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Abstract 

Background 

Genome-wide association and fine-mapping studies have enabled the discovery of single 

nucleotide polymorphisms (SNPs) and other variants that are significantly associated with 

many autoimmune diseases including type 1 diabetes (T1D). However, many of the SNPs lie 
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in non-coding regions, limiting the identification of mechanisms that contribute to autoimmune 

disease progression.  

Methods 

Autoimmunity results from a failure of immune tolerance, suggesting that regulatory T cells 

(Treg) are likely a significant point of impact for this genetic risk, as Treg are critical for immune 

tolerance. Focusing on T1D as a model of defective function of Treg in autoimmunity, we 

designed a SNPs filtering workflow called 3 Dimensional Functional Annotation of Accessible 

Cell Type Specific SNPs (3DFAACTS-SNP) that utilises overlapping profiles of Treg-specific 

epigenomic data (ATAC-seq, Hi-C and FOXP3-ChIP) to identify regulatory elements potentially 

driving the effect of variants associated with T1D, and the gene(s) that they control.  

Results 

Using 3DFAACTS-SNP we identified 36 SNPs with plausible Treg-specific mechanisms of 

action contributing to T1D from 1,228 T1D fine-mapped variants, identifying 119 novel 

interacting regions resulting in the identification of 51 candidate target genes. We further 

demonstrated the utility of the workflow by applying it to three other fine-mapped/meta-

analysed SNP autoimmune datasets, identifying 17 Treg-centric candidate variants and 35 

interacting genes. Finally, we demonstrate the broad utility of 3DFAACTS-SNP for functional 

annotation of any genetic variation using all common (>10% allele frequency) variants from the 

Genome Aggregation Database (gnomAD). We identified 7,900 candidate variants and 3,245 

candidate target genes, generating a list of potential sites for future T1D or autoimmune 

research.  
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Conclusions 

We demonstrate that it is possible to further prioritise variants that contribute to T1D based on 

regulatory function and illustrate the power of using cell type specific multi-omics datasets to 

determine disease mechanisms. The 3DFAACTS-SNP workflow can be customised to any cell 

type for which the individual datasets for functional annotation have been generated, giving 

broad applicability and utility. 

 

Keywords 

Type 1 diabetes; Autoimmune disease; Regulatory T cells; Single nucleotide polymorphisms; 

High resolution chromosome conformation capture sequencing; Assay for Transposase-

Accessible Chromatin using sequencing; Transcription factor; Data integration. 

 

Background 

Autoimmune diseases are chronic inflammatory disorders caused by a breakdown of 

immunological tolerance to self-antigens, which results in an imbalance between multiple 

immune cells, including conventional T cells (Tconvs) and regulatory T cells (Tregs) (1). The 

imbalance of immune cell function can lead to the destruction of host tissues, such as is 

observed in multiple autoimmune diseases, including rheumatoid arthritis (RA) (joint tissues), 

multiple sclerosis (MS) (myelinated nerves) and inflammatory bowel disease (IBD) (intestine 

/colon). In the case of Type 1 Diabetes (T1D), a reduction of Treg cell function contributes to 

unrestrained immune destruction of the insulin-generating pancreatic beta cells (2).  
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Regulatory T cell function is mediated by expression of the Foxhead Box Protein 3 (FOXP3) 

transcription factor (TF) as evidenced by severe autoimmune diseases observed in FOXP3-

deficient scurfy mice (3) and IPEX in humans (4–6). RNA sequencing and chromatin 

immunoprecipitation (ChIP) studies have uncovered an extensive FOXP3-dependent 

molecular program involved in Treg cell development and stability (7,8), and functional fitness 

of Treg is dependent on stable robust expression of FOXP3, such that reduced FOXP3 

expression is linked to reduced Treg function. For example, in a small T1D cohort study, we 

have shown that there is a decrease in FOXP3 expression in the Treg of children over the first 

9 months post diagnosis (9). However, since FOXP3 itself is not mutated in autoimmune 

diseases other than IPEX, the loss of FOXP3 levels and functional fitness is likely caused by 

perturbation of the Treg gene regulatory network. Hence, by decoding the regulatory network 

of FOXP3, and mapping the genetic risk to the key functional genes it impacts, we will gain a 

better understanding of how autoimmune diseases like T1D could be countered.  

 

T1D occurs spontaneously in approximately 80% of individuals, however predisposition to the 

disease has a strong pattern of inheritance (10). Genome-Wide Association Studies (GWAS) 

have identified over 50 loci that are strongly associated with T1D, based on the genotyping of 

a total of 9934 cases and 16956 controls from multiple cohorts and resources (11). In addition, 

fine-mapping of immune-disease associated loci represented on the Immunochip Array (12) 

followed by a Bayesian approach identified 44 significant T1D-associated Loci and over 1,000 

credible SNPs (13). While alterations in either the effector or regulatory arms of the immune 

system can result in loss of tolerance and autoimmune disease, we have used a Treg centric 
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view of loss of tolerance. This is based on the observation that defects in Treg function have 

been reported in autoimmune diseases including T1D and MS (14,15) and that experimental 

deletion of FOXP3 or reduced Treg function results in autoimmune disease in many model 

systems (16,17).  

 

Although GWAS have revealed significant associations between genetic variants and T1D, the 

vast majority of the sampled single nucleotide polymorphisms (SNPs) are located in non-

coding regions that do not alter the amino acid sequence in a protein, making it difficult to 

assign direct biological functions to variants (18–20). Non-coding variants can be linked to 

direct changes in gene expression by identifying expression quantitative trait loci (eQTL) that 

aim to associate allelic changes to a cis (within 1Mbp of the associated gene) and trans 

(>1Mbp) change in gene expression (21,22). This additional direct gene expression 

association however still fails to identify direct mechanisms by which a specific genetic variant 

can change gene expression. In addition, usage of eQTLs to establish direct changes from 

GWAS variants is somewhat limited to local, or cis-eQTLs (23,24), whereas mounting 

evidence shows that long-range regulatory connections, driven by three-dimensional chromatin 

interactions (25,26), can mediate these changes in expression.  

 

With the increasing affordability and availability of high-throughput sequencing techniques and 

various epigenomics sequencing data protocols, the impact of genome organization and 

accessibility can now be added to the functional annotation of genetic risk. Chromatin 

immunoprecipitation sequencing (ChIP-seq) allows us to identify the binding sites of a 

transcription factor; assay for transposase-accessible chromatin sequencing (ATAC-seq) data 
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offers the ability to identify highly accessible regions of the genome; and high resolution 

chromosome conformation capture sequencing (Hi-C) data can facilitate the investigation of 

the three-dimensional structure of the genome. Since it is believed that the mechanisms by 

which non-coding SNPs contribute to diseases are mostly via changes to the function of 

regulatory elements (20), we believe that combining multiple genomics and epigenetics 

sequencing data can further reveal the relationship between GWAS SNPs and disease 

pathways. Our hypothesis is that the genetic variation that specifically alters Treg function will 

reside in open chromatin in Treg cells that is bound by FOXP3 and the genes controlled by 

these by regulatory regions can be identified by chromosome conformation capture 

approaches. Therefore, in this paper, we describe a filtering workflow using multiple 

sequencing data from human Tregs, aiming to identify plausible immunomodulatory 

mechanisms and potentially find previously unknown connections between causative variant 

SNPs significantly associated with T1D and the genes they impact. 

  

Methods 

Cell preparation  

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood obtained from 

healthy human donors with informed consent at the Women's and Children's Hospital, 

Adelaide (ethics approval and consent see Declarations section). Cells were labelled with the 

following fluorochrome conjugated anti-human monoclonal antibodies: anti-CD4 (BD 

Biosciences, BUV395 Mouse Anti-Human), anti-CD25 (BD Biosciences, BV421), anti-CD127 

(BD Biosciences, PE-CF594) and viability dye (BD Biosciences, BD Horizon Fixable Viability 
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Stain 700) for FACS analysis by surface expression staining. Regulatory T (Treg) cells were 

sorted as CD4+ CD25hi CD127dim population (>90% purity). Following cell sorting Treg cells 

were plated at 100,000 cells per well in a 96-well U-bottom plate and maintained in complete 

X-VIVO 15 culture media (X-VIVO 15 Serum-free media supplemented with 2 mM HEPES pH 

7.8, 2 mM L-glutamine and 5% heat inactivated human serum) in 400U/mL rIL-2 for 2 hours at 

37oC in a humidified 5% CO2 incubator prior to cell preparation for ATAC-seq experiment. 

 

ATAC-seq library preparation and high-throughput sequencing 

Treg cells were rested for 2-hour post sort and then were either left untreated or stimulated 

with beads conjugated with anti-CD3 and anti-CD28 antibodies (Dynabeads Human T-

Expander CD3/CD28, Gibco no. 11141D, Life Technologies) in complete X-VIVO 15 culture in 

400U/mL rIL-2 at a cell/bead ratio of 1:1 for 48 hours. After 48 hours Dynabeads were 

removed from culture medium by magnetic separation. Omni ATAC-seq was then performed 

as described previously (27) with minor modifications. Briefly, cells with 5-15% dead cells were 

pretreated with 200U/µL DNase (Worthington) for 30 minutes at 37oC prior to ATAC-seq 

experiments. Treg cells (50,000) were lysed in 50µL of cold resuspension buffer (RSB: 10 mM 

Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 ) containing 0.1% NP40, 0.1% Tween-20, and 

0.01% digitonin on ice for 3 minutes. The reaction was then washed with 1mL of ATAC-seq 

RSB containing 0.1% Tween-20 by centrifugation at 500 xg for 10 minutes at 4oC and the 

nuclei were resuspended in 50µL of transposition mix (30µL 2× TD buffer, 3.0µL Tn5 

transposase, 16.5µL PBS, 0.5µL 1% digitonin and 0.5µL 10% Tween-20) (Illumina Inc). The 

transposition reaction was incubated at 37oC for 45 minutes in a thermomixer with 1000 rpm 

mixing. The reaction was purified using a Zymo DNA Clean & Concentrator-5 (D4014) kit. All 
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libraries were amplified for a total of 9 PCR cycles and size selection was carried out to enrich 

for a fragment size window of 200 to 900bp prior to sequencing. Libraries were quantified by 

PCR using a KAPA Library Quantification Kit for NGS (KAPA Biosystems, Roche Sequencing). 

Barcoded libraries were pooled and sequenced on a paired-end 75-cycle Illumina NextSeq 550 

High-Output platform (Illumina) to an average read depth of 37.1 million reads (± 4 million) per 

sample.  

 

Treg sample preparation, Hi-C library production and high-throughput 

sequencing 

Cord blood was obtained with informed consent at the Women’s and the Children’s Hospital, 

Adelaide (HREC1596; WCHN Research Ethics Committee). Mononuclear cells were isolated 

from cord blood postpartum as previously described (28). Briefly, cord blood CD4+CD25+(Treg) 

were isolated from purified mononuclear cells using a Regulatory CD4+CD25+T Cell Kit 

(Dynabeads; Invitrogen, Carlsbad, CA). Ex vivo expansion of isolated T cell populations (1 × 

106 cells per well in a 24-well plate) were performed in X-Vivo 15 media supplemented with 5% 

human AB serum (Lonza, Walkersville, MD), 20 mM HEPES (pH 7.4), 2 mM L-glutamine, and 

500 U/ml recombinant human IL-2 (R&D Systems, Minneapolis, MN) in the presence of 

CD3/CD28 T cell expander beads (Dynabeads; Invitrogen; catalogue no. 111-41D) at a bead-

to-cell ratio of 3:1. Cell harvesting, Formaldehyde cross-linking (2%) and nuclei isolation was 

per (29,30). Treg cell nuclei were frozen in aliquots of 1x107. The in situ Hi-C procedure was 

carried out as per Rao et al, (2014) (31) with the following modifications MboI digestion was 

carried out in CutSmart® Buffer (NEB) and biotin-14-dCTP (Invitrogen; catalogue no. 

19518018) replaced biotin-14-dATP in the reaction to end-fill MboI overhangs. To generate 
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DNA suitable for library construction ligated DNA in TE buffer (10mM Tris-HCL, pH8.0 and 

0.1mM EDTA, pH 8.0) was sheared to an average size of 300-500bp using a Covaris S220 

(Covaris, Woburn, MA) instrument with the following parameters; 130ul in a microTube AFA 

fibre, 140 peak incidence power, 10% Duty cycle 10%, 200 cycles per burst for 55 seconds. 

Sheared fragment ends were made suitable for adapter ligation with a NEBNext® Ultra II End 

Repair/dA-Tailing Module (NEB #E7546). For adapter ligation the End Prep reaction was split 

into two and appropriately diluted NEBNext Adaptor ligated to fragment ends using the 

NEBNext Ultra II Ligation module. Hi-C libraries were split between 5 separate PCR reactions 

and directly amplified off the T1 beads using NEBNext Index Primers (set 1) and the 

NEBNext® Ultra™ II Q5® Master Mix. Library size distribution was determined using an 

Experion DNA 1K kit and library concentration estimated by real time qPCR using a Kapa 

universal Library quantitation kit (Roche Sequencing Solutions; 07960140001). Hi-C libraries 

were sequenced on a Illumina NextSeq 500 Mid-output platform (2x 150bp). 

 

ATAC-seq data analysis 

The sequencing data quality was determined using FastQC (ver. 0.11.7) (32) followed by 

trimming of Nextera adapters using cutadapt (ver. 1.14) (33). Trimmed reads were aligned to 

the human hg19 genome using Bowtie2 (ver. 2.2.9) (34) with ‘-X 2000’ setting. For each 

sample quality trimming was performed with option ‘-q 10’ with unmapped and non-primary 

mapped reads filtered with option ‘-F 2828’ using Samtools (ver. 1.3.1) (35). PCR duplicates 

were then removed from Uniquely mapped paired reads using Picard (ver. 2.2.4). 

Mitochondrial reads, reads mapping to ENCODE hg19 blacklisted regions and mitochondrial 

blacklisted regions were filtered out using BEDTools (ver. 2.25.0). For peak calling the read 
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start sites were adjusted to represent the center of Tn5 transposase binding event. Peaks were 

called from ATAC-seq data using MACS2 (ver. 2.1.2) (36) and HINT-ATAC (37) was used to 

call footprints from the ATAC-seq peaks with parameters ‘--atac-seq --paired-end --

organism=hg19’. 

The peak summits from resting and stimulated Treg were concatenated and sorted by 

chromosome and then by position. The sorted peak summits were then handled using an in-

house Python script ATACseqCollapsing.py, which adapted a peak processing approach 

described by Corces et al (27) to generate a list of non-redundant peaks. Briefly, through an 

iterative procedure, the peak summits are extended by 249 bp upstream and 250 bp 

downstream to a final width of 500 bp. Any adjacent peak that overlaps with the most 

significant peak (significance value defined by MACS2) within the interval is removed. This 

process iterates to the next peak interval resulting in a list of non-redundant significant peaks.  

 

Hi-C data analysis 

The raw sequencing read files were first processed using AdapterRemoval (ver 2.2.1a) (38) 

with default settings. The trimmed data were then analysed using HiC-Pro (ver 2.9.0) (39) with 

hg19 set as the reference genome and the GATCGATC as a potential ligation site. The valid 

interaction pairs of two technical replicates, which were stored in allValidPairs files were then 

concatenated into a single file followed by sorting based on the left interaction anchoring 

position of each interaction pair. The sorted interaction pairs were then processed using an in-

house python script allvalidpair2collapsingint.py to generate non-redundant interactions. 

Similar to the merging process of ATAC-seq peaks, this is done by an iterative process, two 
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anchor points of the first interaction pair are extended into windows with desired window sizes 

(in this case is 2kb), the following interaction pair is removed only if both anchor points are 

within the previous interacting window, otherwise new interaction windows are generated, and 

the number of removed interaction pairs of each iteration are counted, resulting in non-

redundant interaction pairs with window size of 2kb. The merged interaction file was then 

processed using the functions build_contact_map and ice_norm from HiC-Pro to generate a 

normalised n*n matrix for subsequent visualisations. 

 

Topologically-associated domain identification 

The valid interaction pairs of two technical replicates were concatenated together, followed by 

mapped to equal-size bins (40kb) of the hg19 genome and normalised using ICE (39), 

resulting in a normalised interaction matrix. The matrix was then used as input to identify 

topologically-associated domains (TADs) via TopDom (40) with window size of 5. 

 

Visualisation & Downstream analyses 

Gene set enrichment analysis (GSEA) was performed using function enrichr from the R 

package clusterProfiler (41) with the hallmark gene sets from Molecular Signatures Database 

(MSigDB). Gene ontology (GO) analysis was performed using the R package clusterProfiler 

(41), with 0.01 as P-value threshold and 0.05 as adjusted P-value threshold (Benjamini-

Hochberg adjusted). Visualisation of normalised Hi-C interaction matrices (Figure 2, 3, and 5, 

Additional file1: Figure S2-13) was performed on 40kb resolution using an in-house R function 

hicHeatmap. The visualisations of individual filtered T1D-associated SNP loci (Figure 2, 3, 5 

and Additional file1: Figure S2-14) were constructed using the R packages Gviz (42), 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.279554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.279554
http://creativecommons.org/licenses/by-nc/4.0/


 

12 

GenomicInteractions (43) and coMET (44). Visualisation of the GSEA network was performed 

using the R package ggraph (45). 

 

 

 

Results 

Post-GWAS filtering using Treg-specific epigenomic datasets prioritises 

functionally relevant genetic variants contributing to T1D  

As T1D is partly a consequence of Treg dysfunction, we infer that variants contained within 

active regulatory regions of Treg cells are likely to contribute to disease progression by 

impacting Treg function. A view supported by the finding that T1D associated SNPs are 

enriched at Treg-specific regulatory regions (46). Therefore, starting with published T1D 

GWAS variant information, we designed a filtering workflow (Figure 1) using multiple human 

Treg-specific epigenomic data to identify perturbations within defined “regulatory T cell active 

regions”.  
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Figure 1: Diagram of the individual components of the Treg-specific 3DFAACTS-SNP 

filtering workflow for identifying variants that are potentially causative to Type 1 

Diabetes (T1D). GWAS or fine-mapped variants (on the left) are intersected with different 

filtering elements, including Treg ATAC-seq peaks, interactions from Treg Hi-C, promoters or 

enhancers and previously identified FOXP3 binding regions in Treg cells (47), resulting in 

filtered variants we termed 3DFAACTS SNPs. 

 

In order to obtain highly accessible chromatin regions in Treg, we performed Transposase-

Accessible Chromatin using sequencing (ATAC-seq) on resting and stimulated Treg cells from 

three donors and sequenced to an average of 37.1 million reads (± 4 million) per sample. From 

the ATAC-seq data, we identified 525,647 ATAC-seq peaks on average (Additional file1: Table 

S1). These ATAC-seq peaks were then merged into 683,954 non-redundant peaks and used 

to screen for variants located in accessible regions in regulatory T cells as the first filtering step 

of the 3DFAACTS-SNP pipeline (Figure 1).  

 

Numerous studies have shown that three dimensional (3D) interactions play important roles in 

gene regulation, mediated by DNA looping bringing enhancers and promoters together at 

transcriptional hubs (48–50). As a result, distant loci which physically interact with disease 

associated regulatory regions can be potentially impacted by these regions. To identify 3D 

interacting regions in Treg cells, we generated and sequenced Treg in situ Hi-C libraries. Two 

technical replicates of human Treg Hi-C libraries were sequenced to an average depth of 3 

million reads, and after processing using HiC-Pro (39), generated 459,244 and 1,441,362 Hi-C 

valid interactions respectively (Additional file1: Table S2). We extended these interactions to 
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form 2000bp (+/- 1000bp upstream and downstream) windows at both ends of each 

interaction. We then collapsed interactions by merging interactions with overlapping anchors to 

generate non-redundant interaction pairs which represent Hi-C interactions in Tregs. These 

non-redundant interactions were then integrated with the variant associated ATAC-seq peaks 

identified above to identify accessible interacting regions.  

 

To assign potential function to identified variant associated ATAC-seq peaks and Hi-C 

interacting regions we next determined the overlap of these regions with enhancer and 

promoter annotations. This included 113,369 enhancers (mean size of 698bp) identified by the 

Functional Annotation of the Mammalian Genome (FANTOM5) project (51) and promoter 

regions (n = 73,171) associated with GRCh37/hg19 UCSC known transcripts. Promoters were 

defined by extending upstream 2kb of transcription start sites (TSS). In addition, we extended 

the list of regulatory regions using the 15 state chromHMM model for CD4+ CD25+ CD127- 

Primary Treg cells from the Roadmap Epigenomics Project (52). We defined chromHMM 

states EnhG, Enh and EnhBiv as enhancers and TssA, TssAFlnk, TssBiv and BivFlnk as 

promoters. FANTOM5 enhancers and defined promoters and chromHMM 

enhancers/promoters states were then merged respectively to represent all possible genetic 

regulatory elements, covering 7.49 % of the genome (Additional file2: Table S3). 

 

The transcription factor FOXP3 is critical for Treg function and orchestrating immunological 

tolerance, and stable high FOXP3 expression levels are observed specifically in Tregs 

(3,47,53). Therefore, by intersecting filtered SNPs with significant human FOXP3-binding 

signals, we can largely constrain SNPs within regulatory regions to FOXP3 controlled Treg-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.279554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.279554
http://creativecommons.org/licenses/by-nc/4.0/


 

15 

specific gene networks. We used 8,304 (mean size = 1317bp) FOXP3 ChIP-chip peaks from 

our previous study (47) to specify FOXP3 binding in humanTreg cells. Of interest, by searching 

the Gene & Autoimmune Disease Association Database (GAAD) (54), we obtained 245 

annotated genes that are associated with T1D, and found a significant enrichment of FOXP3 

binding sites in T1D-associated genes (Fisher exact test: P-value = 4.519e-09), suggesting a 

strong association between T1D risk and FOXP3 controlled Treg function. Taken together, 

FOXP3 binding, physical interaction, regulatory element and open chromatin regions offer a 

large subset of regions to use for GWAS variant prioritisation and functional annotation 

experiments. 

 

Linking fine-mapped T1D-associated variants to their targets via chromatin 

interactions  

Genetic studies have identified over 50 candidate gene regions that contain potentially 

causative SNPs that impact T1D (11). Recently, a study of T1D-associated variants using 

Immunochip, a custom-made SNP array containing immune-related genetic variants from the 

1000 genomes project (12,55), and Bayesian fine-mapping identified 1,228 putative causal 

variants associated with T1D (13). We used our workflow to further prioritise variants from this 

fine-mapped set to investigate potentially causative SNPs that contribute to T1D via affecting 

promoter/enhancer interaction in human Treg cells. 

 

Table 1: T1D 3DFAACTS SNPs identified using the 3DFAACTS-SNP filtering workflow 

from T1D fine-mapping SNPs (13). The nearest locus indicates the closest gene to the 

variants in linear distance, while 3D interacting genes are genes contact with the variants via 
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Treg Hi-C interactions. Overlapped regulatory elements of each 3DFAACTS SNPs are 

displayed, including chromatin states from a 15-states model (52) and expressed enhancers 

from FANTOM5 (56). Detailed SNP and interaction information is contained in Supplementary 

Information (Additional file 3: Table S4). 

Chromosome Position SNP id 
Nearest 
Locus 
(linear 

distance) 

Located within regulatory 
regions 

Interacting Genes (3D) 
Treg 

ChromHMM 

FANTOM5 
expressed 
enhancers 

chr2 

204700689 rs12990970 

CTLA4 

TssAFlnk   TLK1,NBEAL1,CD28 

204732714 rs231775 TssAFlnk   KIAA2012,ICOS 

204738919 rs3087243 EnhG   ABI2,IQCA1 

chr3 

46327588 rs11718385 CCR3 Enh     

46391390 rs6441972 
CCR2 

TssAFlnk     

46401032 rs3138042 Enh   MLH1,LRRFIP2,CCR2 

46411661 rs2856758 
CCR5 

Enh   CCR3,TIPARP,KLHL24 

46412259 rs1799988 TssAFlnk   CCR3,TIPARP,KLHL24 

chr5 35852311 rs6890853 IL7R TssAFlnk   SPEF2 

chr6 

90948476 rs62408222 

BACH2 

Enh     

90983850 rs905671 Enh ✓ ZNF292,ANKRD6,LYRM2 

90984035 rs943689 Enh ✓ ANKRD6,LYRM2 

90995980 rs614120 TssAFlnk ✓ BACH2,AFG1L 

chr7 

50462418 rs10216316 

IKZF1 

EnhG   IKZF1,GRB10 

50462498 rs10215297 EnhG   IKZF1,GRB10 

50465206 rs55981617 EnhG   DPY19L2P3,IKZF1,DDC,CNOT4 

50465654 rs12670555 EnhG   DPY19L2P3,IKZF1,DDC,CNOT4 

chr10 

6088743 rs12722508 

IL2RA 

TssAFlnk   IL2RA,PFKFB3,HECTD2-AS1 

6094697 rs61839660 TssAFlnk   SFMBT2 

6096667 rs12722496   ✓ IL2RA,RBM17,PFKFB3,LINC02649, 
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PPA1,BORCS7-ASMT 

6107534 rs11597367 Enh   IL15RA,IL2RA,SFMBT2 

chr12 

9910720 rs3176793 

CD69 

TssA   CD69 

9912182 rs2160086 TssA   CLEC2D,CD69,CLEC2A 

9912730 rs3176789 TssA   CLEC2D,CD69,CLEC2A 

9916640 rs3136559 Enh   CD69,YBX3 

9925758 rs1029992 Enh   CHD4,BORCS5 

9926064 rs1029991 Enh   CHD4 

9926397 rs1029990 Enh ✓ CHD4,CLEC2D 

9926624 rs10844749 Enh   CHD4,CLEC2D 

9926784 rs1540356 Enh   CHD4,CLEC2D 

chr15 
38903672 rs16967112 

RASGRP1 
Enh ✓ RASGRP1,CHP1, 

DNAAF4-CCPG1,ZNF592 

38903884 rs56249992 Enh   RASGRP1,CHP1,DNAAF4-CCPG1 

chr16 11188949 rs71136618 CLEC16A Enh   RMI2 

chr17 38755665 rs11656173 SMARCE1 Enh ✓ RARA,TOP2A 

chr18 12838767 rs17657058 PTPN2 Enh   SPIRE1,PIGN 

chr22 30581722 rs5753037 HORMAD2 Enh     

*Note: Genes in bold indicate novel 3D interacting genes of the identified SNPs. 

 

From the 1,228 fine-mapped T1D-associated SNPs, we identified 36 variants that meet our 

filtering criteria as described above, in this study we will refer to them as T1D 3DFAACTS 

SNPs. These variants are located at 14 different chromosomal loci and distally interact with a 

further 80 regions in Tregs (Table 1 & Additional file 3: Table S4). The majority of variants 

(71.4%, 25 out of 35 SNPs) were located in enhancer regions rather than promoters while one 

variant, rs614120 is located in both the TssAFlnk chromHMM state and T cell-specific 

enhancers from FANTOM5. Given that a TssAFlnk state can either indicate a promoter or 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.279554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.279554
http://creativecommons.org/licenses/by-nc/4.0/


 

18 

enhancer (57), combining with the identified FANTOM enhancer information we believe that 

rs614120 is more likely to be located within an enhancer region. 

 

Of the 14 loci identified, 8 contained more than two plausible variants across the loci. For 

example, variants located near the CD69 gene on chromosome 12 had the highest number of 

filtered variants, with 9 variants located in regulatory regions around the gene. In order to 

annotate the filtered variants to nearby genes, we took two approaches: annotated genes that 

were located in proximity to the SNPs using linear, chromosomal distances, and genes 

identified by their interaction with variant-containing regulatory regions via Treg Hi-C 

interactions (Table 1). Genes proximal to the identified 36 T1D variants include CTLA4, CCR5, 

IL7R, BACH2, IKZF1, IL2RA, CD69, RASGRP1, CCR3, CCR2, CLEC16A, HORMAD2 and 

PTPN2. These genes have previously been associated with T1D (13) and in addition other 

autoimmune disorders such as Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Crohn’s 

Disease (CD) and Inflammatory Bowel Disease (IBD) (58–62). Additionally, we annotated the 

filtered variants using eQTL data across all tissues from the Genotype-Tissue Expression 

(GTEx) project (63) and immune cells using the DICE database (64). We found that 12 filtered 

SNPs are annotated as the eQTL to their nearest loci (Additional file 3: Table S4) while 4 

SNPs, rs11718385 (CCR3), rs62408222, rs905671 and rs943689 (BACH2) were identified as 

eQTL to their nearest gene in Tregs (64). These data confirmed the ability of 3DFAACTS-SNP 

to identify potential disease associated regulatory region-target gene networks in a cell type 

specific manner.  
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In addition to the annotation of the 36 T1D SNPs to 14 genes in closest linear proximity, 

3DFAACTS-SNP identified 119 interacting regions and a further 51 genes that interact with the 

variant containing regulatory regions via Treg Hi-C (Table 1 & Additional file 3: Table S4). We 

next used the 15 states regulatory model for CD4+ CD25+ CD127- Treg primary cells from the 

Roadmap Epigenomics Project (52) to annotate interacting regions. These regions most 

frequently overlapped active chromatin states associated with transcription and gene 

regulation including states associated with weak transcription (5_TxWk) in 30% of identified 

regions, enhancers (7_Enh) in 29%, flanking active TSS (2_TssAFlnk) in 21% and 13% of 

regions located in active TSS state (1_TssA) (Additional file 3: Table S4). Two genes, 

DPY19L2P3 and DDC were then dropped from further analysis as they did not overlap active 

states in a Treg. Additionally, searches of the GAAD (54) indicated that 45 % (22/49) of the 3D 

interacting genes have been previously associated with autoimmune diseases including 

Rheumatoid arthritis, Multiple sclerosis, Inflammatory bowel disease and T1D (Additional file 3: 

Table S4). Of these 22 interacting genes, 6 have been shown to be significantly associated 

with T1D, including BACH2, CD28, CD69, ICOS, IL2RA and RASGRP1 (Additional file 3: 

Table S4). Overall, by overlapping with chromHMM active states, we found 49 genes and 80 

interacting regions that are active in Tregs that are in close proximity to regulatory regions 

carrying TD-associated variants. 

 

Taken together, our analysis identified 31 new T1D candidate genes that may be disrupted in 

Treg, and a further 18 genes that have been previously associated with T1D (13). 

Furthermore, 61% of these interacting regions and 13 genes overlap with induced Treg super-

enhancers (SEs; http://www.licpathway.net/sedb/), consistent with these regions containing 
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important Treg functional elements. When looking at the mean normalised expression 

(FPKM > 1) of genes in Treg samples in Gao et al 2019 (65), 78% of interacting genes 

(Additional file 3: Table S4) are expressed in Tregs, all of which were enriched for T cell 

specific gene ontologies (Additional file 1: Figure S1). These data indicate that distal 

interacting regions contain regulatory regions and genes important for Treg function and are 

consistent with a model in which the variant containing regulatory regions may contribute to 

T1D by disrupting the regulation of these distal interacting genes.  

 

 The topological neighbourhood surrounding filtered T1D variants  

We next investigated the topological neighbourhood, i.e. the presence of topologically-

associated or frequently interacting domains, in which regulatory regions harbouring the 

filtered T1D variants reside. By establishing putative boundaries of each 3D structural domain, 

we are then able to characterise the coordination of contacts within a loci and how they act to 

control gene expression. We called topologically-associated domains (TADs) using Treg Hi-C 

data (Additional file 4: Table S5) used in the workflow described above and integrated with 

publicly available super-enhancer, chromHMM data of T cell lineages and Treg expression 

data (66). All data was overlapped across each locus and displayed in supplementary figures 

2-13.  

 

TADs are called based on the frequency of interactions within a region (67), with physical 

interactions between two loci generally decaying with increasing linear distance on the 

chromosome (68). Genes in the closest proximity to our filtered T1D variants (Table 1), were 

unsurprisingly found within the same TAD. Interestingly however, we found that interacting 
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regions and genes identified by Hi-C were only co-located within the same TAD in ~56.5% of 

cases (i.e. intra-TAD interactions), with 42.6% of interactions occurring between different TADs 

(inter-TAD; Additional file 4: Table S5). Indeed, the linear distance between filtered variants 

and their 3D interacting genes (~12.5Mb) were on average ~2.3Mb further away compared to 

the average distance of intrachromosomal interactions found in the entire Treg Hi-C dataset 

(~10.2Mb), indicating that Treg-active, FOXP3-bound regions impact genes across much 

greater linear distances than regular connections. 

 

A high degree of chromatin interactions between genes and enhancer regions was detected 

within the filtered variant containing TADs, with these interactions both confirming previously 

identified SNP-target combinations and indicating potential new targets for investigation. For 

example, 3DFAACTS-SNP identified rs12990970 (chr2:204,700,689) as a potential causative 

T1D SNP. In Treg cells, rs12990970 is found in a flanking active TSS (TssAFlnk) state and it is 

located within a Treg super-enhancer (Figure 2 & Additional file 1: Figure S2). This variant is 

located in a non-coding region between gene CTLA4 and CD28 and in past studies, and it has 

been associated with CTLA4 as it is an eQTL for CTLA4 expression in testis although not in T 

lymphocytes or whole blood (Additional file 3: Table S4) (11,13,63,64). Hi-C interaction signals 

however do not indicate that the rs12990970-containing region interacts with the CTLA4 

promoter in Treg, instead Hi-C interactions indicates that this region form interactions with 

promoter and enhancer regions connected to the costimulatory receptor CD28 gene (Table 1 & 

Figure 2), a family member known to play a critical role in Treg homeostasis and function (69) 

suggesting CD28 is a novel target for this variant in Treg. 
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Figure 2: Visualisation of the CTLA4 region of filtered T1D SNPs on chromosome 2. 

Heatmap shows the Tregs Hi-C normalised interaction matrix (resolution of 40kb) on chr2: 

203922714-205092714. The red triangles indicate Topologically Associated Domains (TADs) 

and the large green-dotted triangle indicates the boundary of the current plot. Tracks displayed 

below the chromosome 2 ideogram display workflow datasets (filtered SNPs, FOXP3-binding 

sites and Treg ATAC-seq and Hi-C interactions) along with various types of cell type-specific 

data including UCSC Gene Transcript information, T cell subsets (Thelper1 and Treg) 
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expression data, Treg super-enhancer sets and 15-state ChromHMM track. T1D 3DFAACTS 

SNPs within this region are rs12990970, rs231775 and rs3087243 (from left to right). 

 

Another example is on chromosome 3, where Hi-C interactions indicated that the chemokine 

receptor genes CCR1, CCR2, CCR3, CCR5 and CCR9 (Figure 3) are extensively linked in one 

TAD containing all of the filtered variants, indicating that these genes may be coordinately 

regulated. This is supported by previous RNA Pol-II ChIA-PET work (70) that detected 

interactions between chemokine gene clusters during immune responses including an increase 

in interactions amongst the CCR1, CCR2, CCR3, CCR5 and CCR9 genes during TNF 

stimulation of primary human endothelial cells (70) (Additional file 1: Figure S14). Recently, 

CCR2, CCR3 and CCR5 have been shown to have additional chemotaxis-independent effects 

on Treg cells with individual studies, reporting positive roles for individual chemokine receptors 

on CD25, STAT5, and FOXP3 expression and Treg potency (71–73), highlighting the 

importance of multiple genes at this locus on Treg function. 
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Figure 3: Visualisation of the CCR3/2/5 region of filtered T1D SNPs on chromosome 3. 

Heatmap shows the Tregs Hi-C normalised interaction matrix (resolution of 40kb) on chr3: 

45600000-46840000. The red triangles indicate Topologically Associated Domains (TADs) and 

the large green-dotted triangle indicates the boundary of the current plot. Tracks displayed 

below the chromosome 3 ideogram display workflow datasets (filtered SNPs, FOXP3-binding 

sites and Treg ATAC-seq and Hi-C interactions) along with various types of cell type-specific 
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data including UCSC Gene Transcript information, T cell subsets (Thelper1 and Treg) 

expression data, Treg super-enhancer sets and 15-state ChromHMM track. T1D 3DFAACTS 

SNPs within this region are rs11718385, rs6441972, rs3138042, rs2856758 and rs1799988 

(from left to right). 

 

 

Filtered T1D variants are enriched at lineage specific T cell super-enhancers 

SEs usually consist of a cluster of closely spaced enhancers that are defined by their 

exceptionally high level of transcription co-factor binding and enhancer-associated histone 

modifications (i.e. H3K27ac) compared to all other active enhancers within a specific cell type 

(74). SEs are also linked to the control of important processes such as cell lineage 

commitment, development and function (75). Analysing T cell SE information annotated in the 

Super-Enhancer Database (76) (SEdb; http://www.licpathway.net/sedb/), 8 out of the 14 

variant-containing loci were found to contain filtered T1D variants located in SEs formed in 

various T cell lineages including Treg cells consistent with the enrichment of autoimmune-

disease associated variants within T cell super enhancers reported previously (75) (Figure 4A). 

The loci containing the CTLA4 and CLEC16A genes were the only loci that overlapped with 

Treg-specific SEs. The existence of a Treg SE is consistent with the different regulation of 

CTLA4 in Treg cells compared with other T cell lineages (77) and a recent report linking T1D 

risk variants to altered CLEC16A expression in Treg (65). Five other SNPs are located within 

SEs in multiple T cell types including induced Treg (iTreg) suggesting the gene controlled by 

these SE play a broad role in T cell function. While no Treg SEs are detectable at the CD69 

locus the T1D associated variants in this region overlapped with SEs formed in other T 
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subsets. No T cell associated SEs are found in the loci containing the CCR1/2/3/5, PTPN2, 

RASGRP1 and HORMAD2 genes (Figure 4A). 

 

 

Figure 4: Integrating T1D 3DFAACTS SNPs with different data of T cell lineages. A. 

Heatmap showing overlapping status between T1D 3DFAACTS SNPs and super-enhancers of 

different T cell lineage from SEdb (76), where red indicates variants overlapping with SEs and 
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blue indicates not overlapping. B. Enrichment of filtered T1D variants found within H3K27ac 

peaks from Epigenomics Roadmap and ATAC-seq peaks from multiple T cell lineages (52). 

Column names in red indicates Tregs specific datasets.  

 

We then investigated the level of active enhancer marks (normalised H3K27ac-binding) and 

chromatin accessibility (normalised ATAC-seq peak coverage) overlapping each variant from 

Table 1 (Figure 4B). A range of tissue restriction patterns of chromatin states were observed 

using the NIH Epigenomics Roadmap data with enhancers displaying in general a more cell 

type-restricted pattern of H3K27ac signal compared to promoters. No variant was found to be 

located in a regulatory region that was exclusively active in Treg cells although rs12990970, 

rs231775 (CTLA4), rs11597367, rs12722508 (IL2RA) and rs5753037 (HORMAD2) are 

associated with a restricted H3K27ac pattern that included Treg. The absence of Treg-specific 

enhancers is consistent with FOXP3 binding data where FOXP3 binds many enhancer regions 

active in other T cell lineages to modify their activity in Treg cells (78). In particular, evidence 

suggests FOXP3 cooperates with other Thelper-lineage specifying transcription factors to 

diversify Treg cells into subsets that mirror the different Th-lineages (79–81). The majority of 

regions associated with the variants show an increase in chromatin accessibility upon 

stimulation in Treg and Thelper subsets consistent with increased enhancer activity upon T cell 

activation however in a few instances variants are located in regions that decrease in 

accessibility in stimulated Treg and Thelper subsets compared with their matched unstimulated 

counterpart. Notably these include the variants rs905671, rs943689 and rs614120 associated 

with BACH2. This is consistent with the reduction in BACH2 expression in CD4 T cells as they 

mature, and alteration to this repression is linked to proinflammatory effector function (82). 
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Together these data are consistent with a model in which causal variants alter the output of 

enhancers that respond to environmental cues (83).  

 

 

Filtered variants disrupt Transcription Factor Binding Sites (TFBS) including a 

FOXP3-like binding site 

Fundamental to understanding the function of specific disease associated variants is the 

identification of the potential impact of these non-coding variants on transcription factor 

binding. Analysis of ATAC-seq datasets with HINT-ATAC (37), identified over 5 million active 

TF footprints in chromatin accessibility profiles from stimulated and resting Treg populations 

(Additional file 5: Table S6). By imposing the additional FOXP3 binding annotation to the 

footprint dataset, we identified 7 T1D-associated variants that have the potential to alter the 

binding of 9 TFs, suggesting the molecular mechanisms by which these variants could impact 

Treg function (Additional file 6: Table S7). Of these 7 SNPs, one SNP rs3176789 is located in 

an active TSS chromHMM state region, while the others are located either in enhancers or 

flanking active TSS that are associated with active enhancers, suggesting these variants might 

interrupt the binding of TFs to affect enhancer functions, with the potential for a network effect 

on multiple genes. 

 

We then used GWAS4D (84), which computes log-odds of probabilities of the reference and 

alternative alleles of a variant for each selected TF motif to calculate binding affinity, to predict 

the regulatory effect of each variant (Supplemental Table 8). Several of the variants are 

predicted to alter the binding of transcription factors with known roles in Treg and other T cell 
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lineages including Nuclear activator of T cells (NFATC2 & NFATC3, rs1029991) (85), 

interferon regulatory transcription factor (IRF, rs3176789) (86), myocyte enhancer factor 2 

(MEF2, rs6441972 and rs3176789) and FOX (Forkhead box, rs614120) family members. In 

addition, variant (rs1029991) has the potential to alter the binding of YY1 recently identified as 

an essential looping factor involved in promoter-enhancer interactions (87). Other variants 

(rs1136618 and rs3176789) potentially alter the binding of the zinc finger protein ZNF384. 

Although expressed in T cells, the importance of ZNF384 in T cell biology has not yet been 

explored. 

 

Of note, rs614120 is predicted to decrease the binding affinity of FOXA2 in this enhancer 

region (Additional file 6: Table S7). As FOXA2 is not expressed in the immune compartment, 

this SNP may interfere with the binding of another member of the forkhead class of DNA-

binding proteins eg FOXP3, which is localised to this region based on our FOXP3 ChIP (Figure 

5). This suggests that a model in which rs614120 impacts the expression level of BACH2 

and/or AFG1L by altered binding of a FOX protein to this enhancer.  
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Figure 5: A. Visualisation of the BACH2 region of filtered T1D SNPs on chromosome 6. 

Heatmap shows the Tregs Hi-C normalised interaction matrix (resolution of 40kb) on chr6: 

90320000-91665000. The red triangles indicate Topologically Associated Domains (TADs) and 

the large green-dotted triangle indicates the boundary of the current plot. Tracks displayed 

below the chromosome 6 ideogram display workflow datasets (filtered SNPs, FOXP3-binding 

sites and Treg ATAC-seq and Hi-C interactions) along with various types of cell type-specific 
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data including UCSC Gene Transcript information, T cell subsets (Thelper1 and Treg) 

expression data, Treg super-enhancer sets and 15-state ChromHMM track. T1D 3DFAACTS 

SNPs within this region are rs62408222, rs905671, rs943689 and rs614120 (from left to right). 

 

Filtered variant rs1029991, is predicted to alter the binding of NFAT family members and/or 

YY1 to the enhancer region which has been linked to the cell surface expressed gene CD69. 

In addition, our analysis indicates that this enhancer also contacts the chromodomain helicase 

DNA-binding domain family member 4 (CHD4), indicating that CHD4 expression may be 

affected by this variant. Although CHD4 (Mi-2β) has not been previously linked to autoimmune 

diseases by GWAS studies, it has been shown to interacts with the T1D-associated genes 

IKZF1 and GATA3 and to play an important role in T cell development in the thymus and in T 

cell polarisation in the periphery including regulatory T cell subsets (88–90), consistent with 

altered regulation of CHD4 having the potential to contribute to T1D. Filtered variant 

rs3176789 is predicted to alter IRF and/or MEF2 binding linking these transcription factors to 

the regulation of the CD69, and CLEC family members CLECL1 and CLEC2D. The CD69 and 

CLEC2D genes have previously been associated with T1D by GWAS while CLECL1 has not. 

However, CLECL1 is a known target gene for eQTL rs3176789 (Additional file 3: Table S4), 

connecting this SNP and its associated regulatory region to CLECL1 expression rather than 

CD69 and suggesting a possible role for disrupted CLECL1 expression in Treg in T1D. Filtered 

variant rs6441972 is also predicted to influence the binding of MEF2 to a regulatory region in 

proximity to the promoter of CCR2. This region did not appear to interact with any other distal 

regulatory region or gene. Consistent with this variant disrupting CCR2 expression, CCR2 is a 
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target gene for eQTL rs6441972, indicating that rs6441972 may result in altered CCR2 

expression in a Treg in T1D by interfering with MEF2 binding.  

 

Filtered Treg variants identified in other autoimmune diseases 

The primary rationale of our filtering workflow is that autoimmune diseases like T1D are 

mediated by altered Treg functions. Hence, using GWAS data for other autoimmune diseases, 

we aimed to discover variants which potentially act by disrupting 3D gene regulation in Tregs. 

Similar to filtering fine-mapped T1D-associated SNPs, here we used the 3DFAACTS-SNP 

filtering workflow to process variants identified by Immunochip fine-mapping experiments and 

meta-analysis from three studies for a broad range of autoimmune and inflammatory diseases. 

SNPs associated with 10 autoimmune diseases were identified, representing 221 fine-mapped 

SNPs associated with multiple sclerosis (MS) (91); 69 SNPs identified by the meta-analysis of 

celiac disease (CeD), rheumatoid arthritis (RA), systemic sclerosis (SSc), and T1D(92) (which 

we refer to the 4AI dataset); and 244 SNPs identified by the meta-analysis of GWAS datasets 

for ankylosing spondylitis (AS), Crohn’s disease (CD), psoriasis (PS), primary sclerosing 

cholangitis (PSC) and ulcerative colitis (UC)(93) (which we refer as 5ID dataset). Applying the 

3DFAACTS-SNP pipeline we identified 9, 3 and 6 filtered variants from the MS, 4AI and 5ID 

datasets respectively (Additional file 7: Table S8). We identified putative target genes for these 

disease associated variants by Hi-C interactions resulting in 24, 8 and 8 genes linked to MS, 

4AI and 5ID respectively (Additional file 7: Table S8). Many of these genes have either known 

roles in Treg differentiation, stability and function (GATA3 and CD84, ITCH, ILIRL2 and ILST) 

(94–102), or altered expression in human Treg in autoimmune-disease (ICA1, SESN3 and 

DLEU1) (103–105) and animal models of autoimmunity (SEPTIN7 and WWOX) (106). 
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Of the variants identified by 3DFAACTS-SNP, one variant (rs60600003) located at a locus on 

chromosome 7 was found to be associated with several diseases, including MS(91), celiac and 

systemic sclerosis(92), suggesting at least some of its interacting genes (ICA1, HERPUD2, 

SEPTIN7, ELMO1, DOCK4) may contribute to a common Treg defect in these diseases 

(Additional file 1: Figure S15 & Additional file 7: Table S8). When compared with the 36 

variants identified from our T1D dataset analysis two variants, rs61839660 on chromosome 10 

and rs3087243 on chromosome 2 were also prioritised by 3DFAACTS-SNP analysis of the 5ID 

and 4AI datasets respectively implicating their interacting genes SFMBT2 (rs61839660), ABI2 

and IQCA1 (rs3087243) in the development of these diseases. While different variants were 

identified in the analysis of the various disease datasets, the regulatory elements in which 

these variants reside can be linked by Hi-C data to common candidate target gene such as 

PFKFB3 (rs12722496 and rs12722508 - T1D and rs947474 - 4AI). This is consistent with the 

view that common mechanistic pathways underlie some autoimmune diseases, although the 

specific risk allele within a locus can be disease-specific (107).  

 

Similar to the filtered T1D SNPs, the GWAS filtered variants were more likely to be located 

within enhancer regions rather than promoters (Table 1 & Additional file 7: Table S8), 

surprising given that our defined enhancers cover less of the genome than promoters 

(enhancers: cover 2.23% of the human genome, while promoters cover 5.27%). This is also 

consistent with previous studies which have demonstrated an enrichment of disease 

associated variants at enhancer and super enhancer regions (75,108–110). We further 

annotated the filtered variants from these three datasets with GTEx eQTLs and Tregs eQTLs, 
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identifying 4 SNPs that form an eQTL with a candidate gene target identified by Hi-C 

interactions (Additional file 7: Table S8). This included rs7731625-IL6ST and rs60600003-

ELMO1, two SNP-gene contacts and eQTL pairings identified by 3DFAACTS-SNP as potential 

causative Treg defects in MS (rs7731625-IL6ST) and MS, T1D, celiac and systemic sclerosis 

(rs60600003-ELMO1), respectively. Of particular interest is the rs7731625-IL6ST pairing as 

IL6ST is a common signalling receptor of the IL6 family of cytokines known to have differing 

effects on Treg numbers and differentiation potential (100–102). Furthermore, the IL6-LIF axis 

has been proposed to regulate the balance of Th17/Treg cells with changes in Il6/LIF levels 

proposed to play a role in MS (99) highlighting a potential molecular mechanism for how the 

SNP variant rs7731625 may impinge on Treg function in MS.  

 

Identifying new variants that are candidates for impacting autoimmune disease 

Most variants identified by GWAS have small effect sizes that together only represent a 

fraction of the heritability predicted by phenotype correlations between relatives (111). To 

account for this missing heritability, various models have been proposed including a highly 

polygenic architecture with small effect sizes of the causal variants (112,113), rare variants 

with large effect size (114,115) and epistatic mechanisms including gene-gene and gene-

environment interactions (116,117). As a consequence many causal variants with small effect 

sizes are unlikely to reach genome wide significance in current GWAS whereas rare variants 

are often under-represented on SNP arrays (118). Lastly the preponderance of studies utilize 

populations of European descent which can result in a bias for SNPs with a higher minor allele 

frequencies in Europeans compared to other populations potentially limiting the relevance of 

these SNPs to the associated traits in non-Europeans (119). As an alternative approach to 
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identify novel putative autoimmune disease-associated SNPs independently of association 

studies, we sampled 1,004,570 common variants (MAF > 0.1) from the Genome Aggregation 

Database (gnomAD) (version 3.0) (120) as inputs to our filtering workflow. Of these 808,857 

overlapped with Tregs-specific Hi-C interactions, with 135,114 of these variants were located 

in promoter/enhancer regions and finally, 7,900 variants were located in FOXP3 binding 

regions (Additional file 8: Table S9). As a demonstration how this approach may complement 

current GWAS, 4,379 (55.7%) of the common variants we identified in gnomAD were not 

included in the largest GWAS T1D dataset to date (11) (Additional file 8: Table S9).  

 

In order to further characterise the filtered gnomAD SNPs, we used GIGGLE (121) to compare 

the regions in which filtered SNPs reside against 15 predicted chromHMM genomic states 

across 127 cell types and tissues from Epigenomic Roadmap (52) (Figure 6 and Additional file 

1: Figure S16), identifying positive and negative enrichment scores according to overlapping 

sets. Interestingly, although there was strong positive enrichment signal in active Tss (TssA), 

flanking active Tss (TssAFlnk) and enhancers (Enh) states in thymus, HSC, B- and T- cell 

groups, an enrichment was also observed across all cell types suggesting many of the 

enhancer and promoter regions and by extension their target genes are broadly expressed 

(Additional file 1: Figure S16). Moreover, unlike the 3DFAACTS-SNP analysis of GWAS 

derived data where filtered SNPs were enriched in enhancer regions, gnomAD derived SNPs 

are approximately evenly split between enhancers and promoter regions (Additional file 8: 

Table S9). Similarly, low/negative enrichment of the heterochromatin (Het) state was observed 

in all cell types whereas other inactive states such as repressed Polycomb (ReprPC, 

ReprPCWk) and the quiescent (Quies) states exhibited a negative enrichment in lymphoid 
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cells. Interestingly, gnomAD SNPs demonstrated a strong negative enrichment in Treg cells for 

the chromatin states associated with strong transcription (Tx) and weak transcription (TxWk) 

potentially reflecting FOXP3 transcriptional repressor function (122).  

 

Treg Hi-C data was used to explore the FOXP3-associated regulatory networks that include 

these SNPs in a Treg. For the regions identified to interact with the 7,900 variants located in 

FOXP3 binding regions by Hi-C we observed a strong positive enrichment of regulatory states 

such as TssA, TssAFlnk, Tx, Txwk, EnhG and Enh in blood, HSC, B and T cells, supporting a 

regulatory role for these interacting regions (Figure 6 and Additional file 1: Figure S17). In total 

3,245 Treg expressed genes (mean FPKM > 1) (65) were found to be associated by Hi-C with 

variants identified by 3DFAACTS-SNP analysis of the common SNP gnomAD dataset. GO and 

Hallmark genes sets from the Molecular Signatures Database (MSigDB) (123,124) analysis of 

these 3,245 interacting Treg expressed genes were significantly enriched (adjusted P-value < 

0.05) in relevant GO terms such as T cell activation and regulation of hematopoiesis 

(Additional file 1: Figure S18) and autoimmune/Tregs-related gene sets, including TNFα via 

NF-κB, IL6/JAK/STAT3, and IL2/STAT5 signaling pathways (Additional file 1: Figure S19). 

Integration of the filtered gnomAD variants with cis Treg eQTLs from the DICE database (64), 

further identified 943 common variants previously demonstrated to impact gene expression in 

Tregs (Additional file 8: Table S9). These 943 variants are connected by Hi-C interactions to 

1038 genes in our analysis of which 121 (11.6%) form a cis eQTL pair with the 3DFAACTS 

identified SNPs. Importantly, interacting genes were significantly enriched (Fisher exact test, P 

value = 9.06e-24) in genes that are associated with 49 autoimmune diseases from GAAD (54) 
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supporting the idea that we have identified potential novel disease associated molecular 

mechanisms.  

 

Figure 6: Enrichment of 3DFAACTS gnomAD variants (left panel) and their interacting 

regions (right panel) found within NIH Epigenomics Roadmap samples. Enrichment test 

of filtered gnomAD SNPs against chromHMM states from 129 tissues and cell types from 

Epigenomics Roadmap using GIGGLE (121). Red coloured regions indicate positive 

enrichment of variants within cell-types and chromHMM states, while blue coloured regions 

indicate negative enrichment. Here we subset to enrichment in three tissue groups, including 

thymus, HSC & B cell and Blood & T cell, enrichment result of all samples can be found in 

Additional file 1: Figure S18 & 19. 
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We then integrated SNPs identified by 3DFAACTS-SNPs with the active TFBS dataset 

identified from Tregs ATAC-seq data by HINT-ATAC (37) (Additional file 8: Table S9) to 

identify potential molecular mechanisms of action of these non-coding SNPs. We found 870 

filtered SNPs are located within active binding sites of 521 TFs indicating that they may impact 

TF binding. Accounting for the requirement of Treg expression of the TF (65) or its differential 

expression in Tregs compared to effector T cells (125), the number of variants with the 

potential to alter TF binding in a Treg was reduced to 693 and 108 variants respectively 

(Additional file 8: Table S9). Of the variants that potentially impact the binding of a TF 

expressed in a Treg, 19 were found to be an eQTL with its interacting gene partner identified 

by Hi-C. Included in this list were genes previously associated with Treg stability and viability, 

specific Treg subsets and pathways known to influence Treg differentiation and function. This 

is consistent with 3DFAACTS-SNP identifying potential novel variants that contribute to a Treg 

defect in disease. For example, Treg IL23R and FAS expression is associated with Treg/Th17 

imbalances in IBD and the chronic inflammatory disease, acute coronary syndrome (126,127) 

and here using 3DFAACTS-SNP we predict rs1324551 and rs72676067 may contribute to this 

altered expression by disrupting the binding of the transcription factors RBPJ and POU2F2 

respectively. Other genes are up-regulated in specific Treg subsets, including TBCID4 

(follicular regulatory T cells) (128), ACTA2 (Placental bed uterine Tregs and tumour-infiltrating 

Treg) (66,129), and POLR1A (cold-exposed Brown adipose tissue Treg) (130), suggesting the 

identified common variants could lead to functional defects in these specific Treg subsets. A 

third group of genes have been shown to regulate growth factor signaling pathways that are 

known to influence Treg differentiation and function (131–133). In particular, we have identified 

variants that alter expression of the genes involved in TGF-β signaling (SPTBN1, CDC7 and 
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SLC35F2) and WNT signaling (SPTBN1 and MCC). For example, 19 SNPs are linked to the 

SPTBN1 gene by Hi-C in our analysis, eight of which are identified as eQTLs with SPTBN1 in 

Tregs, and of these three (rs10170646, rs4455200 and rs13386146) overlap and potentially 

disrupt the binding of the transcription factors BCL6, HES2 and BATF-Jun heterodimer 

respectively prioritising these potential causative variants linked to allele-specific expression 

(ASE) of SPTBN1 in Treg. However further investigation is required to establish if altered 

SPTBN1 caused by these variants may contribute to any disease in response to TGF-β and 

WNT signaling pathways. Together, these data indicate that the 3DFAACTS SNP pipeline in 

combination with the gnomAD database has the potential to annotate novel disease 

associated variants and their potential molecular mechanisms of action, many of which have 

not previously been investigated in GWAS studies.  

 

Discussion 

GWAS and fine-mapping studies have identified over 50 candidate regions for T1D 

progression (11,13,134), however a broad understanding of the underlying disease 

mechanism has been difficult to elucidate without relevant functional information derived from 

cell-specific material. With the availability of whole genome annotation, we see that the 

majority of genetic risk lies in non-coding regions of the genome and is enriched in regulatory 

regions including promoters and enhancers. Traditionally, to understand how these variants 

may function they have been assigned to the nearest gene or genes within a defined linear 

distance. However this approach ignores the role of three-dimensional connectivity by which 

enhancers and repressors function to regulate transcription (135–137).  
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Recent approaches use statistical co-localization tests to link potential causal SNPs and 

quantitative trait loci (QTLs) to identify the genes regulated by GWAS loci (138). These 

methods require many samples in the correct cell type or physiological context and to date 

work best for local/cis QTLs, generally less than 1Mb in linear distance (135). An alternative 

approach used in this study and others (139,140) is to make use of chromosome conformation 

capture data to directly connect disease-associated regulatory regions to their target genes. As 

growing cellular and genomics evidence indicate that dysregulation of the Treg compartment 

contributes to autoimmune disease (46,141,142), we generated a cell type-specific 3D 

interaction profile in human regulatory T cells to establish an in silico, candidate loci reduction 

method to identify T1D-candidate regions that function in a Treg and the genes they affect. 

Open chromatin regions identified by ATAC-seq and regulatory regions identified by epigenetic 

marks such as histone H3K27ac can number in the tens of thousands in a specific cell type 

(65,143), we therefore initially focused on regulatory regions bound by the Treg-specific 

transcription factor FOXP3 given the essential role of FOXP3 in the Treg functional phenotype 

we hypothesized that candidate variants that are found within open, FOXP3-bound regions are 

likely to alter immunological tolerance. In addition as different autoimmune-diseases share 

genetic risk regions (59) we speculated that by identifying specific genetic variants that may 

contribute to T1D through the dysregulation of regulatory T cell functional fitness, this could be 

via mechanisms consistent across many autoimmune diseases (1,144,145).  

 

The design and implementation of the 3DFAACTS-SNPs workflow champions a new data-

centric view of functional genomics analysis, with the development of cell type-specific 
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epigenomic and 3D datasets enabling researchers to narrow down on molecular changes at a 

fine-scale resolution. However, results shown in this study suggests that cell type-specific 

viewpoints can be broadened to a much more lineage (T cell) or immune (e.g. innate or 

adaptive) system-specific level. While we focused on Treg cells and expected to identify Treg-

specific enhancer-controlled targets, based on the criteria of inclusion of FOXP3 binding data, 

no functional variant was uniquely accessible in only Tregs, nor were they specifically enriched 

with Treg-exclusive H3K27ac modified regions (Figure 4B). This likely reflects the propensity of 

FOXP3 to bind to enhancers active in multiple CD4+ T cell lineages (78) (Figure 4) to modify 

their output in a Treg-specific manner and therefore we cannot currently discern whether these 

filtered variants act predominantly in Tregs or on other CD4+ T cell subsets. The incorporation 

of context- and CD4+ T cell subset-specific gene expression (146) and epigenomic (140,147) 

data into the 3DFAACTS-SNPs workflow may help resolve this. Although we have focused 

here on using FOXP3-binding as a filtering criteria, it is known that other FOXP3-independent 

pathways are important for Treg function and the 3DFAACTS-SNPs workflow could be 

modified to incorporate other TFs or other epigenetic profiles such as CpG-demethylated 

regions (148) to further explore the relationship between disease-associated variants and 

these pathways. 

 

In total using the 3DFAACTS-SNPs workflow we identified 36 novel candidate genes 

connected to variants in 12 T1D risk loci that could plausibly function in a Treg whereas we 

could not define plausible candidate Treg-specific activity at the other T1D risk regions that 

met all our filtering criteria. This may indicate that these other risk-regions are active in immune 

cell types other than a Treg or they impact genes and regulatory elements within a Treg that 



 

42 

are not dependent upon FOXP3. As an example of how the 3DFAACTS-SNPs workflow can 

lead to testable insights into the molecular mechanisms of non-coding variants, the SNP 

rs614120 was found to be located in a FANTOM5 annotated T cell-specific enhancer region in 

the first intron of the BACH2 gene, and is predicted to disrupt the binding of Forkhead 

Transcription factor family member FOXA2 (Figure 5 and Additional file 6: Table S7). However, 

FOXA2 is not expressed in T cells, indicating that rs614120 might disrupt the binding of other 

Forkhead family members which bind to very similar DNA sequences, such as FOXP3, which 

is known to bind in this region (Figure 5). The 3DFAACTS-SNPs workflow further indicates that 

this enhancer region containing rs614120 interacts with the promoter of BACH2, forming a 

distal promoter-enhancer interactions, suggesting that rs614120 may disrupt FOXP3 binding to 

the enhancer leading to the dysregulation of BACH2 expression. It has been recently shown 

that Bach2 plays roles in the regulation of T cell receptor signalling in Tregs, including averting 

premature differentiation and assisting peripherally induced Treg development (149). 

Therefore, we suggested that this single variant may regulate BACH2 expression and 

ultimately may affect the progression of T1D, and this requires further experiments to verify. 

This can further aid the development of novel therapeutic approaches to restore function in 

Treg of patients with this genotype. This finding also suggests that variants can contribute to 

the causal mechanisms of disease by altering the efficacy/ stability of TF binding in important 

regions such as enhancers or SEs.  

 

The power of 3DFAACTS-SNPs is its ability to incorporate chromosome organisation in 3D 

and identify long-range interactions involving variant-containing regulatory regions leading to 

the identification of target genes that have not previously been associated with these disease 
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associated risk regions. This is illustrated by the finding that the majority (24/31) of Treg-

expressed genes that interact with the T1D variants are not the closest gene in linear proximity 

and of these interacting genes 20 have not been previously associated with any autoimmune 

disease. For example, T1D 3DFAACTS SNP rs1029991 although located in linear proximity to 

the CD69 gene was found to contact the CHD4 gene (~3.2 mb away) (Additional file 3: Table 

S4) suggesting this variant is more likely to influence CHD4 expression than CD69. 

Interestingly, rs1029991 was not identified as a cis-eQTL for CHD4 in Tregs as it >3Mb away 

on the genome, with eQTLs being classified as cis when found <1Mb from their target gene. 

 

The idea that high-order nuclear organisation coordinates transcription in times of immune 

challenge or tolerance was recently shown in a study demonstrating that 3D chromatin looping 

topology is important for a subset of long non-coding RNAs (lncRNAs), termed immune gene–

priming lncRNAs (IPLs), to be correctly positioned at the promoters of innate genes (70). This 

positioning of the IPLs then allows for the recruitment of the WDR5–mixed lineage leukaemia 

protein 1 (MLL1) complex to these promoters to facilitate their H3K4me3 epigenetic priming 

(70). An example of long-range enhancer gene interactions in conveying autoimmune-disease 

risk in Treg cells has also recently been published (150). In this work a distal enhancer at the 

11q13.5 locus associated with multiple autoimmune-disease risk, including T1D was found to 

participate in long-range interactions with the LRRC32 gene exclusively in Treg. Deletion of 

this enhancer in mice resulted in the specific loss of Lrcc32 expression in Treg cells and the 

inability of Treg to control gut-inflammation in an adoptive transfer colitis model. Furthermore 

CRISPR-activation experiments in human Tregs identified a regulatory element located in 

proximity to a risk variant rs11236797 that is capable of influencing LRRC32 expression. This 



 

44 

data together highlights the mechanistic basis of how non-coding variants may function to 

interfere with Treg activity in disease. Although we did not identify this interaction in our final 

SNP-interaction list upon re-examination of our workflow this interaction was present in our Hi-

C dataset, but it was filtered out as the enhancer is not bound by FOXP3. Coordinated genome 

topology has also been shown in immune cell lineage commitment, both at a loci (151,152) 

and compartment level (153), consistent with the concept of immune transcriptional “factories” 

where genes congregate in regions of the nucleus to undergo coordinated transcriptional 

activation (154).  

 

Although a shared genetic aetiology between T1D and other immune-mediated diseases has 

been proposed we did not find a large overlap between the variants or interacting genes 

identified by 3DFAACTS SNP in T1D and other autoimmune disease datasets. The reason for 

this is not clear but may be a result of the relatively low number of input SNPs for the other 

autoimmune diseases. Irrespective of this, several candidate causal SNPs and genes including 

SFMBT2 (rs61839660), ABI2 and IQCA1 (rs3087243) and PFKFB3 (rs12722496 and 

rs12722508 - T1D and rs947474 - 4AI) were found to be common between T1D and other 

autoimmune diseases. Several of these genes such as SFMBT2, ABI2 and PFKFB3 have 

previously been implicated in the development of autoimmune diseases or play a role in critical 

T cell pathways suggesting these genes are likely targets that explain the molecular function of 

the risk variants. SFMBT2 is a methylated histone binding transcriptional repressor which has 

been associated with childhood onset asthma (155). ABI2 is required for actin polymerization 

at the T cell:APC contact site with loss of Abi1 in mice resulting in decreased TCR-mediated 

IL-2 production and proliferation (156). PFKFB3 is involved in both the synthesis and 
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degradation of fructose-2,6-bisphosphate, a regulatory molecule that controls glycolysis in 

eukaryotes. Regulation of glycolysis has increasingly been implicated in shaping immune 

responses (157) and PFKFB3 has been associated with multiple autoimmune diseases (158). 

Importantly, reduced PFKFB3 enzyme activity leading to redox imbalance and apoptosis has 

been reported in CD4+ T from RA patients (159) directly linking the PFKFB3 gene to the 

disease.  

 

A highly polygenic architecture with small effect sizes of many causal variants (112,113) has 

been proposed to account for missing heritability associated with phenotypic traits. Most of 

these small effect size variants have yet to be identified. Here we have begun to investigate 

whether common genetic variation found within populations could contribute to autoimmune 

diseases by altering gene-expression by altering enhancer and promoter output. In this study 

we illustrate this potential by accessing large population-scale variant resources in the 

gnomAD database, identifying 7,900 filtered common variants that have the potential to impact 

Treg function. Based on the search of discovered associations of autoimmune diseases 

(EFO_0005140) from the GWAS Catalog (160), over half of the variants surveyed here have 

not been used in large-scale autoimmune disease GWAS (11,93,161–167), precluding their 

assessment for potential disease risk in sampled disease/control populations. While filtered 

variants identified here are biased towards the inclusion of FOXP3-binding within the workflow, 

their potential immune response impact is highlighted by the finding that their interacting 

regions are positively enriched for transcription and enhancer -associated chromatin states 

(Figure 6, Additional file 1: Figure S16 & 17), eQTLs and potentially impacted TFBS (Additional 

file 8: Table S9). This potential accessibility of regulatory variants among a population could 
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potentially explain additional variation in effector responses in T cell activation (168), relevant  

not only to autoimmune disease, but also to broader immune responses for example to SARS-

CoV-2. 

 

In conclusion, while we initially restricted the application of 3DFAACTS-SNP to Treg centric 

genome-wide interaction frequency profiles to give functional annotation in T1D data, we have 

demonstrated that valid interacting pairs from Hi-C dataset can be functionally mapped with 

high confidence from multiple disease datasets as well as whole genome variant datasets, 

which presents a valuable resource in establishing cell-type specific interactomes. Coupled 

with cell-type specific genomic data available from public repositories, such as the NIH 

Roadmap (52), Blueprint (169) and ENCODE (170) projects, this workflow provides a useful 

mechanism to identify potential mechanisms by which non-coding variants regulate disease 

causing genes, and identifies new targets for therapeutic modulation to treat or prevent 

disease. 

 

Conclusion 

Based on Treg ATAC-seq, Hi-C data, promoters and enhancers annotation and FOXP3 

binding site, we developed a variant filtering workflow named 3DFAACTS-SNP to identify 

potential causative SNPs and their 3D interacting genes for T1D from GWAS fine-mapped 

variants. Our workflow can easily be used with variants associated with other autoimmune 

diseases or even large population-scale variants.  
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