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Abstract

The mammalian brain’s navigation system is informed in large part by visual signals. While the primary
visual cortex (V1) is extensively interconnected with brain areas involved in computing head direction (HD)
information, it is unknown to what extent navigation information is available in the population activity of visual
cortex. To test whether information about head direction information is available in visual cortex, we recorded
neuronal activity in V1 of freely behaving rats. We show that significant information about yaw, roll, and pitch
of the head can be linearly decoded from V1 either in the presence or absence of visual cues. Individual V1
neurons were tuned to head direction, with a quarter of the neurons tuned to conjunctions of angles in all three
planes. These results demonstrate the presence of a critical navigational signal in a primary cortical sensory
area and support predictive coding theories of brain function.
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Introduction1

Navigation is a core cognitive process that is critical for survival. The mammalian brain’s navigation systems2

contain specialized cells whose dynamics reflect a sense of location—via place, grid, and border cells—and3

heading direction1,2. Head direction (HD) cells are found in a number of species3–9 and brain areas; in rodents,4

these include the thalamus, hippocampal formation, and the neocortex10–16. HD cells rely on vestibular signals5

relayed via brainstem nuclei10, as well as visual signals sent from visual areas to the retrosplenial cortex and6

subiculum, and superior colliculus inputs to the laterodorsal nucleus of the thalamus11. While the influence of7

visual cues on navigational variables has been studied extensively, it remains largely unknown what effect, if8

any, navigational variables have on visual representation.9

While visual cortical areas have traditionally been thought of as processing centers that transform and10

analyze incoming sensory information17, there is a growing awareness that feedback and modulatory inputs11

from other modalities have profound effects on visual cortex dynamics18–21. Neurons in primary visual cortex12

(V1) have been shown to signal running speed22, increase the gain on visual stimulus during locomotion18, and13

even to signal the direction of movement of the head in the presence or absence of visual input23.14

Importantly, V1 neurons have also been shown to encode a subjective sense of position in physical space,15

reminiscent of hippocampal place cells24–27. While the functional purpose and circuit mechanisms for place16

representation in V1 are not clear, some have suggested that these signals represent the brain’s internal model of17

the world, as part of a predictive coding framework28. Nevertheless, an outstanding question is what functional18

purpose, if any, such navigational signals serve for sensory processing.19
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A major source of non-visual input to V1 comes from the retrosplenial cortex (RSC), a multimodal area20

known to contain HD cells19,29–31. RSC inputs to V1 have been shown to reflect movement20, but the full22

functional consequences of these inputs on V1 are not well understood, and the extent to which V1 activity23

represents head direction is an open question. To test whether V1 dynamics reflect HD, we recorded neuronal24

activity in V1 of freely behaving rats in an open arena home-cage. Half of the sessions were recorded in the25

dark in order to assess non-visual HD representations in V1. We found that V1 dynamics encoded yaw, roll,26

and pitch of the head, which constitute the 3D components of HD. These features could be decoded well above27

chance levels with a simple linear decoder, in either the dark or the light. Many individual V1 neurons were28

tuned to 3D HD, with about a quarter of cells tuned to conjunctions of preferred angles in all three planes.29

Altogether, these results indicate that the HD signal extends to a primary sensory cortical area, and suggest30

that navigational signals are more widespread than previously known.31

Results32

Decoding Head Direction33

To investigate the possibility that V1 encodes HD information, we recorded neuronal activity using tetrode34

arrays targeting layer 2/3 of rat V1 while the animals behaved freely in a home-cage arena (Figs. 1a-d, S1a).35

Movements were captured using a head-mounted inertial measurement unit (IMU). We focused our analysis on36

the Euler angles—yaw (a.k.a. azimuth), roll, and pitch—which allowed analysis of 3D direction of the head in37

allocentric room coordinates. Recordings were performed continuously, 24/7, with pseudo-randomized dark or38

light epochs that overrode the animals’ natural dark-light cycles to control for possible circadian effects. The39

continuous recordings were split into ∼2-hour dark or light sessions for analysis purposes, which allowed us to40

examine HD signals in the absence or presence of visual inputs, respectively. Precautions were taken to ensure41

light levels in the behavioral box in the dark were lower than what is likely required to orient in space using42

visual landmarks (see Materials and Methods), signifying that any HD signals in V1 in the dark correspond to43

an estimate based on nonvisual signals (e.g. vestibular, somatosensory, auditory, or olfactory).44

Animals explored a uniform range of the yaw component of 3D HD and concentrated the roll and pitch45

components of 3D HD around zero and 50 degrees below the horizon, respectively, as previously reported (Fig.46

1e)32,33. While the animals tended to move somewhat more in the dark than in the light (Fig. S1b), there were47

no systematic differences in behavioral coverage between dark and light sessions (Fig. 1e).48

To address whether V1 neural dynamics reflect 3D HD, we built a linear regression model that took as inputs49

the multiunit activity (MUA) firing rates from the 16 tetrodes, and predicted the HD in the three Euler angles50

separately (Figs. S1c, S2a-c) (see Materials and Methods). The models performed well above chance, both in51

the dark and in the light (Fig. 1f-h). Decoding performance was highest for the roll and pitch components and52

did not differ significantly between the light and dark conditions for any of the planes (Fig. 1h). Decoding53

performance increased as a function of MUA window size, and was generally highest when the lag between54

neuronal activity and HD was close to zero milliseconds (Fig. 1i,j).55

In previous work, we reported that V1 responses to head orienting movements (HOMs) depend on secondary56

motor cortex (M2)23. To address the possibility that V1 HD encoding also depend on M2, we fit and tested the57

linear regression model to sessions recorded in M2-lesioned rats. These models performed well in the dark and58

the light, for yaw, roll, and pitch, albeit with reduced performance for pitch relative to non-lesioned animals59

(Fig. S2d). Thus, neuronal dynamics in V1 encode the three angular components of HD in freely behaving rats,60

in a manner that likely does not depend on M2.61
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Figure 1: Primary Visual Cortex Encodes 3D Head Direction in Freely Moving Rats. (a) Head direction (HD) angles
were measured in 3D using a head-mounted sensor while neural activity in V1 was measured using chronically-implanted electrode
arrays. (b) During the 24/7 recordings, rats were free to explore in their home cage either in the light or in the dark, with ∼12
hours per lighting epoch. Each epoch was then split into 2-hour sessions for analysis. (c) Tetrode were arrayed in 8x2 grids
and implanted in V1 along the anterior-posterior axis. (d) Example one-second trace of components of 3D HD (red) and spiking
activity from one of the 16 tetrodes (black). (e) Behavioral coverage of the HD angles in dark (purple) and light (green) across
rats and sessions. (f) Example traces from one decoding session showing true (black) and predicted (red) HD angles in the dark.
Decoding was performed using linear ridge regression with multiunit activity (MUA) firing rates as inputs. (g) Mean bivariate
histograms of true and predicted HD angles across rats and sessions in the dark (top row) and light (bottom row). Diagonal
lines indicate ideal decoding performance. (h) Summary of decoding model performance measured using the circular correlation
coefficient for yaw models and Pearson’s correlation coefficient for the roll and pitch models. Yaw, dark: rcirc = 0.31 ± 0.0154,
light rcirc = 0.30 ± 0.0154 (mean ± SEM); Roll, dark r = 0.41 ± 0.0162, light r = 0.42 ± 0.0144; Pitch, dark r = 0.46 ± 0.0182,
light r = 0.44 ± 0.0167 (mean ± s.e.m.). (i) Decoding performance as a function of MUA window size for dark or light sessions, or
those in which the HD traces were randomly permuted before model fitting (grey). Window lag was 0 seconds for these models.
(j) Decoding performance as a function of window lag while window size was held constant at 500 ms. Negative lags represent
cases where neural activity occurs before a given HD point; positive lags indicate cases where neural activity occurs after a given
HD point.
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V1 Single Units are Tuned to Individual Components of 3D HD62

To define the cellular basis for the 3D HD signal in V1, we spike-sorted well-isolated units (Fig 2a), which63

were then classified into regular-spiking putative excitatory units (RSUs) and fast-spiking putative inhibitory64

units (FSUs) based on waveform shape (Fig S3). V1 neurons showed clear tuning to individual components of65

3D HD (Fig. 2b-d), with mean firing rates peaking at particular directions along any given HD axis for many66

cells. Neurons recorded simultaneously showed a wide degree of directional preference, spanning the extents of67

each plane (Fig. 3a). Across all recorded cells that showed directional tuning, preferred directions were widely68

distributed for yaw and pitch, but concentrated for roll (Fig. 3b).69

The majority of V1 single units were tuned to yaw, while fewer were tuned to roll or pitch. Nevertheless,70

substantial fractions of RSUs and FSUs were tuned conjunctively to angles in two planes, with ∼20-25% tuned71

to angles in all three planes (Fig. 3c,d). These results suggest that at least some neurons in V1 are partially72

tuned to particular directions in 3D space.73

Figure 2: V1 Single Units are Tuned to Individual Components of 3D HD. (a) Spikes extracted from tetrodes were
sorted into individual units based on waveform properties using Mountainsort34. Top: example peak spike amplitudes from two
channels on one tetrode. Colors indicate individual clusters from the sorting algorithm. Bottom: mean waveforms from each of the
clusters, showing waveforms from each channel within the example tetrode. (b-d) Examples of 1D tuning curves from 18 single
units in V1 recorded in dark (purple) or light (green), with firing rates (mean ± SEM) plotted as a function of head direction along
the yaw (b), roll (c), and pitch (d) components. Grey shading: 95 CI of shuffle distributions.

Head Direction Tuning Stability74

To be useful for navigation, ideally HD representations should be stable over time and invariant to environ-75

mental conditions. To examine the stability of the 3D HD signal in V1, we analyzed the correlation structure of76

weights from the MUA linear regression models used to decode 3D HD over time. Each session’s weights (20077

time-points per tetrode × 16 tetrodes) were correlated to weights from sessions from the same rat separated by78

0-24, 24-48, 48-96, or 96-192 hours, and compared to correlations of weights taken from different rats (Fig. 4a).79

We reasoned that weight correlations from across rats should serve as a control measure, since there is no reason80

to expect tetrodes from different brains to be weighted similarly. We found that within-rat weight correlations81

were higher than across-rat correlations for all models, and especially for the roll and pitch, in both dark and82

light. These results indicate that the 3D HD representation exhibits stability for up to ∼one week.83
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Figure 3: Directional Coverage of Tuned Cells. (a) 3D HD activity of 71 simultaneously-recorded V1 neurons in the dark.
Neurons sorted by the time of the peak-normalized firing rates. (b) Preferred directions of all neurons with significant tuning. (c)
Histograms of Rayleigh vector lengths for RSUs (left) and FSUs (right) in dark (purple, top row) and light (green, bottom row).
Unfilled lines indicate all cells; filled area represents significantly-tuned cells. Note: random vector length on the -90-90 degree
interval (roll) is ∼0.6. (d) Percentages of tuned neurons to individual components of 3D HD (yaw, roll, pitch) or combinations of
two or three angles.

To address how visual inputs may impact HD tuning of individual neurons in V1, we tracked single units84

between the dark and light conditions for a subset of experiments. While mean firing rates were different between85

the dark and light conditions (data not shown), z-scored tuning curves of many neurons were similar across the86

two lighting conditions (Fig. 4b), and ∼60% of the cells were tuned to HD in both conditions. Examining the87

differences in preferred direction of significantly-tuned neurons revealed that most neurons had low directional88

discrepancy between light and dark, although the drift was higher for yaw, as has previously been reported for89

recordings performed in the dark in subcortical head direction circuits14,35 (Fig. 4c). Together, these results90

indicate that while the directional tuning may drift somewhat in the absence of visual cues, many individual91

V1 neurons displayed tuning stability across light and dark conditions, and the multiunit signal that formed92

the basis for the linear decoding of 3D HD was stable for at least one week.93

Discussion94

Using chronic electrophysiological recordings in freely behaving rats, we showed that primary visual cortex95

encodes three-dimensional components of head direction, both in the presence and absence of visual cues. This96

signal was stable both across time and lighting conditions.97

While several previous studies have failed to find HD signals that extend beyond yaw angle (azimuth) in98

the rodent limbic system36,37, recent work has validated the idea that navigational variables represent three-99

dimensional space38. 3D HD cells were found in the presubiculum of crawling or flying bats39, while 3D place100

cells were found in both bat and rat hippocampus40,41. It is not entirely clear why some studies have failed to101
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Figure 4: Encoding of Head Direction by V1 Neurons is Stable. (a) Correlations of MUA ridge regression model weights
among session pairs separated by 0-24, 24-48, 48-96, or 96-192 hours. Purple (dark) and green (light) indicate session pairs for
one given rat (i.e. within-rat comparisons); grey bars indicate correlations among session pairs from different rats (i.e. across-rat
comparisons). Sessions with above-median decoding performance were used for the within-rat comparison. (b) Example 1D tuning
curves of neurons recorded simultaneously in dark (purple) and light (green) showing stability of tuning between the two conditions.
(c) Histogram of tuning direction discrepancy (absolute circular difference) between dark and light. Carets indicate means. Yaw:
69.04 ± 6.69 degrees; roll: 13.85 ± 1.70; pitch: 54.47 ± 5.80 (mean ± SEM).

find 3D HD cells in the rodent limbic system, but one possible explanation is methodological: rats in the present102

study were free to move as they wished and head movements were measured using a head-mounted IMU, while103

in some previous studies animals were required to crawl upside down along a ceiling14 or restrained and moved104

passively37. Further work into naturalistic behavior in 3D space may resolve this issue.105

While the head direction information that we have decoded could reasonably be the product of visual106

processing in the presence of light, the fact that these signals are also present (and stable) in the dark, points to107

an exogenous source of this information. Retrosplenial cortex (RSC) is one plausible candidate for this source,108

as it processes vestibular information and sends extensive projections to V1. What purpose, if any, might head109

direction representation in a primary visual area serve? One possibility is that head-direction representations in110

visual cortex play a role in reconciling visually-driven and vestibular contributions to an overall representation111

of head direction. Elegant theoretical work has posited a ring attractor as a possible computational substrate112

for estimating head direction in the brain, with input from multiple modalities42; a literal ring of neurons113

implementing a ring attractor that computes head direction has recently been described in the brains of fruit114

flies3–6. While our results don’t definitively speak to the presence of such a system in the brain of the rat, the115

presence of stable, persistent representations of heading from multiple modalities could play a role in such a116

system if it exists.117

Another, non-mutually-exclusive, possible explanation for HD signals in V1 is that these are used by visual118

circuits to aid in predicting future visual features. This paradigm proposes that a core function of the visual119

cortical hierarchy is to make predictions about future states28,43–45. The finding here that primary visual cortex120

contains information about head direction suggests an intriguing possibility that such navigational signals may121

be used by the visual cortex to improve predictions about future visual features, as the animal moves through the122

environment. Future work may test this idea experimentally in vivo, for example by isolating and manipulating123

V1-projecting axons containing HD information in the context of a behavioral task.124

In previous work, we demonstrated that rat V1 responds to orienting movements of the head in a direction-125

and light-dependent manner23. We found also that V1 responses to such movements were severely reduced126
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following lesions to secondary motor cortex (M2), even though the movements themselves were relatively unaf-127

fected. Applying the HD decoding models to M2-lesioned animals showed that V1 in these animals still encoded128

3D HD (Fig. S2d), suggesting that HD signals in V1 originate in a different region.129

While it is broadly accepted that vision plays a significant role in shaping the brain’s sense of space and130

heading direction, little work has been done to ask how the computation of navigational variables impacts131

dynamics in sensory areas. We have taken a first step toward elucidating the interplay of visual sensory signals132

and those that encode head direction. Future work will investigate exactly where these signals originate, and133

how they impact sensory perception and behavior. While the RSC, which contains cortical HD cells, projects134

heavily to V119, it is also possible that V1 inherits this information indirectly from parahippocampal or thalamic135

regions. More experiments will be needed to establish the source of non-visual head direction information in136

V1.137

This work adds to a growing awareness that non-visual signals play a critical role in shaping visual cortical138

population dynamics, and that the computational role of visual cortex may extend beyond just processing visual139

inputs. Understanding how the visual cortex interacts with other multimodal systems of the brain, such as a140

navigation, holds the promise to deepen our understanding of cortical computation in general.141

Materials and Methods142

Animals143

The care and experimental manipulation of all animals were reviewed and approved by the Harvard Insti-144

tutional Animal Care and Use Committee. Experimental subjects were female Long Evans rats 3 months or145

older, weighing 300-500 g (n = 9, Charles River, Strain Code: 006).146

Surgery147

Rats were implanted with 16-tetrode electrode arrays targeting L2/3 of V1, as described previously23.148

Animals were anesthetized with 2% isoflurane and placed into a stereotaxic apparatus (Knopf Instruments).149

Care was taken to clean the scalp with Povidone-iodine swabsticks (Professional Disposables International,150

#S41125) and isopropyl alcohol (Dynarex #1204) before removing the scalp and cleaning the skull surface with151

hydrogen peroxide (Swan) and a mixture of citric acid (10%) and ferric chloride (3%) (Parkell #S393). Three152

to four skull screws (Fine Science Tools, #19010-00) were screwed into the skull to anchor the implant. A153

0.003” stainless steel (A-M Systems, #794700) ground wire was inserted ∼2mm tangential to the brain over154

the cerebellum.155

Tetrodes were arrayed in 8x2 grids with ∼250-micron spacing, and were implanted in V1 with the long axis156

spread along the AP (ranging 6-8 mm posterior to bregma, 4.5 mm ML, targeting layer 2/3 at 0.6 mm DV).157

The dura was glued (Loctite) to the edges of the craniotomy to minimize movement of the brain relative to the158

electrodes. After electrodes were inserted into the brain, the craniotomy was sealed with Puralube vet ointment159

(Dechra) and the electrodes were glued down with Metabond (Parkell). Post-operative care included twice-daily160

injections of buprenex (0.05mg/kg Intraperitoneal (IP)) and dexamethasone (0.5 mg/kg IP) for three days.161

Behavior162

Spontaneous behavior in rats living in a 15x24” home cage was recorded under two conditions: dark, in163

which the lights in the box and room were turned off, and light, in which the box was illuminated. Recordings164

were carried out 24/7 and split into 2-hour sessions in dark or light on a pseudo-random light cycle, as previously165

described23.166

The behavior box was constructed from aluminum extrusions and black extruded acrylic (McMaster). The167

floor was covered in bedding and the arena contained a cup with food, a water bottle and toys. The walls were168

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.283762doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283762
http://creativecommons.org/licenses/by-nc-nd/4.0/


lined with strips of white tape at different orientations to provide visual features in the light condition, and169

the box was outfitted with white LED strips (Triangle Bulbs Cool White LED Waterproof Flexible Strip Light,170

T93007-1, Amazon) to provide illumination.171

For recordings, rats were tethered with a custom 24” cable (Samtec, SFSD-07-30C-H-12.00-DR-NDS, TFM-172

107-02-L-D-WT;McMaster extension spring 9640K123) to a commutator (Logisaf 22mm 300Rpm 24 Circuits173

Capsule Slip Ring 2A 240V TestEquipment, Amazon). A 9-axis Inertial Measurement Unit (IMU) (BNO055,174

Adafruit) was used to record movement; the sensor was epoxied to the connector on the cable, in a way that175

placed it directly above the electrodes and headstage. This not only ensured that the sensor was always in176

the same position above the animals’ heads, but also that it stayed powered after the animals were unplugged,177

preventing the need to re-calibrate the sensor after each recording. The IMU data were acquired at 100Hz178

using a micro-controller (Arduino) and saved directly to the acquisition computer’s disk. To synchronize IMU179

and electrophysiology data, the Arduino provided a 2-bit pseudo-random pulse code to the TTL inputs on the180

electrophysiology system.181

Electrophysiology182

Tetrodes were fabricated using 12.5-micron nichrome wire (Sandvik-Kanthal) following standard proce-183

dures46–48, as described previously23. Tetrodes were threaded through 42 AWG polyimide guide tubes into 8x2184

grids of 34 AWG tubes (Small Parts) and glued to a single-screw micro-drive. The drive was modified from a185

design in Mendoza et. al49 and Vandercasteele et. al50, in which a 3-pin 0.1” header served as the skeleton186

of the drive, with a #0-80 screw replacing the middle pin, and the header’s plastic serving as the shuttle. In187

the experiments reported here, the tetrodes were not advanced after recording sessions started. The tetrodes188

were plated with a mixture of gold (Neuralynx) and polyethylene glycol (PEG) as per Ferguson et. al51, to an189

impedance of ∼100−250KΩ. The ground and reference wires were bridged and implanted through a craniotomy190

above the cerebellum.191

Electrode signals were acquired at 30 kHz using custom-made Intan-based 64-channel headstages52 and Opal-192

Kelly FPGAs (XEM6010 with Xilinx Spartan-6 ICs). Spikes were extracted following procedures described in193

Dhawale et al (2017)52. Multiunit firing rates were estimated in non-overlapping 10-ms bins from extracted194

spikes. Multiunit and single-unit firing rates were Gaussian-filtered and in some cases z-scored. Single-units195

were sorted using MountainSort34 and classified into putative excitatory regular-spiking units (RSUs) or puta-196

tive inhibitory fast-spiking units (FSUs) based on the trough-to-peak time (width) and full-width at half-max197

(FWHM) of the unfiltered waveforms (Fig. S3).198

Head Direction Decoding199

Head direction in 3D was decoded separately for the yaw, roll, and pitch angles using Ridge linear regression.200

Because the yaw signal is circular, it was modeled in the complex plane (i.e. angles were decomposed into x201

and y components, fitted to two separate models, and recombined into angles during evaluation).202

The models took z-scored MUA firing rates as inputs and predicted the angle of a given component of 3D203

HD. The MUA firing rates from n = 16 tetrodes were taken in time windows and flattened before fitting, such204

that each window x tetrode became a vector of features used to predict a HD angle (Fig. S2).205

The models were fit using half of the data in a session, with the session split into 30-second chunks separated206

by 0.25-second discarded gaps. The even chunks were used for fitting the linear regression models and the odd207

ones were used for testing. The Ridge models were implemented using the Scikit Learn Python package53,208

and cross-validated threefold. Each two-hour session was modeled separately (n = 89 sessions in dark, n = 95209

sessions in light across n = 5 rats).210

To determine optimal window size and lag, we performed a grid search, with window size ranging from 0.10,211

0.25, 0.50, 1.00, 1.50, to 2.00 seconds, and window lag ranging from -1.00 to 1.00 seconds in steps of 250 ms.212

Negative lags represent neural activity lagging behind a given HD position (Fig. 1i,j).213
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Lesions214

Lesions of M2 were performed as previously described23, using excitotoxic injections of ibotenic acid (IA)215

(Abcam ab120041) delivered using an UMP3 UltraMicroPump (WPI) during two separate procedures. Aliquots216

of IA were prepared at 1% concentration and frozen. In the first procedure, IA was injected into four sites in217

one hemisphere (1.5 mm AP, relative to Bregma and 1.0 mm ML; 0.5 AP, 0.75 ML; -0.5 AP, 0.75 ML; and218

-1.5 AP, 0.75 ML, with two injections per site, at 1.6 and 0.8 mm below the brain surface, 75 nl each) and the219

animal was allowed to recover for one week, after which the injections were repeated at the same sites in the220

opposite hemisphere and electrode arrays were implanted in V1.221

Measuring Light Levels in Dark222

To assess whether the recording box was sufficiently dark as to prevent the rats from being able to see223

anything in the dark recordings, we first made sure that it was impossible for a human observer (GG) to see any224

movement in the recording box after acclimating to the darkened room for 30 minutes. We then attempted to225

measure photon flux in the box using a photomultiplier tube (PMT) (ET Enterprises #9111B) after amplifying226

and filtering the signals (12dB lowpass at 10Hz) using a Stanford Research Systems preamplifier (#SR570).227

Baseline PMT currents in the darkened behavioral box were measured with the PMT covered by tinfoil. After228

removing the tinfoil, the PMT current registered at 0.2µA. This corresponds to 0.2 ∗ 10−6 Coulombs/s, which229

is 0.2 ∗ 6.2415 ∗ 1012 electrons/s. Accounting for the PMT’s gain of 7.1 ∗ 106, that is 0.2 ∗ 6.2415 ∗ 1012/7.1 ∗ 106230

or 1.8 ∗ 105 photocathode events/s. Given the PMT’s 10% quantum efficiency (QE) at 500nm, this corresponds231

to 1.8∗106 photons/s over the PMT’s 22mm cross-sectional area, or 80,000 photons/mm/s. Assuming 2.27µm2
232

rod cross section54, 0.4 specific absorption, and QE of 0.3455, that is 80000 ∗ 2.27 ∗ 10−6 or 0.18 incident233

photons/rod/s and finally 0.025 R*/rod/s. Based on retinal ganglion cell activity measured in Soucy et al.56,234

0.025 R*/rod/s would correspond, roughly, to retinal ganglion cells firing at 6.7% of their peak firing rates235

measured at light levels corresponding to 100 R*/rod/sec.236

Statistics237

All statistical comparisons were done using non-parametric tests (e.g. Mann-Whitney U or Wilcoxon) unless238

specified otherwise. A significance level of alpha = 0.01 was used throughout, unless otherwise noted. Bonferroni239

correction was applied where appropriate.240
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Figure S1: (Related to Figure 1). Details of Head Movement and V1 Neural Recordings. (a)

Example traces from a recording session showing yaw, roll, and pitch components of head direction over 100
minutes (top) or 100 seconds (bottom). (b) Mean histograms of total acceleration, defined as the norm of the
three linear components of acceleration, for sessions recorded in dark (purple) or light (green). (c) Example

raw bandpass-filtered traces showing spiking activity from one V1 recording session, colored by tetrode.
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Figure S2: (Related to Figure 1). Head Direction Decoding Approach and Decoding in M2-Lesioned Animals. (a)
Multiunit activity (MUA) vectors from the 16 tetrodes were used to predict yaw, roll, or pitch components of 3D HD separately,
using ridge regression. (b) A vectorized MUA window ranging from 10 ms. to 2 sec. was used to predict any given HD time-point.
(c) Sessions were divided into 30-second even and odd chunks, with the former used for fitting the models and the latter for testing.
The chunks were separated by 0.25-second discarded gaps to ensure that model performance was not due to continuities in the
HD or MUA signals. (d) Excitotoxic lesions to secondary motor cortex (M2) were performed bilaterally using ibotenic acid. Left:
horizontal view of overlaid lesion ROIs from n = 4 rats. Right: Ridge regression decoding results for non-lesioned (n = 5) and
lesioned (n = 4) rats. Each dot represents one 2-hour session; outlines are violin plots. Yaw, dark: Non-lesioned: rcirc = 0.31±0.02;
Lesioned: 0.33 ± 0.01 (mean ± SEM). MWU test p = 0.4. Yaw, light: Non-lesioned: rcirc = 0.30 ± 0.02; Lesioned: 0.31 ± 0.01.
MWU test p = 0.31. Roll, dark: Non-lesioned: r = 0.41±0.02; Lesioned: 0.39±0.02. MWU test p = 0.26. Roll, light: Non-lesioned:
r = 0.42 ± 0.01; Lesioned: 0.39 ± 0.02. MWU test p = 0.14. Pitch, dark: Non-lesioned: r = 0.46 ± 0.02; Lesioned: 0.36 ± 0.01.
MWU test p = 1.2 × 10−5. Pitch, light: Non-lesioned: r = 0.44 ± 0.02; Lesioned: 0.36 ± 0.02. MWU test p = 7.5 × 10−4.
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Figure S3: (Related to Figure 2). Single-Unit Waveform Classification. Units were classified into regular-spiking putative
pyramidal units (RSUs) or fast-spiking putative inhibitory units (FSUs) based on calculations of spike width (trough to peak time),
full-width-at-half-max (FWHM) time, or end-of-waveform slope. For classification, waveforms from the highest-amplitude channels
within a tetrode were used. (a) Spike width vs. FWHM. Each dot represents a unit, colored by its mean firing rate. Inset:
waveform illustrating width and FWHM calculation. Dotted line: classification boundary for FSUs (width<0.5ms) and RSUs
(width>0.5ms). (b) Waveform slope vs. width. (c) Histogram of mean spike widths. Inset: Mean firing rates of RSUs and FSUs.
Red: FSUs (n = 61 in dark; n = 50 in light), Black: RSUs (n = 142 in dark; n = 112 in light). (d) Mean waveforms of n = 365
single units recorded in dark (n = 203) or light (n = 162) in n = 5 rats across n = 10 sessions, separated by negative-peaked (left)
and positive-peaked (right) units. Color indicates fast-spiking units (FSUs, red) and regular-spiking units (RSUs, black) based on
classification in c.

Figure S4: (Related to Figure 4). Tracking Single Units Across Dark and Light Sessions. (a) Example mean
waveforms from tetrode channels for units sorted jointly across dark and light sessions. (b) Correlations between mean waveforms
in dark and light (r = 0.93 ± 0.12, mean ± SEM) were significantly higher than among N = 1000 shuffled pairs (r = 0.55 ± 0.41),
p = 2.57 × 10−58, MWU test. (c) Correlations between mean inter-spike-interval distributions for units recorded in dark and light
(r = 0.70 ± 0.34) were significantly higher than those among N = 1000 shuffled pairs (r = 0.56 ± 0.32), p = 4.36 × 10−09, MWU
test.
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