525 

propose immune functions for CD24 in lung cancer that extend beyond its prognostic 526 

role (41) and that can be harnessed for early intervention. Overall, our interactome 527 

analyses implicate novel or understudied immune subsets as culprits in LUAD 528 

pathogenesis and provide a rationale for expanding the armamentarium of immune-529 

based cancer therapies. 530 

 531 

In summary, our results provide a spatial atlas of early-stage LUAD and its nearby and 532 

distant lung ecosystem. This atlas comprises high cellular heterogeneity as well as 533 
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spatial dynamics in cell populations, cell states and their transcriptomic features that 534 

underlie evolution of the LUAD from the peripheral lung ecosystem. Our extensive 535 

transcriptomic dataset of lung epithelial and immune cells, other populations such as 536 

stromal and endothelial subsets, as well as of tumor-pertinent cell-cell interactions 537 

constitutes a valuable resource to functionally interrogate LUAD trajectories at high 538 

resolution and generate strategies for its early treatment. Also, our study’s multi-region 539 

sampling design in conjunction with single-cell analysis could help address specific 540 

questions in early malignant and immune biology of other solid tumors.  541 

 542 

 543 

METHODS 544 

Additional description of methods can be found in the Supplementary Data file. 545 

 546 

Multi-region sampling of surgically resected LUADs and spatial normal lung 547 

tissue specimens 548 

Patients undergoing surgical resection for primary early-stage lung adenocarcinoma (I-549 

IIIA) and who had not received any preoperative therapy were carefully selected for 550 

derivation of multi-region samples for single cell analysis (Supplementary Table S1). 551 

All patients were evaluated at the University of Texas MD Anderson Cancer Center and 552 

had provided informed consents under approved institutional review board protocols. 553 

Immediately following surgery, resected tissues were processed on ice by an 554 

experienced pathologist assistant (PB). One side of the specimen was documented and 555 

measured, followed by identification of tumor margin, mapping defined collection sites in 556 

one direction along the length of the specimen and spanning the entire lobe, and 557 

making incisions into the surface of the lobe for specimen collection according to the 558 

following criteria. Based on the placement of the tumor within the specimen, tumor-559 

adjacent and -distant normal parenchyma specimen were assigned at 0.5 cm from the 560 

tumor edge and from the periphery of the overall specimen/lobe (furthest distance from 561 

the tumor), respectively. An additional tumor-intermediate normal tissue was selected 562 

for P2-5 that ranged between 3-5 cm from the edge of the tumor. Sample collection was 563 

initiated at normal lung tissues that are farthest from the tumor moving inwards towards 564 
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the tumor to minimize cross-contamination during collection, with each sample being 565 

immediately placed in ice-cold RPMI medium supplemented with 2% fetal bovine 566 

serum, and transported to the processing lab on ice.  567 

 568 

Single cell derivation and scRNA-seq processing 569 

Tumor and spatial normal parenchyma tissues (n = 19 samples) were immediately 570 

minced and enzymatically digested, as previously described ((42), Supplementary 571 

Data). Following red blood cell removal, cells were filtered and counted. Cells were 572 

sorted (by FACS) for viable singlets cells (and also EPCAM+/- fractions from P2-P5). 573 

Sorted fractions were then loaded on individual channels of 10X Chromium Microfluidic 574 

chips, targeting up to 10,000 cells per fraction. Gene expression libraries were 575 

generated according to manufacturer’s instructions using Chromium Next GEM Single 576 

Cell 5' Gel Bead Kit v1.1 (1000169, 10X Genomics), and sequenced on Illumina 577 

NovaSeq 6000 platform (Supplementary Data). 578 

 579 

scRNA-seq data analysis 580 

Single-cell analyses were performed using available computational framework. Raw 581 

scRNA-seq data were pre-processed, demultiplexed, aligned to human GRCh38 582 

reference and feature-barcodes generated using CellRanger (10X Genomics, version 583 

3.0.2). Details of quality control including quality check, data filtering, identification and 584 

removal of cellular debris, doublets and multiplets, batch effect evaluation and 585 

correction are found in Supplementary Methods. Following quality filtering, a total of 586 

186,916 cells were retained for downstream analysis. Raw unique molecular identifier 587 

(UMI) counts were log normalized and used for principal component analysis using 588 

Seurat (43). The output was then processed by Harmony (44) for batch effect correction, 589 

followed by unsupervised clustering analysis using Seurat (43). Uniform Manifold 590 

Approximation and Projection (UMAP) clustering (45) was used for visualization. 591 

EPCAM+ cells were partitioned into major airway lineage clusters, followed by 592 

subclustering within each compartment/lineage to identify subpopulations. In addition, 593 

we applied single-cell consensus clustering (SC3) approach (46) for unsupervised 594 
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clustering analysis. SC3 was run with default parameters and independent of cell 595 

lineage annotation. Differentially expressed genes (DEGs) for each cell cluster were 596 

identified using the FindAllMarkers function in Seurat R package. We applied an 597 

integrative approach to define the cell type and determine its functional state of each 598 

cluster, based on the enrichment of canonical marker genes, top-ranked DEGs in each 599 

cell cluster, and the global cluster distribution, as previously described (47). For 600 

transcriptional signature analysis, single-sample GSVA (ssGSVA) was applied to the 601 

scRNA-seq data and pathway scores were calculated for each cell using gsva function 602 

in GSVA software package (48). 603 

To study hierarchical relationships among cell types identified in this study, pairwise 604 

Spearman correlations were calculated from average expression level (Seurat function 605 

AverageExpression) of each cell type, based on which Euclidean distances between 606 

cell types were calculated. Unsupervised hierarchical cluster analysis was performed 607 

using the R function hclust, and the dendrogram was drawn using R package 608 

dendextend. Monocle 2 (version 2.10.1) (49) was applied to construct single-cell 609 

trajectories. The tool inferCNV (https://github.com/broadinstitute/inferCNV) was applied 610 

to infer large-scale CNVs from scRNA-seq data using NK cells from the same dataset 611 

as a control. Malignant cells were distinguished from non-malignant subsets based on 612 

information integrated from multiple sources including cluster distribution of the cells, 613 

marker genes expression, inferred large-scale CNVs, and presence of the KRAS 614 

mutation. For single-cell somatic KRAS mutation analysis, the reads were extracted 615 

from the original BAM files using cell-specific barcodes and genomic coordinates of 616 

KRAS hot spot mutations and then subjected to quality filtering and duplicates removal, 617 

followed by mutation identification and annotation. Extracted alignments were manually 618 

evaluated using IGV (50). To identify significant ligand-receptor pairs among major cell 619 

lineages (CD4 T cells, CD8 T cells, B cells, macrophages, dendritic cells, endothelial 620 

cells, epithelial cells and fibroblasts), the top 30% of most highly expressed genes were 621 

included in the analysis. Significant cellular interactions were identified using iTALK as 622 

previously described (23). For ligand-receptor annotation, the iTALK built-in ligand-623 

receptor database was used.  624 
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 625 

Statistical analysis 626 

In addition to the bioinformatics approaches described above for scRNA-seq data 627 

analysis, all other statistical analyses were performed using R package v3.6.0. Pseudo-628 

bulk gene expression values for defined cell clusters were calculated by taking mean 629 

expression of each gene across all cells in a specific cluster. Pearson’s correlation 630 

analysis was used to identify genes significantly correlated with CD24 expression. All 631 

statistical significance testing was two-sided, and results were considered statistically 632 

significant at p - value < 0.05. The Benjamini-Hochberg method was applied to control 633 

the false discovery rate (FDR) in multiple comparisons and to calculate adjusted p - 634 

value (q-values). 635 

 636 

Data Availability 637 

All sequencing data generated in this study will be deposited in the Gene Expression 638 

Omnibus.  639 
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FIGURE LEGENDS 806 

 807 

Figure 1. Dissecting early-stage LUAD and the peripheral lung ecosystem using 808 

single-cell RNA sequencing. A, Workflow showing multi-region sampling strategy of 809 

five LUADs and fourteen spatially defined normal lung tissues for analysis by scRNA-810 

seq. Dis, distant normal; Int, intermediate normal; Adj, adjacent normal; LUAD, tumor 811 

tissue. B, Uniform manifold approximation and projection (UMAP) embedding of cells 812 

from tumor, adjacent normal and distant normal samples of patient one (P1). Cells are 813 

colored by their inferred cell types. C, Cell composition in absolute cell numbers 814 

(stacked bar plots) and relative fractions (pie charts) in each spatial field sample derived 815 

from P1. D, UMAP view of cells from all five patients, including EPCAM+ and EPCAM- 816 

pre-enriched cells from P2-P5. Colors represent assigned major cell types. Cycling, 817 

cycling cells. E, UMAP view of cell types by spatial fields. Colors represent assigned cell 818 

types as in panel D. Lollipop plots indicate, for each major cell type, the relative fraction 819 

of cells from each spatial field. Spatial fields are indicated by numbers according to 820 

panel A. F, Dendrograms showing hierarchical relationships of cells among the spatial 821 

fields based on the computed Euclidean distance using transcriptomic features. 822 

Dendrograms are shown for five major cell types (from left to right), for all patients 823 

together (top) and by patient (bottom). G, Same UMAP as in panel D, with further 824 

subclustering of lymphoid and myeloid cells. Colors correspond to the cell type 825 

annotation in panel H for EPCAM- cells. H-I, An area plot showing changes in the 826 

relative fractions among the EPCAM- subsets across spatial fields for all patients 827 

together and by patient (pie charts, panel I). Stacked bar plots in panel I show absolute 828 

cell numbers of the fractions by patient and spatial field.  829 

 830 

Figure 2. Epithelial lineage diversity and intratumoral heterogeneity in the spatial 831 

ecosystem of early-stage LUAD. A, UMAP visualization of all EPCAM+ cells from P1-832 

P5 colored (from left to right) by their assigned cell types, spatial fields, and inferred 833 

copy number variation (inferCNV) scores. B, Heatmap of major lineage marker genes 834 

for EPCAM+ cell clusters (C1-10 as shown in panel A, left), with corresponding bar blots 835 
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outlining relative contribution by spatial field. C, Area plot showing changes in EPCAM+ 836 

subset fractions across spatial fields. D, Representative line plots displaying changes in 837 

abundance of non-malignant epithelial cell clusters across spatial fields (identified by 838 

the colors of the circles, in the same order as in panel C), with embedded pie charts 839 

showing the relative contribution of each spatial field. E, Hierarchical relationships of 3 840 

representative subsets of epithelial cells (from top to bottom) among the spatial fields 841 

based on the computed Euclidean distance using transcriptomic features (left), and 842 

corresponding heatmaps quantifying similarity levels among spatial fields (right). 843 

Similarity score is defined as one minus the Euclidean distance. F, UMAP plots of cells 844 

in the malignant-enriched cluster C9 (panel A), colored by their corresponding patient 845 

origin (left), spatial field (middle), and inferCNV score (right). The zoom in view of the 846 

right panel shows KRAS G12D mutant cells in P2. G, Fraction of cells carrying KRAS 847 

G12D mutation (left bar plot), with numbers indicating the absolute cell numbers, as well 848 

as expression levels of KRAS (violin plot, top right) and MUC5AC (violin plot, bottom 849 

right), within cells of each epithelial lineage cluster of P2. H, Unsupervised clustering of 850 

CNV profiles inferred from scRNA-seq data from patient P3 (left) and P5 (right) tumor 851 

samples and demonstrating intratumoral heterogeneity in CNV profiles. Chromosomal 852 

amplifications (red) and deletions (blue) are inferred for all 22 chromosomes (color bars 853 

on the top). Each row represents a single cell, with corresponding cell type annotated 854 

on the right (same as in panel A). I, Potential developmental trajectories for EPCAM+ 855 

cells from P3 (top) and P5 (bottom) inferred by Monocle 3 analysis. Cells on the tree are 856 

colored by pseudotime (dotted boxes) and inferCNV clusters. 857 

 858 

Figure 3. Spatial reprogramming of lymphoid subsets towards protumor 859 

phenotypes in early-stage LUAD. A, UMAP visualization of lymphoid cell subsets 860 

from P1-P5 colored by cell lineage (left) and spatial field (right). CTL, cytotoxic T 861 

lymphocyte; Treg, T regulatory cell; ILC, innate lymphoid cell; NK, natural killer cell. B, 862 

Bubble plot showing the expression of lineage markers. Both the fraction of cells 863 

expressing (indicated by the size of the circle) as well as their scaled expression levels 864 

(indicated by the color of the circle) are shown. C, Changes in the abundance of 865 
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lymphoid cell lineages and cellular states across the LUADs and spatial normal 866 

samples. Embedded pie charts show the contribution of each spatial sample to the 867 

indicated cell subtype/state. D, UMAP plots of CD8+ T lymphocytes colored by cell 868 

states (top), spatial field (middle), and cytotoxic score (bottom). The heatmap on the 869 

right shows normalized expression of marker genes for defined CD8 T cell subsets. 870 

Each column represents a cell. Top annotation tracks indicate (from top to bottom) cell 871 

states, naïve T cell scores and cytotoxic scores calculated using curated gene 872 

signatures, and the corresponding spatial field of each cell. E, Depletion of CD8+ 873 

GNLY-hi CTLs in the tumor microenvironment of LUADs. Bar plot (top left) and boxplot 874 

(top middle) showing percentage of CD8+ GNLY-hi CTLs among total CD8+ cells from 875 

all patients across the spatial fields. Each circle in the boxplot represents a patient 876 

sample. P - value was calculated using Kruskal-Wallis test. Cytotoxicity signature score 877 

(violin plot, top right) of CD8+ CTLs across spatial fields (*, P < 0.05; **, P < 0.01; ***, P 878 

< 0.001). P - values were calculated using Wilcoxon rank sum test. The percentage of 879 

CD8+ CTLs expressing cytotoxic signature genes (indicated by the size of the circle) 880 

and their scaled expression levels (indicated by the color of the circle) across the 881 

LUADs and spatial normal lung samples (bubble plot, bottom left). Expression levels of 882 

NKG7 and GNLY in CD8+ CTLs across the spatial samples (violin plots, bottom right).  883 

F, UMAP plots of CD4+ T lymphocytes colored by cell states (top), spatial field (middle), 884 

and Treg signature score (bottom). The heatmap on the right shows normalized 885 

expression of marker genes for CD4+ T cells grouped by defined subcluster. Each 886 

column represents a cell. Top annotation tracks indicate (from top to bottom) cell states, 887 

Treg signature score, cytotoxic scores, and naïve T cell score calculated using curated 888 

gene signatures, and the corresponding spatial field of each cell. G, Enrichment of 889 

CD4+ T regulatory cells (Treg) in the tumor microenvironment of LUADs. Bar plot (top 890 

left) and boxplot (top middle) showing percentage of CD4 Tregs among total CD4+ cells 891 

from all patients across the spatial fields. Each circle in the boxplot represents a patient 892 

sample. P - value was calculated using Kruskal-Wallis test. Percentage of CD4+ Tregs 893 

expressing inhibitory immune checkpoint genes (indicated by the size of the circle) and 894 

their scaled expression levels (indicated by the color of the circle, color assignment 895 

same as panel E) across the spatial samples (bubble plot, top right). Frequency of 896 
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CD4+ Treg cells co-expressing CTLA4 and TIGIT immune checkpoints across the 897 

spatial samples (scatter plots, bottom). The fractions of CTLA4+TIGIT+ Tregs are 898 

labeled on each plot. 899 

 900 

Figure 4. Reduced signatures of antigen presentation and inflammatory dendritic 901 

cells in the microenvironment of early-stage LUAD. A, UMAP visualization of 902 

myeloid cell lineages colored by cell type/state (left) and the spatial fields (right). Mac, 903 

macrophages; Mono, monocytes; DC, dendritic cell; cDC, classical dendritic cell; pDC, 904 

plasmacytoid dendritic cell. B, Bubble plot showing the percentage of myeloid cells 905 

expressing lineage specific marker genes (indicated by the size of the circle) as well as 906 

their scaled expression levels (indicated by the color of the circle). C, Changes in the 907 

abundance of myeloid cell subsets across the LUADs and spatial normal lung samples. 908 

Embedded pie charts show the contribution of each spatial sample to the indicated cell 909 

subtype/state. D, UMAP plot of monocyte and macrophage subpopulations, color coded 910 

by cell type/state (left), spatial field (middle), and antigen presentation score (right). E, 911 

The percentage of M2-like macrophages cluster 1 expressing antigen presentation 912 

genes (indicated by the size of the circle) and their scaled expression levels (indicated 913 

by the color of the circle) across the spatial samples (bubble plot). F, Ridge plots 914 

showing the expression levels of MHC class I and MHC class II genes in M2-like 915 

macrophages cluster 1, and across LUADs and spatial normal lung samples. G, Violin 916 

plots showing the antigen presentation score in M2-like macrophages (clusters 1 and 5) 917 

across LUADs and spatial normal lung samples for all patients together (left) and within 918 

patients (right) (***, P < 0.001). P – values were calculated by Wilcoxon rank sum test. 919 

H, UMAP plots of dendritic cells, color coded by cell state (left) and spatial field (right). I, 920 

UMAP plots showing unsupervised subclustering of cDC2 cells colored by cluster ID 921 

(top left), spatial field (top right) and the computed inflammatory signature score 922 

(bottom). J, Heatmap showing normalized expression of marker genes of cDC2 cell 923 

subsets. The top annotation tracks indicate (from top to bottom) the inflammatory 924 

signature scores, spatial field tissue of origins, and cDC2 cell clusters. K, Bubble plot 925 

showing the percentage of cDC2 cells expressing inflammatory and non-inflammatory 926 
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signature genes (indicated by the size of the circle) as well as their scaled expression 927 

levels (indicated by the color of the circle) in the LUADs and spatial normal lung tissues. 928 

L, M, Depletion of inflammatory cDC2 cluster C2 cells in the tumor microenvironment of 929 

LUADs. Bar plot (L) and boxplot (M) showing fraction of cDC2 C2 cells among total 930 

cDC2 cells and across the LUADs and spatial normal lung tissues. Individual circles in 931 

(M) correspond to patient samples. P - value was calculated using Kruskal-Wallis test. 932 

N, Violin plot showing the inflammatory signature scores in cDC2 C2 cells across 933 

LUADs and spatial normal lung samples. O, boxplot showing the inflammatory signature 934 

score in normal lung (NL), in premalignant atypical adenomatous hyperplasia (AAH) and 935 

in LUAD from an independent cohort (*, P < 0.05; **, P < 0.01; ***, P < 0.001; N.S, P > 936 

0.05 of the Wilcoxon rank sum test). 937 

 938 

Figure 5. Enriched ligand-receptor cell-cell communication networks between 939 

LUADs and their immune microenvironment. A, Computational analysis workflow of 940 

cell-cell communication using iTALK to identify, from a database of curated ligand-941 

receptor (L-R) pairs, the highly expressed immune checkpoint- and cytokine-receptor 942 

pairs, that are significantly and differentially altered (i.e. interactions lost or gained) 943 

between LUADs and spatial normal lung tissues. B, Heatmaps showing the overlap 944 

(quantified by Jaccard index) of predicted ligand-receptor based interactions among 945 

individual LUADs and their corresponding spatially distributed normal lung tissues. C, 946 

Representative circos plots showing details of immune checkpoint-mediated L-R pairs 947 

compared between each of the LUADs of patients 2, 3, and 5, and selected matching 948 

spatial normal lung samples. D, Violin plots showing expression of the ligand and 949 

receptor genes (selected from panel C) involving immune checkpoints and showing 950 

spatial gain-of-interaction patterns as highlighted in panel C. E, Boxplot showing CD24 951 

expression levels in an independent cohort of normal lung tissues (NL), premalignant 952 

atypical adenomatous hyperplasias (AAH) and LUADs assessed using the Nanostring 953 

immune Counter panel (see Supplementary Methods) (*, P < 0.05; **, P < 0.01; ***, P < 954 

0.001; N.S, P > 0.05 of the Wilcoxon rank sum test). F, Scatterplots using Pearson 955 

correlation coefficients between levels of CD24 with EPCAM and PRF1 in the NL, AAH, 956 
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and LUAD samples. G, Boxplot depicting CD24 expression levels in LUADs and 957 

matched normal lung tissues (NL) from the TCGA LUAD cohort (*, P < 0.05; **, P < 958 

0.01; ***, P < 0.001; N.S, P > 0.05 of the Wilcoxon rank sum test). H, Scatterplots 959 

showing correlation of expression using Pearson’s correlation coefficients between 960 

CD24 with EPCAM and PRF1.  961 

Supplementary Figure Legends 962 

 963 

Supplementary Figure S1.  Quality control metrics and expression of cell lineage 964 

markers across the spatial LUAD scRNA-seq dataset. A, Statistical summary of cells 965 

passing quality control (QC) and showing cell number (left), fraction of mitochondrial 966 

genes (middle), and the number of detected genes (right) per sample. Dis, distant 967 

normal; Int, intermediate normal; Adj, adjacent normal; LUAD, tumor tissue. B-C, UMAP 968 

plots showing cells colored by patient ID (B) and sample batch (C). D-E, Bubble plots 969 

showing the percentage of cells expressing lineage markers (indicated by the size of the 970 

circle) as well as their scaled expression levels (indicated by the color of the circle) 971 

across all cells (D; related to main Fig. 1D and E) or selected cell types (E; related to 972 

main Fig. 1 G and H). NK; natural killer cell, DC; dendritic cell, EC; endothelial cell. 973 

 974 

Supplementary Figure S2. Trajectory analysis of alveolar cells and copy number 975 

inference of malignant-enriched cells. A, UMAP view showing EPCAM+ cells colored 976 

by sample batch. B, Bar plot showing absolute numbers of cells for each lung epithelial 977 

cell lineage. Dis, distant normal; Int, intermediate normal; Adj, adjacent normal; LUAD, 978 

tumor tissue; AT1, alveolar type 1; AT2, alveolar type 2.  C, Potential developmental 979 

trajectory for alveolar cells inferred by pseudotime analysis. Cells were ordered by 980 

pseudotime (dotted box) and colored by alveolar cell state. D, Bubble plots showing the 981 

percentage (indicated by the size of the circle) of cells expressing markers of alveolar 982 

states shown in trajectory analysis from panel C as well as their scaled expression 983 

levels (indicated by the color of the circle). E, Pseudotime trajectory in C showing cells 984 

colored by Notch signaling signature score. F, Plots showing Notch signaling signature 985 

score among alveolar cell states in trajectory analysis from panel E. G, Heatmap 986 

showing inferCNV score of cells in the malignant-enriched cluster. H, UMAP plots 987 
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showing reclustering of malignant-enriched cells and highlighting those from patient 2 in 988 

red (P2; top). Bottom UMAP shows reclustering of P2 malignant-enriched cells and 989 

identifies (with red asterisk) those harboring KRAS-G12D mutation. I, Heatmap showing 990 

highly expressed genes among sub-clusters (subcluster of cells enriched with KRAS 991 

G12D mutations compared to subclusters lacking the mutation) identified in the bottom 992 

UMAP of panel H. 993 

 994 

Supplementary Figure S3. Reprogramming of lymphoid cell subsets towards an 995 

immune suppressive tumor microenvironment in early-stage LUAD. A, UMAP of 996 

lymphoid cells colored by sample batch. B, Bar plots showing the absolute numbers of 997 

each lymphoid cell subset in each spatial sample. Dis, distant normal; Int, intermediate 998 

normal; Adj, adjacent normal; LUAD, tumor tissue; CTL, cytotoxic T lymphocyte; Treg, T 999 

regulatory cell; ILC, innate lymphoid cell; NK, natural killer cell. C, Changes in the 1000 

abundance of specific lymphoid cellular lineages and states across the LUADs and 1001 

spatial normal samples. Embedded pie charts show the contribution of each spatial 1002 

sample to the indicated cell subtype/state. D, Cytotoxicity signature score in CD8+ 1003 

GNLY_hi CTLs in patient three (P3, left) and in patient 4 (P4, right) across spatial fields 1004 

(*, P < 0.05; **, P < 0.01; ***, P < 0.001 of the Wilcoxon rank sum test). E, Treg 1005 

signature score in T regulatory cells across spatial fields in all patients (left), P3 (middle) 1006 

and in patient 5 (P5, right) (*, P < 0.05; **, P < 0.01; ***, P < 0.001 of the Wilcoxon rank 1007 

sum test). F, Depletion of CD4+ CTLs in the tumor microenvironment of LUAD. Boxplot 1008 

showing percentage of CD4+ CTLs GZMA-hi among total CD4+ cells from all patients 1009 

across the spatial fields. Each circle represents a patient sample. P - value was 1010 

calculated using Kruskal-Wallis test. G, Violin plots showing cytotoxic signature score in 1011 

CD4+ CTL GZMA-hi cells from all patients (left) and P5 (right; *, P < 0.05; **, P < 0.01; 1012 

***, P < 0.001 of the Wilcoxon rank sum test). H, Frequency of CD4+ CTL GZMA-hi 1013 

cells co-expressing GZMA and GZMH across the spatial samples. The fractions of 1014 

GZMA+GZMH+ CD4+ CTLs are labeled on each plot. I-K, Expression profiling of 1015 

different isotypes of plasma cells across the spatial samples. I, Heatmap showing 1016 

isotype genes expression in plasma cells. J, Bar plots showing plasma cell isotype 1017 

composition across spatial fields. K, Dot plots showing the fractional change of IGHA1/2 1018 
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and IGHG3 across all patients and in each patient (left to right). L-N, Reprogramming of 1019 

B cells in early-stage LUAD. L, Heatmap showing unsupervised clustering of B cells 1020 

sub-populations. M, UMAP showing re-clustering of B cells into sub-populations. N, 1021 

Ridge plots (left) showing RAC2 and ACTG expression levels among B cell sub-1022 

clusters, and scatter plots (right) showing the frequency of B cells co-expressing RAC2+ 1023 

and ACTG+ across spatial fields. The fractions of RAC2+ACTG+ B cells are labeled on 1024 

each plot. O, Boxplot showing the B cell C0 signature score in normal lung tissues (NL), 1025 

premalignant atypical adenomatous hyperplasias (AAH) and LUADs in an independent 1026 

validation cohort. (*, P < 0.05; **, P < 0.01; ***, P < 0.001; N.S, P > 0.05). P - values 1027 

were calculated using Wilcoxon rank sum test.  1028 

 1029 

Supplementary Figure S4. Reprogramming of myeloid cells in the tumor 1030 

microenvironment of early-stage LUAD. A, UMAP view showing myeloid cells 1031 

colored by sample batch. B, Stacked bar plots showing absolute numbers of each 1032 

lymphoid cell subset across the spatial samples. Dis, distant normal; Int, intermediate 1033 

normal; Adj, adjacent normal; LUAD, tumor tissue; mono; monocytes, mac; 1034 

macrophages, cDC; classical dendritic cells, pDC; plasmacytoid dendritic cell. C, 1035 

Changes in the abundance of specific lymphoid cellular lineages and states across the 1036 

LUADs and spatial normal samples. Embedded pie charts show the contribution of each 1037 

spatial sample to the indicated cell subtype/state. D, Heatmap showing the expression 1038 

of inflammatory/non-inflammatory signature genes in cDC2 cells. E, Boxplot showing 1039 

the non-inflammatory versus inflammatory signature score in normal control (NL), in 1040 

normal lung tissues (NL), premalignant atypical adenomatous hyperplasias (AAH) and 1041 

LUADs in an independent validation cohort. (*, P < 0.05; **, P < 0.01; ***, P < 0.001; 1042 

N.S, P > 0.05). P - values were calculated using Wilcoxon rank sum test.  F, Heatmap 1043 

showing DEGs between LUAD and normal samples in pDCs. G, Ridge plots showing 1044 

the expression level changes of FOS, JUN and FOSB in pDCs and across spatial 1045 

samples. 1046 

 1047 

Supplementary Figure S5. Composition and gene expression changes in stromal 1048 

and endothelial sub-populations in early-stage LUAD as well as adjacent and 1049 
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more distant normal lung tissues. A, UMAP view of stromal and endothelial cells 1050 

colored by sample batch. B, UMAP view of stromal and endothelial sub-populations. C, 1051 

Bubble plot showing the percentage of stromal and endothelial cells expressing lineage 1052 

markers (indicated by the size of the circle) as well as their scaled expression levels 1053 

(indicated by the color of the circle). D, Bar plot showing the absolute number of cells 1054 

from each stromal and endothelial subset. Dis, distant normal; Int, intermediate normal; 1055 

Adj, adjacent normal; LUAD, tumor tissue; EC, endothelial cells. E, Changes in the 1056 

abundance of stromal and endothelial cell lineages across the LUADs and spatial 1057 

normal samples. Embedded pie charts show the contribution of each spatial sample to 1058 

the indicated stromal and endothelial subtype. F, Heatmap showing DEGs between 1059 

LUAD and normal samples in EC venule sub-populations. G, Bar plot showing 1060 

significantly enriched pathways of up/down regulated DEGs in panel F. H, Ridge plots 1061 

showing the expression level changes of HLA-DPB1, IL33, and IGFBP7 in EC venule 1062 

sub-populations and across spatial samples. 1063 

 1064 

Supplementary Figure S6. Enriched ligand-receptor cell-cell communication 1065 

networks between LUAD and the immune microenvironment. A-B, Circos plot 1066 

showing additional details of the immune checkpoint-mediated L-R pairs compared 1067 

between each of the LUADs of patients 5 and select matching spatial normal lung 1068 

samples. And B) Violin plot showing expression of epithelial LGALS9 (ligand) and 1069 

dendritic cells HAVCR2 (receptor) and showing spatial gain-of-interaction patterns as 1070 

highlighted in the circos plot of patient 5 (P5) in panel A. C, Circos plot showing details 1071 

of chemokine-mediated L-R pairs comparison between the LUAD and tumor-1072 

intermediate normal tissue of patient 3 (P3). D, Violin plots showing spatial expression 1073 

of the chemokine and receptor genes in P3 and highlighted in panel C. E, Circos plots 1074 

showing details of chemokine-mediated L-R pairs comparison between the LUAD and 1075 

tumor-intermediate normal tissue of patient 2 (P2, panel E left) and patient 5 (P5, panel 1076 

E right). F, Violin plots showing spatial expression of the chemokine and receptor genes 1077 

in P5 and highlighted in panel E right. G-H, Scatterplots showing the correlation of 1078 

expression between CD24 and other immune-regulated genes in GSE10251 (G) and in 1079 
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TCGA (H) LUAD cohorts. Pearson correlation test was used for p-values show in panel 1080 

G and panel H. 1081 
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