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Our supplementary material is structured as follows. We first provide additional informa-
tion on our proposed method in Section S1. In particular, we discuss conditions that ensure
identifiability, i.e. unique estimates for our underlying haplotypes and their frequencies. We
also provide algorithms and explain how we select the number of haplotypes (model selection),
and how accuracy scores are computed that provide information on the quality of the estimates.

In Section S2, we describe our model for the simulations. We provide additional results from
our simulations, together with our analysis of the error under several experimental designs, in
Section S3. We evaluate the accuracy measure introduced in Section S1-4 with our simulations
in Section S4. Furthermore, additional results on the estimation of allele frequencies are pro-
vided in Section S5. Section S6 provide an analysis of the simulation runs leading to outliers in
the reconstruction error and Section S7 discusses the effects of different levels of recombination
on our proposed approach. Lastly, additional results on the real data can be found in Sections
S8, S9, and S10.

S1 Theory and Methods

S1-1 Identifiability of structure and frequency from allele frequency
(AF)

[Behr and Munk, 2017] derived sufficient and necessary conditions under which the matrices S
and W (including the number of haplotypes m) are uniquely identifiable from their product
SW . With some slight modifications of their arguments, we can also show that under weak
identifiability assumptions on S and W , one can uniquely identify S, W , and b from the
population AFs F . More precisely, for W it is assumed that different combinations of SNPs
lead to different AFs, that is,

sW 6= s′W for all s 6= s′ ∈ {0, 1}m. (S1)

For the haplotype structure S it is assumed that there is at least one SNP which is unique to
a haplotype and at least one SNP that is only present in minor haplotypes, that is

for all i ∈ [m] there exists an n ∈ [N ] such that

Sni = 1 and Snj = 0 for all j 6= i

and there exists an n ∈ [N ] such that Sni = 0 for all i ∈ [m],

(S2)
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(equivalently one can exchange 0 and 1 in (S2)). Both of these conditions are very reason-
able in most real data situations, given that the number of essential haplotypes m is not too
large. It is easy to see that condition S1 is necessary for identifiablity of haplotype struc-
ture S and frequency W from AF Y in (2). A simple situation, where S1 does not hold is
when two haplotypes have exactly the same proportion at all time points t ∈ [T ]. In that
case, it is not possible to distinguish whether a SNP is present in one or the other haplo-
type. Condition (S2) imposes a sufficient variability of individual haplotypes. A trivial non-
identifiable counter example is, for instance, when one major haplotype is constant zero or
constant one. Some further insights and examples on the specific condition in (S2) can be
found in [Behr and Munk, 2017, Behr et al., 2018]. Note that (S2) requires that out of the
2m possible variant combinations for the m haplotypes, at least those m combinations which
correspond to the identity vectors e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) and the one which
corresponds to the zero vector (0, . . . , 0) appear at some of the locations n ∈ [N ].

The conditions (S1) and (S2) do not just guarantee identifiability in an abstract way, but
they also lead to an explicit algorithm for recovering S, W , b and m from the noiseless AFs
SW + b in (2). Part of our reconstruction algorithm is built on this deterministic recov-
ery algorithm that is based on a simple combinatorial reordering of the observations (see
[Behr and Munk, 2017, Diamantaras and Chassioti, 2000] for very similar algorithms). The
idea of this algorithm is that the discrete nature of S lets us identify both S and W from
appropriate row vectors of Y as outlined in the following.

The smallest norm among the rows of Y appears for any SNP that has variant 0 for all
m haplotypes, in which case we observe only the bias term b. Similar, the second (and third)
smallest possible row value of Y appears for a SNP with variant 0 on all haplotypes, except
the one with the smallest frequency Wm· (second smallest frequency W(m−1)·), which lets us
identify Wm· and W(m−1)·. Among the remaining observed row values of Y the smallest one
must correspond to W(m−2)·, and so on. In that way, one can successively recover all the
frequencies Wi· and given W it is straightforward to recover S. We present pseudo code in
Algorithm 1 below.
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S1-2 Algorithms

Algorithm 1 Recover S,W, b from exact data Y = SW + b

1: procedure HaploSepCombiExact
Input: Y = SW + 1b> such that (S1) and (S2) hold.
Output: S,W, b,m
2: Y ← {Y1·, . . . , YN ·}
3: b← arg miny∈Y ‖y‖
4: Y ← Y \ b
5: Y ← Y − b
6: W1· ← arg miny∈Y ‖y‖
7: Y = Y \W1·
8: m← 1
9: while Y 6= ∅ do
10: W(m+1)· ← arg miny∈Y ‖y‖
11: m← m+ 1
12: Y ← Y \ {

∑m
i=1 siWi· : s ∈ {0, 1}m}

13: end while
14: for n = 1 to N do
15: Sni ← arg mins∈{0,1}m ‖Yn· − sW‖
16: end for
17: put Wi· in the reverse order
18: return S,W, b,m
19: end procedure
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Algorithm 2 Recover S,W, b from Y in (2)

1: procedure HaploSep
Input: Y ∈ [0, 1]N×T ,m ∈ [N ], δ > 0
Output: Ŵ , b̂, Ŝ
2: (Ŵ , b̂)← HaploSepCombi(Y,m)
3: for n = 1 to N do
4: Ŝni ← arg mins∈{0,1}m ‖Yn· − sŴ − 1b̂>‖
5: end for
6: E0 ← 0
7: En ← ‖Y − ŜŴ − 1b̂>‖
8: while |En − E0| > δ do
9: E0 ← En

10: (Ŵ , b̂)← arg minW,b ‖Y − ŜW − 1b>‖
11: such that Wit, bt ∈ [0, 1],

∑m
i=1Wit ≤ 1

12: for n = 1 to N do
13: Ŝni ← arg mins∈{0,1}m ‖Yn· − sŴ − 1b̂>‖
14: end for
15: En ← ‖Y − ŜŴ − 1b̂>‖
16: end whilereturn Ŵ , b̂, Ŝ
17: end procedure

S1-3 Model selection via SVD

Note that in the noiseless population case (Y = SW + b in (2)) the number of dominant
haplotypes m can directly be obtained via the rank of the AF matrix with

rank(SW + 1b>) = m+ 1. (S3)

To see this, note that the tth column of SW + b can be written as

m∑
i=1

S·iWit + bt(1, . . . , 1)>

and thus

rank(SW + 1b>) = dim(span(S·1, . . . , S·m, (1, . . . , 1)>)) = m+ 1,

where the last equality follows from the identifiability condition (S2). Thus, estimation of m
from Y corresponds to estimating the (low) rank of the matrix SW + b from its noisy version
Y . A more general strategy for the noisy case is to consider the singular values s1, . . . , sT of Y
(assuming that N ≥ T ) and then estimate

m̂+ 1 = #{si ≥ τ : i ∈ [min(N, T )]} (S4)

for some threshold τ . [Gavish and Donoho, 2014] derived optimal thresholds (in terms of matrix
denoising) that are approximately

τ ≈ (0.5(T/N)3 − 0.95(T/N)2 + 1.82(T/N) + 1.43) smed, (S5)

where smed denotes the median of the singular values s1, . . . , sT of Y . In summary, we estimate
m̂ as in (S4) with τ as in (S5).
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Algorithm 3 Initialize Ŵ , b̂ from Y in (2)

1: procedure HaploSepCombi
Input: Y ∈ [0, 1]N×T and m ∈ [N ]
Output: Ŵ , b̂
2: {C1, . . . , C2m} ← apply hierarchical clustering to {Yn· : n ∈ [N ]} with 2m centers
⊂ [0, 1]T .

3: Ĉ ← {C1, . . . , C2m}
4: b̂← arg minc∈Ĉ ‖c‖
5: Ĉ ← Ĉ \ b
6: Ĉ ← Ĉ − b
7: Ŵ1· ← arg minc∈Ĉ ‖c‖
8: Ĉ ← Ĉ \ Ŵ1·
9: for l = 2 to m do
10: Ŵl· ← arg minc∈Ĉ ‖c‖
11: for s ∈ {0, 1}l−1 do
12: Ĉ ← C \ {arg minc∈Ĉ ‖c−

∑l−1
i=1 siŴi· − Ŵl·‖}

13: end for
14: end forreturn Ŵ , b̂
15: end procedure

S1-4 Accuracy scores

In practice, it may happen that our modeling assumption of a small number of major haplotypes
m� T,N is violated, e.g., because only few haplotypes are lost over time under some neutral
scenario without selection. Alternatively, the selected haplotypes may get lost early on due to
random genetic drift. In such a case, a low dimensional haplotype representation will often yield
a poor fit to the data Y , which we measure using the well known coefficient of determination

R2 = 1 − ‖Y−ŜŴ−1b̂
>‖2

‖Y−Y ‖2 . Besides R2, we also report the uncertainty of the proposed estimates

via bootstrap confidence scores and bands [Efron, 1979]. Recall that the haplotype structure S
is constant over the time points t ∈ [T ]. Thus, in order to evaluate uncertainty in the estimate
Ŝ, we propose to resample (with replacement) from the empirical distribution on {Y·1, . . . , Y·T},
that is,

Y ?
t

i.i.d.∼ 1

T

T∑
t=1

1Y·t , (S6)

where 1y denotes the dirac measure on y. For each haplotype i ∈ [m] and SNP location n ∈ [N ]

via sampling Y ? = (Y ?
1 , . . . , Y

?
T ) from (S6), we compute the variance of Ŝni(Y

?). As stability
score for the ith haplotype estimate we report the following score:

StabScoreSi = 1− 1

N

N∑
n=1

|Ŝni −
1

K

K∑
k=1

Ŝkni| ∈ [0, 1]. (S7)

A stability score of StabScoreSi = 1 suggestes an unbiased estimate of the ith haplotype
and stability score of StabScoreSi = 0 a highly biased estimate, which may occur due to
model misspecification (i.e., violation of the major haplotype assumption or the identifiability
conditons).

For the haplotype frequencies W , we observe that they are invariant for different locations
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n ∈ [N ]. Thus, to evaluate uncertainty for W we resample from

Y ∗n
i.i.d.∼ 1

N

N∑
n=1

1Yn· (S8)

We report the 0.025 and 0.975 quantiles of Ŵit(Y
∗) as bootstrap confidence bands and the

average width of those confidence bands as stability scores.
In practice, we found the above scores to perform reasonable, but we clearly note that there

are many other possibilities to construct quality scores for our setting, such as other bootstrap
based scores, or also Bayesian credible scores, or frequentist p-values that are based on explicit
modeling assumptions, potentially conditioning on either Ŵ or Ŝ to construct conditional
confidence statements for the other.

We determine a criterion for accepting scenarios where the reconstruction has enough ac-
curacy overall and consider the structure and frequency specific accuracy scores only for those
scenarios. Our criterion is based on the R2 scores and the frequency change of the haplotype
reaching highest frequency. More specifically, we require R2 > 0.8 and the frequency change of
the haplotype reaching highest frequency > 0.1.

S2 Simulation setup

We evaluate our approach using extensive simulations. In our simulations we considered three
experimental designs aiming to reproduce the three data sets we analyze in Section 5, i.e. the ex-
periments explained in [Noble et al., 2019], [Castro et al., 2019] and [Barghi et al., 2019]. They
cover three very different organisms used in E&R experiments (Caenorhabditis elegans, mice,
and Drosophila simulans) with various complexities leading to three different starting condi-
tions for the experiments. Indeed, mice populations need to be small because of the mainte-
nance effort involved, whereas this is not the case for Drosophila simulans and even less for
Caenorhabditis elegans. The latter two organisms thus give more freedom to choose the number
of different starting haplotypes.

Selection is an important factor in E&R experiments where researchers attempt to under-
stand the genetic architecture of adaptation. In the literature, several E&R experiments have
been discussed that involve different stressful conditions. Sources of stress can be high/low-
quality food, body size constraints (e.g. only sufficiently small or large organisms are allowed
to reproduce), or heat. Our three data sets consider stress conditions on the reproduction
regime [Noble et al., 2019], on the body size [Castro et al., 2019] and the temperature regime
[Barghi et al., 2019]. Other publications focus on desiccation resistance [Griffin et al., 2017],
pathogen resistance [Kraaijeveld and Godfray, 2008], and selection on flying speed [Weber, 1996].

In our simulations, we consider starting populations with the same numbers of haplotypes,
and of individuals, as in the real data applications discussed in Section 5. As some of the
founder haplotypes from [Barghi et al., 2019] were made available to us by the authors, starting
populations were obtained by sampling from these haplotypes. For our basic scenario, we
introduce a simple selection regime with selection strength s = 0.05 for a beneficial allele present
at three different founder haplotypes. The genetic composition of generation n is obtained by
multinomial sampling from the previous generation. Sequencing data are generated every tenth
generation at 16 different time points (G0, G10, . . . , G150). From the simulated haplotype data,
we compute the true allele frequencies via the regression model Y = SW in Section 3 of the
main text as the matrix product of the simulated haplotype structure and frequency. Afterward,
we simulate observed allele frequencies using binomial sampling with sample size n equal to the
local sequencing coverage, taken from a Poisson(80) distribution. This is to mimic that real
allele frequency data in most E&R experiments are noisy because individuals are sequenced as
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a pool with a given depth (coverage) that changes according to the available resources. With
pool sequencing the DNA of all organisms is mixed and sequenced together. An extensive
explanation of pool sequencing can be found in [Schlötterer et al., 2014]. A detailed description
of this binomial sampling step can be found in [Waples, 1989] and [Jónás et al., 2016].

Our haplotypes involve a genomic region of 500 linked SNPs. We chose such a fairly short
window size, because it makes recombination events sufficiently rare to be ignored for our
organisms during the experiment. To extend the haplotype reconstruction to larger genomic
regions, we propose to apply our method to overlapping sliding windows.

Beyond our basic scenario, we also investigate several alternative scenarios, and consider
how design parameters of E&R experiments affect the quality of our haplotype reconstruction.
Parameter values not mentioned in our results have been chosen as in our basic scenario.
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S3 Simulation results

Complementing Section 4.1, we provide results for our three simple selection scenarios on the
comparison between the reconstructed and the true haplotype structure in Fig. S1.

S1a
Longshankmice exp.

S1b C. elegans S1c D. simulans

Figure S1: Result of one simulation run from the simple selection scenario with the experimental
design from the Longshank mice experiment (a), C. elegans (b), and Drosophila simulans (c).
This figure shows inconsistencies between true and reconstructed haplotype structure. Blue
line indicates mismatches.

Most of the mismatches that we observe in Fig. S1 are in the low-frequency haplotypes.
In order to reconstruct haplotypes correctly, they need to be present in the population at
an appreciable frequency for several generations. In particular our approach usually cannot
accurately reconstruct the structure of haplotypes reaching zero frequency in the earlier part
of the experiment. Even so, those haplotypes are not of interest for most analyses trying to
understand the architecture of adaptation because they do not provide any contribution to it.
Since the number of true haplotypes can be much larger than the number of haplotypes we
reconstruct, we match the (true) haplotype having the closest possible structure to the given
reconstructed one to compute the error for our estimated haplotypes. As for the figures in
the main text, we filter again using our criteria on R2 and the frequency change of the most
abundant haplotype as explained in Section S1-4. See Section S6 for the remaining simulation
runs. Based on 100 simulation runs, Fig. S2 shows very low error for both frequency and
structure of the selected haplotype(s). However, looking at the different time points, the error
is higher for initial generations, whereas it drops for later stages of evolution (see Fig. S2b).
The differences between earlier and later time points can be pronounced depending on the
experimental design. Indeed when selection occurs, our method provides better estimates for
later time points than for earlier ones, if the number of reconstructed haplotypes is much smaller
than the number of haplotypes in the starting population. Similar conclusions can be drawn
also for the results about the experimental design based on [Noble et al., 2019], shown in Fig.
S3.

Starting from these three simple selection scenarios, we did simulations for different values of
important parameters for E&R in order to assess how they affect our haplotype reconstruction.
We focus on the selection coefficient, the number of haplotypes in the founder population, the
number of haplotypes carrying the beneficial allele, the coverage and the number of time points
where the sequencing data are collected. For each simulation run the number of haplotypes
being reconstructed is estimated via our model selection step as explained in Section S1-3. All
the results discussed in this section are simulated with the parameters introduced in Section S2
(s = 0.05, 150 generations of E&R where allele frequencies are available every 10 generations,
one locus carries the beneficial allele in three individual haplotypes, genotypes from the founder
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Figure S2: Haplotype reconstruction error for our basic selection scenario with Drosophila
simulans based on 100 simulation runs. (a) Proportion of wrongly classified SNPs for each
reconstructed haplotype. The haplotypes are displayed in decreasing order according to the
frequency at the last time point. (b) Absolute difference between the true and estimated
haplotype frequencies for each time point at which sequencing information is available.

population used in [Barghi et al., 2019]). Fig. S4 shows the accuracy depending on the selec-
tion pressure. As we expect, the error decreases when the selection pressure increases. We can
observe that the effect is very pronounced for the experimental designs with large population
size. This is because the reconstruction results become more and more accurate as the changes
in haplotype frequency throughout time increase. When the populations size is small (e.g. in
experiments using bigger organisms like mice), these haplotype frequency changes can occur
under neutrality as well.
Our method requires information from multiple sources, which for E&R experiments corre-
spond to sequenced time points. The number of time points at which the sequencing data are
available mainly depends on the time and costs allocated to the experiment. As it is shown
in the lower panel of Fig. S5 (and with a less pronounced effect in the upper panel), four time
points do not contain enough information for any experimental design to obtain satisfactory
results. However when the number of time points increases the error drops and this is consistent
for all three experimental designs as well. It is also important to notice that the number of
haplotypes we can reconstruct is smaller or equal to the number of available time points. This
can also influence the power of our method under certain experimental designs where a high
number of haplotypes is needed to capture the true dynamic of the haplotype frequencies in
the given experiment.
In Fig. S6 we consider different numbers of haplotypes sharing the same beneficial allele. The
more haplotypes share the same selective advantage, the less accurate the reconstruction be-
comes, unless the experiment is run for enough time to resolve the competition. If the competi-
tion is resolved and one or few haplotype(s) prevail, the reconstruction can reach high accuracy,
however.
When looking at Fig. S7 we can see that a coverage of 5 is too low for accurate pooled allele
frequency estimates. Thus our method cannot provide good estimates. When the coverage
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Figure S3: Haplotype reconstruction error for our basic selection scenario with C. elegans based
on 100 simulation runs. (a) Proportion of wrongly classified SNPs for each reconstructed
haplotype. The haplotypes are displayed in decreasing order according to the frequency at the
last time point. (b) Absolute difference between the true and estimated haplotype frequencies
for each time point at which sequencing information is available.

increases above λ = 20, not much accuracy is gained anymore. For our considered designs,
more time points will be more beneficial than more reads in terms of accuracy. Compare for
example, the results from our three experimental designs with fewer time points (e.g. 4) and
high coverage (λ = 80) from Fig. S5 against those with more time point (16) and low coverage
(e.g.λ = 20) from Fig. S7.
The last parameter we considered is the number of different haplotypes in the founder pop-
ulation (Fig. S8). Our simulations do not show a clear trend here. An intermediate number
of haplotypes relative to the population size often seems to lead to the highest accuracy, this
may be since in this case some - but not all- of the beneficial haplotypes tend to get lost by drift.
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Figure S4: Dependence of the quality of our reconstruction approach on the selection coefficient.
Simulation setup: s ∈ 0, 0.02, 0.05, 0.1 and all the other parameters as in Section S2. Results
for D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment (dotted
lines) are shown. (a) Error in reconstructing the haplotype structure versus different values
of the selection coefficient. For each experimental design, results for the three most frequent
haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green lines).
(b) Error in reconstructing the haplotype frequencies versus different values of the selection
coefficient. For each experimental design, results for time points T0 (black lines), T70 (red
lines), and T150 (green lines) are shown.
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Figure S5: Dependence of the quality of our reconstruction approach on the number of se-
quenced time points. Results for D. simulans (solid lines), C. elegans (dashed lines), and the
mice experiment (dotted lines) are shown. (a) Error in reconstructing the haplotype structure
versus different numbers of sequenced time points. For each experimental design, results for
the three most frequent haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and
hapID 3 (green lines). (b) Error in reconstructing the haplotype frequencies versus different
numbers of sequenced time points. For each experimental design, results for time points T0
(black lines), T70 (red lines), and T150 (green lines) are shown.
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Figure S6: Dependence of the quality of our reconstruction approach on the number of hap-
lotypes sharing the beneficial allele. Simulation setup: Number of haplotypes sharing the
beneficial allele ∈ 1, 3, 5 and all the other parameters as in Section S2. Results for D. simulans
(solid lines), C. elegans (dashed lines), and the mice experiment (dotted lines) are shown. (a)
Error in reconstructing the haplotype structure versus different numbers of haplotypes sharing
the beneficial allele. For each experimental design, results for the three most frequent haplo-
types are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green lines). (b)
Error in reconstructing the haplotype frequencies versus different numbers of haplotypes shar-
ing the beneficial allele. For each experimental design, results for time points T0 (black lines),
T70 (red lines), and T150 (green lines) are shown.
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Figure S7: Dependence of the quality of our reconstruction approach on the mean coverage value
λ. Simulation setup: λ ∈ 5, 20, 40, 80 and all the other parameters as in Section S2. Results for
D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment (dotted lines)
are shown. (a) Error in reconstructing the haplotype structure versus different values of λ. For
each experimental design, results for the three most frequent haplotypes are shown: hapID 1
(black lines), hapID 2 (red lines), and hapID 3 (green lines). (b) Error in reconstructing the
haplotype frequencies versus different values of λ. For each experimental design, results for
time points T0 (black lines), T70 (red lines), and T150 (green lines) are shown.
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Figure S8: Dependence of the quality of our reconstruction approach on the number of different
haplotypes in the founder population. Simulation setup: Number of different haplotypes in the
founder population ∈ 15, 50, 100, 189 and all the other parameters as in Section S2. Results for
D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment (dotted lines) are
shown. (a) Error in reconstructing the haplotype structure versus different number of different
haplotypes in the starting population. For each experimental design, results for the three most
frequent haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green
lines). (b) Error in reconstructing the haplotype frequencies versus different number of different
haplotypes in the starting population. For each experimental design, results for time points T0
(black lines), T70 (red lines), and T150 (green lines) are shown.
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S4 Accuracy measures

When applying our method to real data the true haplotypes are unknown and the error cannot
be assessed. For this reason, we provide measures of accuracy for the full reconstruction (namely
R2) for the haplotype structures and for the haplotype frequencies (see Section S1-4 for a more
detailed explanation on how the scores are computed). To see how well these accuracy measures
coincide with the actual amount of error, we provide simulation results for our three simple
selection scenarios. We expect high scores when the error is low and vice-versa.
We plot R2 against the overall error in the reconstruction of the haplotype frequency for our
three simple selection scenarios in Fig. S9. This figure shows that for the scenario with small
population size the correlation between R2 and error is relatively high (0.799), however for
large population sizes either the correlation is low (0.421) or the R2 is underestimating our
error in reconstruction (see Fig. S9c). When the correlation is low, the error is only slightly
over estimated by R2, whereas in the case of Fig. S9c we have a group of scenarios where the
R2 is too liberal. However, if we discard the scenarios where the haplotype frequency change
of the most frequent reconstructed haplotype is small (< 0.1) then the correlation in Fig. S9b
increases up to 0.521 and the scenarios where R2 is underestimating the error in S9c are not
included in the analysis anymore. If the frequency change of the dominant haplotype is small,
it means that selection is either not present (neutral dynamic in a large population), or its
signal cannot be captured by our method. Therefore we recommend to look at the combination
of both R2 and frequency change. This was the motivation for our filtering criteria proposed
in Section S1-4.
Our structure specific stability score (see equation S7 in section S1-4) is also correlated with
the error in the reconstructed haplotype configuration (see Figs. S10a, S11a, and S12a). The
high correlation shows that this measure is useful in applications. To test our accuracy measure
for the haplotype frequencies, we checked how often each true frequency is contained inside the
accuracy interval. The results in Fig. S13 show a high match between our bands and the true
haplotypes, especially for late time points. Histograms of band sizes for these three scenarios
can be found in figures S10b, S11b, and S12b, and they reveal that the bands are usually quite
small (about 50% or more of the observed bandwidth being smaller than 0.05 in the worst
scenario). These results demonstrate that these scores are concordant with the actual errors.
We recommend to use the haplotype specific stability intervals and stability scores after ensuring
that our overall quality measures (R2 and frequency change of the dominant haplotype) are
good enough.
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Figure S9: Mean error in reconstructing the haplotype frequency versus 1 − R2 for (a) the
Longshank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design
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Figure S10: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the Longshank mice experimental design.
(b) Size of the accuracy intervals for the reconstructed haplotype frequency for the Longshank
mice experimental design.
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Figure S11: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the D. simulans experimental design.
(b) Size of the accuracy intervals for the reconstructed haplotype frequency for the D. simulans
experimental design.
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Figure S12: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the C. elegans experimental design. (b)
Size of the accuracy intervals for the reconstructed haplotype frequency for the C. elegans
experimental design.
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S5 Improved allele frequency estimates: additional re-

sults
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Figure S14: Error ratio (α) between haplotype based allele frequency estimates (numerator) and
the pool sequencing estimates (denominator) plotted on a log-scale. Results from 100 simulation
runs based on the experimental designs in [Barghi et al., 2019] and [Noble et al., 2019].

Late time points for the C. elegans example are not shown as both errors in reconstruct-
ing the allele frequency data are negligible and thus the ratio cannot be computed. Further
information on the later time point can be found in Fig. S17c where all scenarios are included.
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S6 Analysis of outliers

Here we consider all the simulation results for the three simple selection scenarios without
filtering using R2 and the frequency change of the haplotype with highest frequency. Figs. S15,
S16, and S17 show the quantiles of the errors in reconstructing the haplotype frequency and
structure and for α. The proportion of scenarios leading to outliers in the error measurements is
15%, 19%, and 78% for the simulations based on the Drosophila simulans, Longshank mice, and
C. elegans experimental design respectively. For C. elegans the proportion of outlier simulation
runs is considerably higher than for the other two scenarios. Indeed, the population size in
the C. elegans experiment is much larger than for the other organisms. When the dynamic is
neutral in such a large population, there is a large number of haplotypes at very low frequency.
These haplotypes are often aggregated within a few estimates at intermediate (and constant)
frequency.
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Figure S15: Quantiles of the error in reconstructing the haplotype structure for (a) the Long-
shank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design.

24



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S16a Longshankmice exp.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S16b D. simulans

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S16c C. elegans

Figure S16: Quantiles of the error in reconstructing the haplotype frequency for (a) the Long-
shank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design.
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Figure S17: Quantiles of the ratio between the error in estimating the allele frequencies from the
reconstructing haplotypes versus pool sequencing (α) for (a) the Longshank mice experimental
design, (b) the D. simulans experimental design, and (c) the C. elegans experimental design.
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S7 Recombination

Here, we describe an example involving recombination simulated with MimicrEE2
[Vlachos and Kofler, 2018], following the Drosophila simulans setup. We investigate different
values for the recombination rate, which is assumed homogeneous throughout the whole region.
This example, is supposed to illustrate how recombination can affect our haplotype reconstruc-
tion. Results based on one simulation run are shown in Fig. S18. Recombination rate is in
cM/Mb which is converted by MimicrEE2 to a lambda-value of a Poisson distribution using
Haldane’s map function.
Overall, we see that recombination does not much affect the quality of the reconstructed hap-
lotype structure. On the other hand, the effect on the estimated frequencies can be complex.
In principle, we expect that the reconstruction becomes more difficult with high recombination
rates, as new haplotypes will constantly arise. Thus the number of haplotypes having low
frequency will not decrease during the experiment. As they cannot be reconstructed, their fre-
quencies will be partially attributed to other haplotypes. Indeed, if recombination events occur
close to the boundaries of the considered DNA segment, the new haplotypes will be almost
identical to the two original haplotypes.
However, in cases such as the simulation with r = 5, we observe that recombination can lead to a
new more beneficial haplotype rising considerably in frequency which can then be reconstructed
with high accuracy. This can be seen in Figs. S18 (right panel) and S19.

An obvious approach to avoid potential problems arising from recombination is to choose
the window size small enough, so that only few recombination events will occur during the
experiment.
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Figure S18: (a) Proportion of wrongly classified SNPs for each reconstructed haplotype for
different values of the recombination rate. The haplotypes are displayed in decreasing order
according to the frequency at the last time point (b) Absolute difference between the true
and estimated haplotype frequencies for each time point at which sequencing information is
available. This plot includes only the first dominant haplotype. Different colours indicate
different recombination rates.
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S8 Validation of our results using read data

We used read data from [Barghi et al., 2019] as a further validation of our reconstructed hap-
lotypes. These data are provided by the authors after the reads were trimmed and mapped to
the genome and after duplicates have been removed. These steps, as well as the DNA extrac-
tion and library preparation are described in [Barghi et al., 2019]. In order to be consistent
with the allele frequency data and thus with the reconstructed haplotypes we only used SNPs
analysed in the original paper. Furthermore, as in [Barghi et al., 2019] for a given SNP we
kept the information from the reads only when the respective base quality score was higher
than 20. As in Section 5, for this analysis we chose a region under selection according to the
p-values from the modified chi-squared test in [Spitzer et al., 2020]. Here, we considered the
region from 11.239636 to 11.733131 Mb of chromosome 2L in replicate three. All comparisons
with the reads are performed at generation 60.

For each read partially overlapping the region of interest we apply the following steps. First,
we combined paired end reads to a long sequence with a missing part in the middle because
read pairs belong to the same haplotype. Then, we polarize the set of read data for the rising
allele, as we did for the allele frequency data.

In order to compare the read data with the reconstructed haplotypes, we considered sliding
windows of 1000 SNPs and performed the following analysis on each window. For our first
comparison, we selected the most similar read for each reconstructed haplotype and window.
Fig. S20 shows the proportion of mismatches between haplotype and corresponding read without
considering missing data. From the example we can see that most haplotypes have a good
match with the reads, which is a further validation of the fact that the haplotype structure
we reconstruct with our method is accurate. However, the number of positions entering this
comparison for each read is limited (between 32 and 59). Indeed, there are always many missing
values in each read as read length is limited and they might not overlap a region entirely and
genomic positions might be filtered out for low base quality scores.

We decided then to examine these results in terms of haplotype frequency as well. Because
reads are short and insert sizes generate missing values, we cannot compare the frequencies of
the reads with those of the haplotypes directly. At the same time, using single SNPs would
not be informative in this situation because we already validated the power of our method in
reconstructing allele frequency data (see Section 4.2). Thus, we decided to consider the smallest
available linked unit, and we performed our comparison on pairs of subsequent SNPs using the
frequencies of the four possible genotypes of each pair.
The results from this comparison are shown in Fig. S21. From these examples we can see that
also the frequency of the pairs of SNPs are estimated with low error from our reconstructed
haplotypes, which strongly suggests that the reconstructed haplotypes capture the signal from
the true haplotypes in the population correctly.
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Figure S20: Comparison of the reconstructed haplotype structure with the read data.
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Figure S21: Residuals of the estimated frequency of pairs of SNPs from read data versus the
estimated frequency of pairs of SNPs from reconstructed haplotypes.
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S9 Results for the Longshank mice experiment
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Figure S22: (a) Observe time-series of allele frequencies. (b) Reconstructed haplotype frequen-
cies with accuracy intervals (in yellow) and mean accuracy scores.
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S10 Additional results from the C. elegans data set from

[Noble et al., 2019]
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Figure S23: Haplotype reconstruction for data from [Noble et al., 2019] (a) Match between the
haplotype structure reconstructed from the allele frequency data and the sequenced founder
haplotypes. Blue lines indicate mismatch positions. (b) Reconstructed haplotype frequencies
with accuracy intervals (in yellow) and mean accuracy scores.
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Figure S24: (a) Match between reconstructed haplotype structure and sequenced founder hap-
lotypes using all the three replicates from [Noble et al., 2019] at the same time. Blue lines
indicate mismatches. (b) Reconstructed haplotype frequencies with accuracy intervals (in yel-
low) and mean accuracy scores using all the three replicates from [Noble et al., 2019] at the
same time.
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