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Abstract

We introduce a novel bioinformatics pipeline, STrain Resolution ON assembly Graphs
(STRONG), which identifies strains de novo, when multiple metagenome samples from the same
community are available. STRONG performs coassembly, followed by binning into metagenome
assembled genomes (MAGs), but uniquely it stores the coassembly graph prior to simplification
of variants. This enables the subgraphs for individual single-copy core genes (SCGs) in each
MAG to be extracted. It can then thread back reads from the samples to compute per sample
coverages for the unitigs in these graphs. These graphs and their unitig coverages are then used
in a Bayesian algorithm, BayesPaths, that determines the number of strains present, their
sequences or haplotypes on the SCGs and their abundances in each of the samples.

Our approach both avoids the ambiguities of read mapping and allows more of the
information on co-occurrence of variants in reads to be utilised than if variants were treated
independently, whilst at the same time exploiting the correlation of variants across samples that
occurs when they are linked in the same strain. We compare STRONG to the current state of
the art on synthetic communities and demonstrate that we can recover more strains, more
accurately, and with a realistic estimate of uncertainty deriving from the variational Bayesian
algorithm employed for the strain resolution. On a real anaerobic digestor time series we
obtained strain-resolved SCGs for over 300 MAGs that for abundant community members
match those observed from long Nanopore reads.

Keywords: microbiome, metagenome, strains, Bayesian, microbial community, assembly
graph
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Introduction 1

There is a growing realisation that to fully understand microbial communities it is necessary to 2

resolve them to the level of individual strains [35]. The strain is for many species the 3

fundamental unit of microbiological diversity. This is because two strains of the same species 4

can have very different functional roles. The classic example is E. coli, where one strain can be 5

a dangerous pathogen and another a harmless commensal [24]. The best definition of a strain, 6

and the only one that avoids ambiguity, is a set of clonal descendants of a single cell [15, 39], 7

but strain genomes by this definition can only reliably be determined by sequencing cultured 8

isolates or single cells [30]. The former is not representative of the community and the latter is 9

still too expensive and low-throughput for many applications as well as producing only 10

fragmentary genomes. For these reasons, there is a practical need for efficient methods that can 11

profile microbial communities at high genomic resolution. 12

In contrast to 16S rRNA gene sequencing, shotgun metagenomics has the potential to resolve 13

microbial communities to the strain level. This is because it generates reads from throughout 14

the genomes of all the community members. It also has the additional advantages of reduced 15

levels of bias and the capability to reconstruct genomes. There are many methods for 16

reference-based strain resolution from metagenome data [1, 35,42], but they are, and will 17

continue to be, limited by the challenge of comprehensively isolating and sequencing the 18

genomes of diverse microbial strains. Comprehensive reference genome databases may be 19

possible for a few slowly evolving species or particularly well studied pathogens but for the 20

entirety of a complex community it is unlikely to ever be tractable. For example, in a recent de 21

novo large-scale binning study of the relatively well-studied human gut microbiome, it was 22

found that 77% of the species recovered did not have a reference genome in public 23

databases [31]. This suggests that even less of the strain-level diversity in those samples would 24

be represented in a genome database. These observations motivate the need for de novo 25

methods of metagenomic strain resolution. 26

In the metagenomics context, we adopt the definition of a ‘metagenome strain’ as a clonal 27

subpopulation with sufficiently low levels of recombination with other strains, that it can be 28

distinguished genetically from them. This does not require that recombination between strains 29

does not occur, rather that either because of physical separation or selection, it has not been 30

sufficiently strong relative to the rate of mutation [40], to generate a continuum of diversity 31

throughout the genome. This means members of a ‘metagenome strain’ may differ substantially 32

from each other particularly in rapidly evolving accessory regions and the subpopulation as a 33

whole may descend from multiple cells but with a core genome that has descended from a single 34

cell in the recent past. This is equivalent to the definition of ‘lineage’ in [29]. For ease, in the 35

discussion below we will refer to strain in the metagenome context when properly we mean this 36

looser definition of a strain as a genetically distinct subpopulation. 37

De novo assembly of genomes from short read metagenome sequences remains very 38

challenging. Assemblies become fragmented for two reasons: firstly, low coverage genomes will 39

fragment through chance occurrences where sequence coverage drops out, following Lander and 40

Waterman statistics [17], secondly, if either intra or inter-genomic repeats are present then the 41

assembly graphs used to represent possible sequence overlaps become very complex, and it is 42

unclear which paths correspond to true genomes. Both of these issues are particularly 43

problematic for metagenomes, where there can be a wide range of species abundances, and in a 44

complex community a significant fraction of the species may be at low coverage. The first 45
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challenge can be addressed by sequencing more deeply. More difficult to address is the problem 46

of repeats. Just as they do in isolate genome sequencing, intra-genomic repeats such as the 16S 47

rRNA operon will lead to uncertainty in metagenomic assemblies, but if multiple closely related 48

strains from the same species are present then they will possess potentially large regions of 49

shared sequence. If the strain genomes are of comparable divergence to the reciprocal of the 50

read length then very complex graphs will result, for typical short read sequencing (75-150bp) 51

this would be strains at around 98-99.5% sequence identity. The result is that it is not possible 52

to find long paths in the graph that can be unambiguously assembled into long contiguous 53

sequence or contigs. For this reason metagenome assemblies for strain-diverse communities can 54

comprise millions of contigs when made from short read data, with the added drawback that in 55

the metagenomics context, we do not even know which contig derives from which species. For 56

species that contain multiple very similar strains (> 99.9%), then we expect better assemblies 57

but the variants are then too far apart to be linked or phased by Illumina reads. In that case 58

we may resolve the large-scale genome structure but not the sequences of the individual strains, 59

which we will refer to as their haplotypes. 60

Metagenomic contig binning methods attempt to mitigate the problem introduced by 61

standard metagenome sample processing approaches, wherein the origin of each sequence read 62

is unknown. Contig binning works because contigs deriving from the same or similar genomes 63

will share features that can be learnt without prior knowledge. These features can be sequence 64

composition, but it is also possible to use per-sample coverage depths of contigs as a more 65

powerful feature, if multiple samples are available from the same (or very similar) 66

communities [2]. There are now numerous algorithms capable of using both coverage across 67

samples and composition to automatically cluster contigs and determine from single-copy core 68

gene (SCG) frequencies where the resulting bins are good quality metagenome assembled 69

genomes (MAGs) [3, 13]. These tools enable genome bins to be extracted de novo from 70

metagenomes, and are becoming crucial for studying unculturable organisms, contributing to 71

many exciting discoveries, such as the description of the Candidate Phyla Radiation [9] or an 72

improved understanding of the diversity of nitrogen fixers in the open ocean [14]. 73

The resolution of genome binning though, is limited by the resolution of the assembler, with 74

a typical maximum kmer length of around 100, the best case is that we can resolve to about 1% 75

sequence divergence, so that bins correspond to something between a species and a strain. In 76

the presence of strain diversity, those contigs that are shared across strains will become a 77

consensus of the strains present, in the ideal situation their sequence would be that of the most 78

abundant strain, but even this is not guaranteed. Contigs that are part of the accessory genome 79

and present in a subset of strains may be successfully binned with the core genome, but they 80

may not if they are too short or divergent in coverage. Consequently, if multiple strains are 81

present in the assembly the MAGs that result from binning will be an imperfect composite of 82

multiple strains. 83

Strains in a metagenome can exhibit variation in shared genes, such as insertions/deletions 84

and single-nucleotide variants or SNVs, as well as in their accessory gene complements. 85

Recently, we introduced DESMAN [32] to resolve subpopulations in MAGs using variant 86

frequencies on contigs when multiple samples from a community are available. This is similar to 87

contig binning using coverage but it can be viewed as a relaxed form of clustering closer to 88

non-negative matrix factorisation, because each variant can appear in more than one 89

subpopulation haplotype. Similar strategies had been proposed prior to DESMAN but using 90

variant frequencies on reference genomes e.g. Lineages [29] and Constrains [27]. DESMAN and 91
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other earlier methods are all ‘linear mapping-based methods’ where metagenomic reads are 92

mapped onto a linear sequence, either a reference or consensus contig. This has multiple 93

drawbacks: firstly, the type of variant that can be represented is limited to changes at a single 94

base; secondly, mapping onto a linear sequence can be challenging when there is variation 95

present yielding unreliable results [19]; thirdly, it treats every variant as independent ignoring 96

the co-occurrence of variants in reads, which is a powerful extra source of information when 97

strain divergence is greater than the inverse of read length, when we would expect most reads 98

to contain more than one variant. The last issue can be addressed by keeping track of which 99

variants appear in which reads but that requires extra bookkeeping [18]. 100

To address these limitations, we introduce a new method, STRONG (Strain Resolution ON 101

Graphs), for analysing metagenome series when multiple samples are available either from the 102

same microbial community e.g. longitudinal time-series or cross-sectional studies where the 103

communities are similar enough to share a significant fraction of strains. STRONG can 104

determine the number of ‘metagenome strains’ in a MAG formed from binning of a coassembly 105

of all the samples, together with their sequences across multiple single-copy core genes, which 106

we define as the strain haplotype, and the coverages of each strain in each sample. STRONG 107

avoids the limitations of the variant-based approaches by resolving haplotypes directly on 108

assembly graphs using a novel variational Bayesian algorithm, BayesPaths. 109

This graph-based approach allows more complex variant structure and incorporates read 110

information. The usefulness of graphs for understanding microbial strains has been noted 111

before, and efficient algorithms developed for querying complex graphs and extracting more 112

complete representatives of MAGs in the presence of strain diversity [10]. STRONG, however, 113

is the first time that graphs have been used in an automated workflow to actually decompose 114

that strain diversity into haplotypes across multiple genes using multiple samples. We compare 115

STRONG to the current state of the art, DESMAN, on synthetic microbial communities and a 116

real metagenome time series from an anaerobic digester. In the former case we validate using 117

the known genome sequences, and for the latter we compare abundant MAGs with haplotypes 118

derived independently from Oxford Nanopore MinION long reads. 119

Results 120

STRONG pipeline 121

The detailed pipeline is described in the Methods but the key steps are summarised in Figure 1 122

and reiterated here. We start from multiple samples of the same community and jointly 123

coassemble them with metaSPAdes, we save a high resolution graph (HRG) early in the 124

assembly process that preserves all the variant information in the coassembly. The metaSPAdes 125

assembly process then proceeds as normal and the resulting contigs are binned using 126

CONCOCT. We annotate the single-copy core genes in the contigs, allowing us to identify a 127

subset of bins as MAGs. A novel algorithm was then developed to map these SCG ORFs onto 128

the HRG and extract the complete assembly subgraphs corresponding to the genes of interest 129

(Methods - Relevant subgraph extraction). We obtained per sample unitig coverages on these 130

subgraphs by threading reads directly onto them. These subgraphs were simplified with a noise 131

filtering algorithm that used the MAG coverage depths, calculated as the length weighted 132

average of the contigs assigned to that MAG. The simplified subgraphs contain all the 133

information required for the BayesPaths algorithm (Methods - BayesPaths), that 134
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Figure 1. STRONG pipeline. This figure illustrates the principal steps in the STRONG
pipeline (see Methods - STRONG Pipeline). Step 1) Co-assembly with metaSPAdes and storage
of a high-resolution graph (HRG). Step 2) Contig binning with CONCOCT and annotation
of single-copy core genes (SCGs). Step 3) Mapping of SCGs onto the HRG and extraction
of individual SCG assembly graphs together with per-sample unitig coverages. Step 4) Joint
solution of SCG assembly graphs from each MAG with BayesPaths to determine strain number,
haplotypes and per-sample coverages.

simultaneously solves for the number of strains present, their coverage in each sample, and their 135

sequences on the SCGs. SCGs from the same MAG are linked through the binning process and 136

jointly solved in the strain resolution procedure to generate linked strain resolved sequences for 137

each SCG. We will refer below to the SCG sequences for a given strain as its haplotype. The 138

pipeline also applies DESMAN [32], to the same MAGs for comparative purposes, and will 139

perform benchmarking if known genomes are available. It is important to note that some SCGs 140

will be filtered during the BayesPaths procedure, see Methods, so that sequence inference is 141

only performed on a subset in the final output. 142

Synthetic data sets 143

In order to provide an example metagenome data set with a known strain configuration for each 144

species, we created a synthetic community comprised of 100 strains, with known genomes 145

deriving from 45 species, with 20 species represented by a single strain, 10 with two strains, 5 146

with three, 5 with four and 5 species with five strains. We then generated four data sets from 147

this community with the same total number of reads (150 million 2X150 bp) but increasing 148

sample numbers (3, 5, 10 and 15 samples). This configuration, where most species have a single 149

strain, might be an appropriate approximation to the human gut microbiome [38]. We denote 150

these data sets Synth S03, Synth S05, Synth S10 and Synth S15. For each sample number, 151

random species abundances were generated from a log-normal distribution, with strain 152

proportions from a Dirichlet. Full details of the synthetic sequence generation are given in the 153

Methods. 154

The STRONG pipeline was then applied to each of these data sets in turn. In Figure 2 we 155

illustrate the STRONG output for a single gene, COG0532 ‘Translation initiation factor 156

IF-2’ [37], from one MAG, Bin 55 of the ten sample synthetic data set, giving the resulting 157

decomposition of the assembly subgraph into three strains. Noting that the strains were 158

resolved in this MAG over 22 single-copy core genes simultaneously, and that for this 3.4 kbp 159
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Figure 2. BayesPaths algorithm. This illustrates the BayesPaths algorithm for a single
COG0532 from one MAG, Bin 55 of the ten sample synthetic data set. The algorithm predicted
3 strains. We show the input to the algorithm: A) the unitig coverages across samples plus B)
the unitig graph without strain assignments. The outputs of the algorithm are shown in C) the
assignments of haplotypes to each unitig, D) the strain intensities across samples, effectively
coverage divided by read length (see Methods - BayesPaths), and E) unitig graphs for each
haplotype with their most likely paths. This algorithm is explained in detail in the Methods -
BayesPaths.

gene the haplotypes were found without errors. 160

For each of the four synthetic data sets we considered only MAGs which were assigned to 161

species (see Methods) with at least two strains - 20, 21, 24 and 22 MAGs, from the Synth S03, 162

Synth S05, Synth S10 and Synth S15 data sets respectively. For each MAG we mapped the 163

predicted haplotypes for the optimal strain decomposition for both the STRONG pipeline and 164

DESMAN algorithms onto the known reference strains. We then assigned each haplotype 165

prediction to its best matching reference. The best such match was denoted ‘Found’. If multiple 166

predicted haplotypes matched to the same reference they were denoted as ‘Repeated’. If a 167

reference had no haplotype prediction that matched to it better than the other references, it 168

was denoted as ‘Not found’. For the aggregate across these MAGs we show the total number of 169

such strains for each of the four data sets in Figure 3. 170

STRONG consistently outperforms DESMAN in terms of number of strains found, in total 171

across all four samples it resolved 213 strains vs. 200 for DESMAN i.e. a 6.5% increase. It also 172

had fewer ‘Repeated’ strains, 8 vs. 23: a reduction of 65%. The strains ‘Found’ were also 173

reconstructed more accurately, the per base error rate for the BayesPaths reconstructions 174

averaged across all MAGs and all data sets was just 0.052%, three times lower than that for 175

DESMAN, 0.176%. This improvement was observed for all four data sets (see Table 1 and 176

Figure 4). STRONG was more likely to predict the correct number of strains, doing so for 73% 177

of MAGs summed across samples numbers versus 60% for DESMAN. It was also better at 178

predicting the strain relative abundances. Regressing true abundance against predicted 179
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Figure 3. No. of strains resolved by STRONG and DESMAN algorithms in the
synthetic community data sets. For MAGs with two or more strains we mapped haplotypes
to the references and assigned each predicted haplotype to its best matching reference. The best
such match was denoted ‘Found’. If multiple haplotypes matched to the same reference they
were denoted as ‘Repeated’. If a reference had no predicted haplotypes matched to it, it was
denoted as ‘Not found’. The bars give the total numbers in each category summed over MAGs
for the two methods (DESMAN and STRONG) and the panels results for the four different
data sets with increasing number of samples (Synth S03, Synth S05, Synth S10 and Synth S15).

abundance gave an adjusted R2 of 0.84 averaged across sample numbers for STRONG vs. 0.80 180

for DESMAN. When this was restricted to MAGs where the number of strains was correctly 181

predicted, then both algorithms did better but STRONG still out performed DESMAN, with a 182

mean R2 of 0.98 compared to 0.93. Although the quantity varied across the four data sets, 183

roughly 1/3 of the SCGs were filtered during the BayesPaths as outliers (see - Table 1). 184

The STRONG pipeline outperforms DESMAN, but it still misses strains that are present. In 185

total across all MAGs and data sets, 63/276 i.e. 22.8%, of strains were missed by STRONG. 186

7/33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.284828doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.284828
http://creativecommons.org/licenses/by/4.0/


Synth_S10 Synth_S15

Synth_S03 Synth_S05

10 100 1000 10 100 1000

0.01

0.02

0.03

0.04

0.01

0.02

0.03

0.04

Strain coverage

S
tr

ai
n 

er
ro

r 
ra

te

Method

DESMAN

STRONG

Figure 4. Error rates in strains found against coverage depth for STRONG and
DESMAN algorithms in the synthetic community data sets. For the ‘Found’ strains
we computed per base error rate to the matched reference, this is shown on the y-axis, against
strain total coverage depth summed across samples on the x-axis, both axes are log transformed.
The results are separated across methods (DESMAN and STRONG) and sample number in the
synthetic community.

Some of these, 7 out of 63, were below the minimum coverage of detected strains (5.68), but 187

most were not, suggesting that either they were not sufficiently divergent in terms of 188

nucleotides or coverage profiles to be detected. Examination of phylogenetic trees for the 189

haplotypes and reference genomes constructed using the SCGs revealed that in many cases ‘Not 190

found’ strains had identical SCG haplotypes to those that were resolved. 191

The BayesPaths algorithm used to resolve strains in STRONG uses variational inference (see 192

Methods - BayesPaths), an approximate Bayesian strategy [7]. This has the advantage of 193

providing estimates of uncertainty in the inference of both the strain haplotypes and their 194

abundances. The algorithm predicts the marginal probabilities that a given strain passes 195
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Method Data set MAGs #SCGs #fSCGs Found Not F. Rep. Err R2 fG

STRONG
Synth S03 20

35.75 18.95 46 19 2 0.068 0.86 (0.99) 23/34 = 0.68
DESMAN 43 22 2 0.121 0.79 (0.93) 24/34 = 0.71
STRONG

Synth S05 21
35.29 22.14 54 14 0 0.054 0.82 (0.98) 28/37 = 0.76

DESMAN 52 16 5 0.186 0.83 (0.99) 20/37 = 0.54
STRONG

Synth S10 24
32.23 21.91 55 18 3 0.042 0.83 (0.99) 26/39 = 0.67

DESMAN 50 23 5 0.252 0.76 (0.95) 21/39 = 0.54
STRONG

Synth S15 22
35.45 23.36 58 12 3 0.045 0.86 (0.98) 32/40 = 0.80

DESMAN 58 12 11 0.143 0.81 (0.87) 25/40 = 0.63

Table 1. Comparison of STRONG to DESMAN for strain reconstruction in the
synthetic community data sets. Data set: Results are shown for the four different sample
numbers. MAGs: The number of MAGs reconstructed with more than two reference strains.
#SCGs: The average number of SCGs found in each MAG. #fSCGs The average number of
SCGs after filtering in STRONG. Found: Number of reference strains that had a predicted
strain that best matched it. Not F.: Number of reference strains that had no predicted strain
with a closest match to it. Rep.: Number of reference strains with more than one best matching
predicted strain. Err: The average error rate of the ‘Found’ strains in percentage base pairs.
R2: Correlation between predicted and actual strain relative proportions given as adjusted R2,
the figure in parentheses is when restricted to MAGs where the number of strains was correctly
predicted. fG: the fraction of MAGs where the number of strains was correctly inferred.

through a particular unitig. To provide a single sequence for the evaluation above and 196

applications below we output the most likely path and hence sequence for each strain. However, 197

we also calculate an estimate of path uncertainty by sampling many possible paths (default 100) 198

consistent with the marginal distributions and calculate the average number of nodes that 199

deviate from the most likely path, we refer to this as the divergence. For the ‘Found’ strains 200

this correlates strongly with actual error rate to the reference strain (Pearson’s correlation 201

r = 0.56, p < 2.2e− 16 - see Figure S1). Thus the divergence is a useful prediction of 202

uncertainty in the haplotype sequence inference, enabling us to estimate error rates in real data 203

sets in the absence of known reference sequences. Roughly speaking, the expected per base 204

error rate is 0.01 times the divergence, so that a strain divergence of 0.1 predicts a 0.1% error 205

rate. In real data sets, the uncertainty estimates in the abundances are also useful, placing 206

bounds on the abundance of individual strains in each sample. 207

In Table S3 we give approximate run times for each component of the STRONG pipeline on 208

the synthetic community data sets, using 64 threads on a standard bioinformatics server (see 209

Table S3). The BayesPaths step is the most time consuming part of the analysis (up to 36 210

hours), but it is still comparable to the initial coassembly. The only part of the pipeline with 211

substantial memory requirements is the initial coassembly with metaSPAdes, the other steps 212

are CPU limited. 213

Anaerobic digester time series 214

We next applied the STRONG pipeline to a real metagenomics time series, comprising ten 215

samples taken at approximately 5 weekly intervals, from an industrial anaerobic digestion 216

reactor (see Table S4 and Methods for details). This provides an evaluation community of 217

intermediate complexity to test the pipeline’s capability to resolve strains and reconstruct 218

intraspecies dynamics. Each sample was sequenced on the NovaSeq platform with 2x150 bp 219

reads at a mean depth of 11.63 Gbp. One sample was also run on a Nanopore MinION flow cell 220

producing 43.78 Gbp of reads with a read N50 of 6,727 bp and a maximum length of 108 kbp. 221

CONCOCT binning produced 905 bins, of which 309 had 75% of SCGs present in 222
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single-copy, which we designate MAGs. In total 11 of these MAGs exhibited overlapping SCG 223

graphs and were merged into 6 composite MAGs (see Methods - STRONG Pipeline), so that 224

304 MAGs were actually used in the strain decomposition. We calculated coverage depth per 225

sample for each bin and then normalised by sample size to obtain a community profile at each 226

time point. Overall the reactor exhibited a clear shift in community structure over time, despite 227

consistent operating conditions, with sample time explaining 48% of the variation in community 228

structure (p = 0.001 - Figure S2). Of the MAGs, 110 had an abundance that changed 229

significantly over time (Bonferonni adjusted p-value < 0.05 from Pearson’s correlation of log 230

transformed normalised abundance) and these were evenly split between those that increased 231

(55) or decreased in abundance (55). 232
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Figure 5. Number of strains resolved by STRONG against MAG coverage depth
for the AD time series. Pearson’s correlation between coverage depth and number of strains
(r = 0.36, p = 1.004e− 10). The curve indicates a LOESS smoothing.

We used the STRONG algorithm to resolve strains in the 304 MAGs. This is a complex data 233

set and running the complete pipeline took over 16 days, of which roughly 60% of the time was 234
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spent on the BayesPaths strain resolution (see Table S3). The number of strains found varied 235

between 1 and 7, with a mean of 1.7, shown as a function of coverage depth in Figure 5. In 236

total 121 (39.8%) of these MAGs had more than one strain, and there was a significant positive 237

association between MAG coverage depth and number of strains (r = 0.36, p = 1.004e− 10), 238

which is expected, as low coverage MAGs will be under-sampled. This correlation disappears 239

though when we restrict to all MAGs with a coverage greater than thirty (r = 0.19, p = 0.1023). 240

On average 20.9 SCGs were used after filtering for strain haplotype predictions. 241

Figure 6. MAG summary for anaerobic digester time series. For the 114 MAGs with
aggregate coverage > 20 we give their phylogeny constructed using concatenated marker genes
together with their normalised coverages in the ten samples. We also indicate which MAGs
significantly increased (SigUp) or decreased (SigDown) in total abundance (adjusted p < 0.05),
their GTDB phylum assignment, no. of strains resolved by STRONG and whether the strain
abundances changed significantly over time (adjusted p < 0.05) using permutation ANOVA
(SigStrainChange).

For the 108 MAGs that had at least two strains with relative frequencies determined in five 242

or more samples we used permutation ANOVA to determine whether strain proportions 243

depended on sampling time. In total 13 of the MAGs had an adjusted p-value < 0.05 i.e. 244

12.0%. For these same MAGs 37 had a total coverage that changed significantly over time with 245

an adjusted p-value < 0.05 i.e. 34.2%. Therefore the intra-species dynamics are more stable 246

than inter-species, with strain proportions remaining fixed as the MAG coverages vary, this was 247

true for 33 of the 37 MAGs that changed significantly in coverage. 248

In Figure 6, we use the Anvi’o program [16] to summarise information on phylogeny, 249

taxonomy, normalised coverages in the ten samples, and whether the MAGs changed 250

significantly in total abundance, together with the number of strains resolved by STRONG and 251

if those strain relative proportions changed significantly with time. This was restricted to just 252

those 114 MAGs with an aggregate coverage greater than twenty to simplify the diagram. 253

The Nanopore sequencing provides us with a means to directly test the validity of the 254

STRONG haplotype reconstructions, at least for the most abundant MAGs. The most 255
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Figure 7. Comparison of Nanopore reads to STRONG prediction for COG0532
from Bin 72. Non-metric multidimensional scaling of Nanopore reads that mapped to COG0532
from Bin 72 of the anaerobic digester time series (red) together with the three haplotypes
reconstructed from short reads by STRONG (black 0, 1 and 2). Haplotypes 0 and 2 were
identical for COG0532. Distances were calculated as fractional Hamming distances (see text) on
short read variant positions (see Methods - Nanopore Sequence Analysis). Blue dashed lines
indicate read density contours.

abundant MAG, Bin 72, had an aggregate short read coverage depth of 2364.25, across all the 256

samples. This MAG was assigned to the phylum Cloacimonadota using the GTDB 257

taxonomy [11]. Interestingly, this is an example of a MAG which changes significantly in 258

abundance, decreasing over time, (adjusted p = 4.9e− 05) but where the proportions of the 259

three strains predicted varied less dramatically (R2 = 0.35 adjusted p = 0.089) - see Figure S5. 260

We will focus on the longest SCG for which strains were resolved, COG0532, where the three 261

strains are present in only two variants, haplotypes 0 and 2 being identical on this core gene. In 262

Figure S4 we give the short read variant graph for this gene, which in this case is mostly simple 263
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bubbles, together with the assigned haplotypes. In fact, across the 18 SCGs used to decompose 264

strains, haplotypes 0 and 1 were most similar with 99.7% nucleotide identity. These two strains 265

had 99.4% and 99.1% identity with haplotype 2 respectively. That this pattern was not 266

observed on COG0532 may suggest some recombination in the evolution of these organisms. 267

In Figure 7 we show for COG0532 both the Nanopore reads that map to this gene and the 268

three haplotypes inferred by BayesPaths, as an Non-metric Multi-dimensional Scaling (NMDS) 269

plot using fractional Hamming distances on the short read variant positions. These are defined 270

as the Hamming distance between two reads but only on the intersecting variant positions and 271

ignoring gaps. We then normalise by the number of such non-gap intersecting positions to give 272

a distance between 0 and 1. The Nanopore reads are consistent with the inference of two 273

variants on this gene, as there are two clear clusters observed, and the two modes of those 274

clusters are close to those haplotypes. The variation around the modes is caused by the high 275

error rate of the Nanopore reads. 276

In order to provide a quantitative comparison of the Nanopore reads and the STRONG 277

predictions, we applied the EM algorithm defined in the Methods (Nanopore Sequence 278

Analysis) on the 1,603 Nanopore reads mapping to this COG (cluster of orthologous groups). 279

Examining the negative log-likelihood as a function of number of strains, it flattens at two 280

strains (see Figure S3) and the two strains inferred exactly match (100% identity over 2,313 281

bps) haplotypes 0/2 and 1 respectively. Furthermore, STRONG in this sample predicted 282

frequencies of 28.0% for haplotype 1. This closely matched the Nanopore haplotype frequencies 283

for this strain of 27.6%. We also ran the Nanopore EM algorithm for all 18 filtered COGs in 284

this bin separately. For the 11 COGs where more than one strain was predicted from the 285

Nanopore reads, we compared the STRONG and Nanopore predictions. For haplotypes 0, 1 286

and 2 exact matches were found for 6, 7 and 4 SCGs respectively with average nucleotide 287

identities across all genes of 99.89%, 99.89% and 99.82%. 288

For lower coverage MAGs we generally obtain a reasonable correspondence between the 289

STRONG haplotypes and Nanopore predictions. In most cases the number of strains is 290

comparable between the two, although the accuracy of matches reduces with decreased 291

Nanopore read counts, as we might expect. As an example, in Figure S7 we compare Nanopore 292

reads with the five STRONG haplotypes from COG0072 of Bin 846, a Firmicutes MAG in the 293

AD time series. The most abundant Nanopore mode clearly matches STRONG haplotype 4, the 294

most abundant strain in this sample, and there is also some support for haplotypes 0 and 2. 295

There is less evidence for strains 1 and 3, but these are low abundance in this sample (see 296

Figure S9). This is confirmed from the EM algorithm applied to the Nanopore reads matching 297

this gene, where we would predict four Nanopore haplotypes (Figure S6). Comparing these 4 298

Nanopore strains to the STRONG predictions we find that three closely match: Nanopore 299

haplotype 0 matched best to STRONG strain 4 with 98.8% nucleotide identity, Nanopore 300

haplotype 1 to STRONG 4 with 99.9% identity and Nanopore haplotype 2 to STRONG strain 0 301

with 99.7% identity. There is also a correspondence in relative abundance, with the most 302

abundant Nanopore haplotype 1 recruiting 82% of the reads vs 74% relative frequency for the 303

corresponding strain haplotype from STRONG. 304

Discussion 305

We have demonstrated that on synthetic data the STRONG pipeline and the BayesPaths 306

algorithm are able to accurately infer strain sequences on the SCGs and abundances across 307
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samples. Performance does improve with increasing sample number in terms of the number of 308

strains resolved, but reassuringly even when only a small number of samples are available we 309

are still able to accurately predict (with 0.068% per base error rate) strains, and when ten or 310

more samples are available we obtain error rates below 0.05% i.e. 1 error in every 2000 bps 311

from short read data. This is better performance than the state of the art, and sufficiently 312

accurate for high resolution phylogenetics. Strains are resolved more accurately as they increase 313

in coverage (see Figure 4), and in fact, when coverages exceed twenty fold we can resolve strains 314

very reliably, with just 0.011% error rate averaged across strains in the ten sample synthetic 315

data set. We believe therefore that this pipeline will be useful whenever high quality de novo 316

strains are required from metagenome short read time series. 317

This is to our knowledge the first algorithm capable of constructing strains from 318

metagenomes using assembly graphs from multi-sample coassemblies. Graph-based haplotype 319

resolution has been applied to viruses [4] and for eukaryotic transcripts [5, 6], but ours is the 320

first algorithm to resolve strains across multiple gene subgraphs connected through a contig 321

binning procedure. The BayesPaths algorithm is also a substantial algorithmic advance 322

enabling coverage across multiple samples to be incorporated into a rigorous Bayesian 323

procedure that gives uncertainties in both the paths (i.e. the sequences) and the strain 324

abundances. This algorithm could be utilised outside of the actual STRONG pipeline in other 325

application areas, for example for finding viral haplotypes. 326

In addition, to the new strain resolution algorithm, BayesPaths, STRONG incorporates a 327

number of useful tools for large-scale variant graph processing, in particular, the tools for 328

extraction of subgraphs that correspond to individual coding genes and the spades-gsimplifier 329

tool for error correction on those graphs. These can be applied to any graph in the GFA format, 330

and could therefore find applicability outside of the context of our pipeline. This also means 331

that in the future we could add alternative choices for the coaseembly step, for instance 332

replacing metaSPAdes with MEGAHIT [25]. Similarly, we plan to add support for alternative 333

binners to CONCOCT. 334

Currently, we are restricted to core genes that are single-copy and shared across all strains in 335

a MAG. We can in theory use any such genes, so if a particular MAG is of interest the pipeline 336

could be run with a larger set of COGs that are SCGs for that MAG. There would be a cost in 337

terms of increased running time, which will increase with more genes and unitigs in a roughly 338

linear fashion. 339

The analysis of a time series from an anaerobic digestor illustrates the practicality of our 340

pipeline on a realistically sized data set. We should note though that to resolve strains on these 341

304 MAGs took nearly 10 days using 64 threads on a standard bioinformatics server (see 342

Table S3. The AD analysis also demonstrates the importance of strain dynamics in a real 343

microbial community with nearly 40% of MAGs exhibiting strain variation, but this variation 344

was relatively stable compared to the MAG dynamics themselves. If strains are functionally 345

redundant to one another we would expect significant neutral fluctuations over time. Therefore 346

this could be evidence for intra-species niche partitioning. 347

In general, we found a good correspondence between haplotypes inferred from Nanopore 348

reads and the STRONG predictions in the AD data set. For the most abundant MAG, Bin 72, 349

they matched very closely. In addition, the relative abundances of strains were consistent across 350

the two sequencing technologies, despite the use of different DNA extraction protocols, and the 351

different biases inherent in library preparation and sequencing platforms. These technical 352

elements in the data generation process are known to introduce bias at the species level [12], 353
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but our findings suggest that intraspecies abundance may generally be robust against such 354

biases, which makes sense in that all the strains of a species will have similar physical properties 355

and genomic traits. 356

STRONG is an effective strategy to de novo resolve subpopulations at high phylogenetic 357

resolution within MAGs, but as discussed in the Introduction, it is important to add the caveat 358

that the haplotype sequences obtained are not equivalent to those from sequencing cultured 359

isolates, where we can identify the resulting genome with a single organism present in the 360

original community. The metagenome strains, in the best case, will correspond to different 361

modal sequences of the taget species, about which substantial unresolved variation may exist. 362

They will correspond to peaks in the probability distribution of all possible sequence 363

configurations, and as such will provide important insights into the naturally occurring 364

variation, but there remains the question of how to identify and quantify the unresolved 365

variation surrounding those peaks. In the worst case, when STRONG is applied to rapidly 366

recombining microbes, such as those found in the oceans [30], the resulting sequences may not 367

even be real in the sense of characterising any true individual. An additional unaddressed 368

question is how to determine when this has occurred, for now we would simply urge caution 369

when using STRONG in cross-sectional studies of rapidly evolving microbes, and suggest that 370

the term ‘metagenome strain’ or ‘metagenome haplotype’ be used when referring to the output 371

sequences. The same caveat does of course apply to any current purely bioinformatics strategy 372

for de novo resolution of genomes from metagenomes. Even if a single sample is used for 373

binning and there are no subpopulations, the resulting MAG is still a composite and not a 374

strain in the traditional microbiological sense [39]. 375

An obvious extension of our algorithm would be to resolve the accessory genome into strain 376

genomes. This could be done on a per gene basis by relaxing the requirement that every strain 377

passes through every gene, but an approach that incorporates the path structure in the full 378

metagenomic assembly would be more powerful. Use of the full assembly may be possible in an 379

efficient manner by factorising the variational approximation on a per gene basis and allowing 380

the solutions for one gene to depend on the expectations across their neighbours. Or it may be 381

that more computationally tractable versions of the algorithm can be developed that will scale 382

to larger graphs. In any case the issues discussed above of our inferred ‘strains’ containing 383

unresolved variation will become more pertinent when we extend our algorithm to the full 384

genome, and it will be necessary to consider not just the most likely genome associated with a 385

subpopulation but also its variants. 386

In the future we also plan to directly incorporate long read information into the strain 387

resolution rather than just using it for validation. It was encouraging therefore to see the 388

correspondence in strain frequencies between the two approaches. We are confident that in the 389

near future, through the combination of long reads with methods similar to those we have 390

introduced in STRONG, that complete metagenome de novo strain resolution will become a 391

realistic possibility. 392

Conclusion 393

We have introduced a complete bioinformatics pipeline, STrain Resolution ON assembly Graphs 394

(STRONG), that is capable of extracting single-copy core gene variant graphs from short read 395

metagenome coassemblies for individual metagenome assembled genomes (MAGs). We 396

demonstrated how these graphs and associated per-sample unitig coverages can be used in a 397
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novel Bayesian algorithm, BayesPaths, to find MAG strain number, haplotypes and abundances. 398

This approach achieves superior accuracy to variant based methods on synthetic communities 399

and predictions on real data that match those from long Nanopore long reads. 400

STRONG is freely available from https://github.com/chrisquince/STRONG. 401

Methods 402

Synthetic data set generation 403

The in silico synthetic communities were generated by first downloading a list of complete 404

bacterial genomes from the NCBI and selecting species with multiple strains present. Genomes 405

were restricted to those that were full genome projects, possessed at least 35 of 36 single-copy 406

core genes (SCGs) identified in [3], and with relatively few contigs (< 5) in the assemblies. 407

Communities were created by specifying species from this list and the number of strains desired. 408

The strains selected were then chosen at random from the candidates for each species, with the 409

extra restrictions that all strains in a species were at least 0.05% and no more than 5% 410

nucleotide divergent on the SCGs from any other strain in the species. This corresponds to a 411

minimum divergence of approximately 15 nucleotides over the roughly 30 kbp region formed by 412

summing the SCGs. The genomes used are given in Tables S1 and S2. 413

Each species indexed i was then given an abundance, yi,s, in each sample, s = 1, . . . , S,
which was drawn from a lognormal distribution with a species dependent mean and standard
deviation, themselves drawn from a normal and gamma distribution respectively:

log(yi,s) ∼ N(µi, σi)

where:
µi ∼ N(µp, σp)

and:
σi ∼ Gamma(kp, θp).

For all four community configurations — S equal to 3, 5, 10 and 15 — we used µp = 1,
σp = 0.125, kp = 1 and θp = 1. The species abundances were then normalised to one
(y′i,s = yi,s/

∑
i yi,s). For each strain within a species its proportion in each sample was then

drawn from a Dirichlet:
ρg,s ∼ Dirichlet(α) (1)

with α = 1. 414

This allowed us to specify a copy number for each genome g in species i in each sample as 415

y′i,sρg,s. We then generated 150 million paired-end 2x150 bp reads in total across all samples 416

with Illumina HiSeq error distributions using the ART read simulator [21]. The code for the 417

synthetic community generation is available from 418

https://github.com/chrisquince/STRONG_Sim. 419

Synthetic data set evaluation 420

We can determine which contig derived from which reference genome by considering the 421

simulated reads that map onto it. We know which reference each of these came from, enabling 422

us to assign a contig to a genome as that which a majority of its reads derive from. We can 423
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then assign each MAG generated by STRONG to a reference species as the one which the 424

majority of its contig’s derive from weighted by the contig length. 425

Anaerobic digester sampling and sequencing 426

AD sample collection 427

We obtained ten samples from a farm anaerobic digestion bioreactor across a period of 428

approximately one year. The sampling times, metadata and accession numbers are given in 429

Table S4. The reactor was fed on a mixture of slurry, whey and crop residues, and operated 430

between 35-40◦C, with mechanical stirring. Biomass samples were taken directly from the AD 431

reactor by the facility operators and shipped in ice-cooled containers to the University of 432

Warwick. Upon receipt, they were stored at 4◦C and then sampled into several 1-5mL aliquots 433

within a few days. DNA was usually extracted from these aliquots immediately but some were 434

first stored in a -80◦C freezer until subsequent thawing and extraction. 435

AD short read sequencing 436

DNA extraction was performed using the Qiagen Powersoil extraction kit following the 437

manufacturer’s protocol. DNA samples were sequenced by Novogene using the NovaSeq 438

platform with 2x150 bp reads at a mean depth of 11.63 Gbp. 439

AD long read sequencing 440

Anaerobic digester samples were stored in 1.8 mL Cryovials at -80◦C. Samples were defrosted at 441

4◦C overnight prior to DNA extraction. DNA was extracted from a starting mass of 250 mg of 442

anaerobic digester sludge using the MP BiomedicalTM FastDNATM SPIN Kit for Soil (cat no: 443

116560200) and a modified manufacturers protocol. Defrosted samples were homogenised by 444

pipetting and then transferred to a MP bioTM lysing matrix E tube (cat no: 116914050-CF). 445

Samples were resuspended in 938 µL of Sodium phosphate buffer (cat no: 116560205). 446

Preliminary cell lysis was undertaken using lysozyme at a final concentration of 200 ng/µL 447

and 20 µL of Molzyme Bug LysisTM solution. Samples were mixed by inversion and incubated 448

at 37◦C for 30 min on a shaking incubator (< 100 rpm). Lysozyme was inactivated by adding 449

122 µL of MP bio MT buffer and mixing by inversion. Samples were then mechanically lysed in 450

a VelociRuptor V2 bead beating machine (cat no: SLS1401) at 5 m/s for 20 seconds then 451

placed on ice for five minutes. 452

Samples were centrifuged at 14000 g for five minutes to pellet the particulate matter and the 453

supernatant was transferred to a new 1.5 mL microfuge tube. Proteins were precipitated from 454

the crude lysate by adding 250 µL of PPSTM (cat no: 116560203) and then mixing by inversion. 455

Precipitated proteins were pelleted for five minutes at 14000 g and the supernatant was 456

transferred to 1000 µL of pre mixed DNA binding matrix solution (cat no: 116540408). 457

Samples were mixed by inversion for two minutes. 458

DNA binding matrix beads were recovered using the MP bioTM spin filter (cat no: 459

116560210) and manufacturer based spin protocol. The binding matrix was washed of 460

impurities by complete resuspension in 500 µL of SEWS-M solution (cat no: 116540405) and 461

centrifuged at 14000 g for five minutes. The DNA binding matrix was then washed for a second 462

time by resuspension in 500 µL of 80% EtOH followed by centrifugation at 14000 g for five 463

minutes. Flow though was discarded and centrifuged at 14000 g for two minutes to remove 464
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residual EtOH. The binding matrix was left to air dry for 2 minutes then DNA was eluted using 465

100 µL of DES elution buffer at 56◦C. Elute was collected by centrifugation at 14000 g for 5 466

minutes and stored at 4◦C prior to library preparation. Eluted DNA concentration was 467

estimated using a Qubit 4TM fluorometer with the dsDNA Broad Range sensitivity assay kit 468

(cat no: Q32853). 260:280 and 260:230 purity ratios were quantified using a NanodropTM 2000. 469

A 1x SPRI clean up procedure was undertaken prior to library construction to further 470

reduce contaminant carry over. Input DNA was standardised to 1.2 µg in 48 µL of H2O using a 471

qubit 4TM fluorometer and dsDNA 1x High Sensitivity assay kit (cat no: Q33231). Library 472

preparation was undertaken using the Oxford Nanopore c© Ligation Sequencing Kit 473

(SQK-LSK109) with minor modifications to the manufacturer protocol. The FFPE/End repair 474

incubation step was extended to 30 min at 20◦C and 30 min at 65◦C, while DNA was eluted 475

from SPRI beads at 37◦C for 30 min with gentle agitation. The SQK-LSK109 long fragment 476

buffer was used to ensure removal of non-ligated adaptor units and reduce short fragment 477

carryover into the final sequencing library. The final library DNA concentration was 478

standardised to 250 ng in 12 µL of EB using a qubit 4TM fluorometer and dsDNA 1 x High 479

Sensitivity assay kit. 480

Sequencing was undertaken for 72 hours on an Oxford Nanopore c© R 9.4.1 (FLO-MIN106) 481

flow cell with 1489 active pores. DNA was left to tether for 1 hour prior to commencing 482

sequencing. The flow cell and sequencing reaction was controlled by a MinIONTM MKII device 483

and the GUI MinKNOW V. 19.12.5. ATP refuelling was undertaken every 18 hours with 75 µL 484

of flush buffer (FB). Post Hoc basecalling was undertaken using Guppy V. 3.5.1 and the high 485

accuracy configuration (HAC) mode. 486

STRONG pipeline 487

STRONG processes co-assembly graph regions for multiple metagenomic datasets in order to 488

simultaneously infer the composition of closely related strains for a particular MAG and their 489

core gene sequences. Here, we provide an overview of STRONG. We start from a series of S 490

related metagenomic samples, e.g. samples of the same (or highly similar) microbial community 491

taken at different time points or from different locations. 492

The Snakemake based pipeline begins with the recovery of metagenome-assembled genomes 493

(MAGs) [22]. We perform co-assembly of all available data with the metaSPAdes assembler [28], 494

and then bin the contigs obtained by composition and coverage profiles across all available 495

samples with CONCOCT [3]. Each bin is then analyzed for completeness and contamination 496

based on single-copy core genes, and poor quality bins are discarded. The default criterion is 497

that a MAG requires greater than or equal to 75% of the SCGs in a single copy. While we 498

currently focus on this combination of software tools, in principle we could use any other 499

software or pipeline for MAG recovery, e.g. we could use MEGAHIT as the primary 500

assembler [25] or alternative binning tools or their combination. For each MAG we then extract 501

the full or partial sequences of the core genes that we further refer to as single-copy core gene 502

(SCG) sequences. 503

The final coassembly graph produced by metaSPAdes cannot be used for strain resolution 504

because, as with other modern assembly pipelines, variants between closely related strains will 505

be removed during the graph simplification process. Instead, we output the initial graph for the 506

final K-mer length used in the (potentially) iterative assembly following processing by a custom 507

executable — spades-gsimplifier based on the SPAdes codebase — to remove likely erroneous 508

edges using a ‘mild’ coverage threshold and a tip clipping procedure. We refer to the resulting 509
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graph as a high-resolution assembly graph or HRAG. 510

The graph edges are then annotated with their corresponding sequence coverage profiles 511

across all available samples. As is typical in de Bruijn graph analysis, the coverage values are 512

given in terms of the k-mer rather than nucleotide coverage. Profile computation is performed 513

by a second tool for aligning reads onto the HRAG: unitig-coverage. The potential advantage of 514

this approach in comparison to estimation based on k-mer multiplicity, is that it can correctly 515

handle the results of any bubble removal procedure that we might want to add to the 516

preliminary simplification phase in future. 517

For each detected SCG sequence (across all MAGs) we next try to identify the subgraph of 518

the HRAG encoding the complete sequences of all variants of the gene across all strains 519

represented by the MAG. The procedure is described in more detail in the next section. During 520

testing we faced two types of problems here: (1) related strains might end up in different MAGs 521

and (2) some subgraphs might consist of fragments corresponding to several different species. 522

We take several steps to mitigate those problems. Firstly, we compare SCG graphs between all 523

bins, not just MAGs. If an SCG graph shares unitigs between bins, then it is flagged as 524

overlapping. If multiple SCG graphs between MAGs (> 10) overlap then we merge those MAGs, 525

combining all graphs and processing them for strains together. Following merging any MAG 526

SCG graphs with overlaps remaining are filtered out and not used in the strain resolution. 527

After MAG merging and COG subgraph filtering we process the remaining MAGs one by 528

one. Before the core ‘decomposition’ procedure is launched on the set of SCG subgraphs 529

corresponding to a particular MAG, they are subjected to a second round of simplification, 530

parameterised by the mean coverage of the MAG, to filter nodes that are likely to be noise 531

again by the spades-gsimplifier program. This module is described in more detail below. The 532

resulting set of simplified SCGs of the HRAG for a MAG are then passed to the core graph 533

decomposition procedure, which uses the graph structure constraints, along with coverage 534

profiles associated with unitig nodes, to simultaneously predict: the number of strains making 535

up the population represented by the MAG; their coverage depths across the samples; paths 536

corresponding to each strain within every subgraph (each path encodes a sequence of the 537

particular SCG instance). 538

A fraction of the SCGs in a MAG may properly derive from other organisms due to the 539

possibility of incorrect binning i.e contamination. In fact, the default 75% single-copy criterion 540

allows up to 25% contamination. In addition, the subgraph extraction is not always perfect. We 541

therefore add an extra level of filtering to the BayesPaths algorithm, iteratively running the 542

program for all SCGs, but then filtering those with mean error rates, defined by Equation 18, 543

that exceed a default of 2.5 times the median deviation from the median gene error. Filtering 544

on the median deviation is in general a robust strategy for identifying outliers. As a result of 545

this filtering the pipeline only infers strain sequences on a subset of the input SCGs. We have 546

found, however, that the number of SCGs for which strain haplotypes are inferred is sufficient 547

for phylogenetics. 548

Relevant subgraph extraction 549

Provided with the predicted (partial) gene sequence, T̄ , and the upper bound on the length of 550

the coding sequence, L, defined as 3α〈Ūn〉 where 〈Ūn〉 is the average length in amino acids of 551

that SCG in the COG database, and α = 1.5 by default. The procedure for relevant HRAG 552

subgraph extraction involves the following steps. First, the sequence T̄ is split into two halves, 553

T̄ ′ and T̄ ′′, keeping the correct frame (both T̄ ′ and T̄ ′′ are forced to divide by 3). T̄ ′ and T̄ ′′ are 554
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then processed independently. Without loss of generality we describe the processing of T̄ ′: 555

1. Identify the path P corresponding to T̄ ′ in the HRAG. We denote its length as LP . 556

2. Launch a graph search of the stop codons to the right (left) of the rightmost (leftmost) 557

position of T̄ ′ (T̄ ′′). The stop codon search is frame aware and is performed by a 558

depth-first search (DFS) on the graph in which each vertex corresponds to a pair of the 559

HRAG position and the partial sequence of the last traversed codon 1. Vertices of this 560

‘state graph’ are naturally connected following the HRAG constraints. The search is cut 561

off whenever a vertex with a frame state encoding a stop codon sequence is identified. 562

Several stop codons can be identified within the same HRAG edge sequence in ‘different 563

frames’, moreover the procedure correctly identifies all stop codons even if the graph 564

contains cycles (although such subgraphs may be ignored in later stages of the pipeline). 565

3. The ‘backward’ search of the stop codons ‘to the left’ is actually implemented as a 566

‘forward’ search of the complementary sequences from the complementary position in the 567

graph. Note that, as in classic ORF analysis, while the identified positions of the stop 568

codons ‘to the right’ correspond to putative ends of the coding sequences for some of the 569

variants of the analyzed gene, positions of the stop codons ‘to the left’ only provide the 570

likely boundary for where the coding sequence can start. In particular, left stop codons 571

are likely to fall within the coding sequence of the neighbouring gene (in a different 572

frame). Actual start codons are thus likely to lie somewhere on the path (with sequence 573

length divisible by 3) between one of the ‘left’ stop codons and one of the ‘right’ stop 574

codons. For reasons of simplicity, further analysis of edges on the paths between left 575

(right) stop codons ignores the constraint of divisibility by 3. 576

4. After the sets of ‘left’ and ‘right’ stop codon positions are identified along with the 577

shortest distances between them and the T̄ ′ path, we attempt to gather the relevant 578

subgraph given by the union of edges lying on some path of a constrained length (see 579

further) between some pair of left and right stop codons. First, for each pair (s, t) of the 580

left and right stop codon positions we compute the maximal length of the paths that we 581

want to consider Ls,t as LP + min dist from s to start of P + min dist from end of P to t. 582

The edge e = (v, w) is considered relevant if there exists a pair of left (right) stop codon 583

positions (s′, t′) such that the edge e lies on the path of length not exceeding Ls,t between 584

s′ and t′, which is equivalent to checking that 585

min dist(s′, v) + length(e) + min dist(w, t′) < Ls,t. To allow for efficient checks of the 586

shortest distances we precompute them by launching the Dijkstra algorithm from all left 587

(right) stop codon positions in the forward (backward) direction 2. 588

5. We then exclude from the set of relevant edges the edges that are too far from any 589

putative (right) stop codon to be a part of any COG instance. In particular, we exclude 590

any edge e = (v, w), such that the minimal distance from vertex w to any of the right 591

stop codon positions exceeds L. 592

1Due to the properties of the procedure and the fact that it deals with DBGs, the actual implementation
encodes frame state as an integer [0,2] rather than the string of last partially traversed codon.

2Actually Dijkstra runs are initiated from the ends/starts of corresponding edges and the distances are later
corrected.
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6. After the sets of the graph edges potentially encoding the gene sequence are gathered for 593

T̄ ′ and T̄ ′′ the union of the two sets, ER, is then taken and augmented by the edges, 594

connecting the ‘inner’ ER vertices (vertices which have at least one outgoing and at least 595

one incoming edge in the ER) to the rest of the graph. 596

Initial splitting of T̄ into T̄ ′ and T̄ ′′ is required to detect relevant stop codons which are not 597

reachable from the last position of T̄ in HRAG (or from which the first position of T̄ in HRAG 598

can not be reached). In addition to the resulting component in gfa format, we also store the 599

positions of the putative stop codons, and ids of edges connecting the component to the rest of 600

the graph (further referred to as ‘sinks’ and ‘sources’). 601

Subgraph simplification 602

While processing SCG subgraphs from a particular MAG we use the available information on 603

the coverage of the MAG in the dataset. In particular, we set up the simplification module to 604

remove tips (a node with no successors) below a certain length and edges with coverage below a 605

fraction of the total coverage across all samples. If a tip is not removed it is labelled as a 606

‘dead-end’ to distinguish it from potential connections to the rest of the graph. 607

While simplifying a COG subgraph, edges connecting it to the rest of the assembly graph 608

should be handled with care (in particular, they should be excluded from the set of potential 609

tips). This is because in the BayesPaths algorithm they form potential sources and sinks of the 610

possible haplotype paths. Moreover, during the simplification the graph changes, and such 611

edges might become part of longer edges. Since we are interested in which dead-ends of the 612

component do, and do not lead to the rest of the graph, the output contains the up-to-date set 613

of connections of the simplified component to the rest of the graph. 614

We now briefly describe the implemented procedures based on ‘relative coverage’ criteria. 615

Amongst other procedures for erroneous edge removal SPAdes implements a procedure 616

considering the ratio of the edge coverage to the adjoining coverage of edges adjacent to it. We 617

define an edge e as ‘predominated’ by vertex v incident to it if there is edge e1 outgoing from v 618

and edge e2 incoming to v whose coverages exceed the coverage of e at least by a factor of α (by 619

default equal to 5). Short edges (shorter than k + ε) predominated by both vertices incident to 620

them are then removed from the graph. Erroneous graph elements in high genomic coverage 621

graph regions often form subgraphs of three or more erroneous edges. SPAdes implements a 622

procedure for search (and subsequent removal) of subgraphs limited by a set of predominated 623

edges. Starting from a particular edge (v, w) predominated by vertex v, the graph is traversed 624

from vertex w breadth-first without taking into account the edge directions. If the vertex 625

considered at the moment predominates the edge by which it was entered, the edges incident to 626

it are not added to the traversal. The standard limitation of erroneous edge lengths naturally 627

transforms into a condition of maximum length of the path between the vertices of the traversed 628

subgraph. A limit on the maximum total length of its edges is additionally introduced. 629

BayesPaths 630

The model 631

We define an assembly graph G = (V, E) as a collection of unitig sequence vertices V = 1, . . . , V 632

and directed edges E ⊆ V × V. Each edge defines an overlap and comprises a pair of vertices 633
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and directions (ud → vd) ∈ E where d ∈ {+,−} and indicates whether the overlap occurs 634

between the sequence (+) or its reverse complement (−). We define: 635

• Counts xv,s for each unitig v = 1, . . . , V in sample s = 1, . . . , S 636

• Paths for strain g = 1, . . . , G defined by ηgu,v ∈ 0, 1 indicating whether strain g passes 637

through that edge in the graph 638

• Flow of strain g through unitig v, φg+v =
∑

u∈A(v) η
g
u,v and φg−v =

∑
u∈D(v) η

g
v,u where 639

A(v) is the set of ancestors of v and D(v) descendants in the assembly graph 640

• The following is true φg+v = φg−v = φgv 641

• Strain intensities γg,s as the rate per position that a read is generated from g in sample s 642

• Unitig lengths Lv 643

• Unitig bias θv is the fractional increase in reads generated from v given factors such as 644

GC content influencing coverage 645

• Source node s and sink node t such that φg+s = φg−s = φg+t = φg−t = 1 646

Then assume normally distributed counts for each node in each sample giving a joint density for
observations and latent variables:

P (X,Γ,H,Θ) =
V∏
v=1

S∏
s=1

N (xv,s|Lvθv
G∑
h=1

φhvγh,s, τ
−1)

G∏
h=1

S∏
s=1

P (γh,s|λh)

.

G∏
h=1

V∏
v=1

[
φh+v = φh−v

] [
φh−s = 1

] [
φh+t = 1

]
P (τ)

.
G∏
h=1

P (λh|α0, β0)
V∏
v=1

P (θv|µ0, τ0) (2)

where [] indicates the Iverson bracket evaluating to 1 if the condition is true and zero otherwise.
We assume an exponential prior for the γg,s with a rate parameter that is strain dependent,
such that:

P (γg,s|λg) = λg exp(−γg,sλg) (3)

We then place gamma hyper-priors on the λg:

P (λg|α0, β0) =
βα0
0

Γ(α0)
λα0−1
g exp(−β0λg) (4)

This acts as a form of automatic relevance determination (ARD) forcing strains with low 647

intensity across all samples to zero in every sample [8]. 648

We use a standard Gamma prior for the precision:

P (τ |ατ , βτ ) =
βαττ

Γ(ατ )
τατ−1 exp(−βττ) (5)

For the biases θv we use a truncated normal prior: 649
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P (θv|µ0, τ0) =

√
τ0
2π exp(− τ0

2 (θv − µ0)2)
1−Ψ(−µ0

√
τ0)

θv >= 0

= 0 θv < 0

where Ψ is the standard normal cumulative distribution. The mean of this is set to one, µ0 = 1, 650

so that our prior is that the coverage on any given node is unbiased, with a fairly high precision 651

τ0 = 100, to reflect an assumption that the observed coverage should reflect the summation of 652

the strains. Finally, we assume a uniform prior over the possible discrete values of the ηgv,u. If 653

the assembly graph is a directed acyclic graph (DAG) then ηgv,u ∈ 0, 1. We have found that for 654

most genes and typical kmer lengths this is true, but we do not need to assume it. 655

Variational Approximation 656

We use variational inference to obtain an approximate solution to the posterior distribution of 657

this model [7]. Variational inference is an alternative strategy to Markov chain Monte Carlo 658

(MCMC) sampling. Rather than attempting to sample from the posterior distribution, 659

variational inference assumes a tractable approximating distribution for the posterior, and then 660

finds the parameters for that distribution that minimise the Kullback-Leibler divergence 661

between the approximation and the true posterior distribution. Further, in mean-field 662

variational inference the approximation can be factorised into a product over a number of 663

components that each approximate the posterior of a parameter in the true distribution. In 664

practice the Kullback-Leibler divergence is not computable because it depends on the evidence, 665

i.e. the joint distribution marginalised over all latent variables. Instead, inference is carried out 666

by maximising the evidence lower bound (ELBO), which is equal to the negative of the 667

Kullback-Leibler divergence plus a constant, that constant being the evidence. In our case, 668

because all the distributions are conjugate we can employ CAVI, coordinate ascent variational 669

inference, to iteratively maximise the ELBO. 670

Our starting point is to assume the following factorisation for the variational approximation:

q(X,Γ,H) =
G∏
h=1

qh({ηhv,u}u,v∈A)
G∏
h=1

S∏
s=1

qh(γh,s)
G∏
h=1

qh(λh)
V∏
v=1

qv(θv)q(τ) (6)

where A is the set of edges in the assembly graph and V = 1, . . . , V the set of unitig sequence 671

vertices. Note that we have assumed a fully factorised approximation except for the ηhv,u, the 672

paths for each strain through the graph. There we assume that the path for each strain forms a 673

separate factor allowing strong correlations between the different elements of the path. This is 674

therefore a form of structured variational inference [20]. 675

To obtain the CAVI updates we use the standard procedure of finding the log of the optimal 676

distributions q for each set of factorised variables as the expectation of the log joint distribution 677

Equation 2 over all the other variables, except the one being optimised. Using an informal 678

notation we will denote these expectations as 〈lnP 〉−qj where qj is the variable being optimised. 679
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Then the mean field update for each set of {ηgv,u}u,v∈A is derived as:

ln q∗g({ηgv,u}u,v∈A) = 〈lnP 〉−ηgv,uu,v∈A

= ln

(
V∏
v=1

δφg+v ,φg−v
δφg−s ,1δφg+t ,1

)

−

〈
V∑
v=1

S∑
s=1

τ

2

(
xv,s − θvLv[

G∑
h=1

φhvγh,s]

)2〉
−ηgv,uu,v∈A

+ Terms independent of ηg

Consider the second term only:

−〈τ〉
2

(
−

V∑
v=1

S∑
s=1

2xv,sLv〈θv〉〈γg,s〉φgv + L2
v〈θv2〉〈(

G∑
h=1

φhvγh,s)(
G∑
i=1

φivγi,s)〉)

)
This becomes:

−〈τ〉
2

 V∑
v=1

S∑
s=1

−2xv,s〈θv〉Lv〈γg,s〉φgv + 2L2
v〈θv2〉

G∑
h 6=g
〈φhv〉〈γh,s〉〈γg,s〉φgv + L2

v〈θv2〉〈γ2g,s〉(φgv)2


Which can be reorganised to:

ln q∗g({ηgv,u}u,v∈A) = ln

(
V∏
v=1

δφg+v ,φg−v
δφg−s ,1δφg+t ,1

)
+

V∑
v=1

c1,vφ
g
v +

V∑
v=1

c2,v(φ
g
v)

2 (7)

Where: 680

c1,v = −〈τ〉
2

S∑
s=1

−2xv,s〈θv〉Lv〈γg,s〉+ 2L2
v〈θv2〉

G∑
h 6=g
〈φhv〉〈γh,s〉〈γg,s〉


c2,v = −〈τ〉

2
L2
v〈θv2〉〈γ2g,s〉

It is apparent from Equation 7 that the q∗g({η
g
v,u}u,v∈A) takes the form of a multivariate 681

discrete distribution with |u, v ∈ A| dimensions. The first term in Equation 7 enforces the flow 682

constraints, and does not separate across nodes, the next two terms are effectively coefficients 683

on the total flow through a unitig and its square. The updates for the other variables below, 684

depend on the expected values of the total flow through each of the unitig nodes for the strain 685

g, 〈φgv〉, which themselves depend on the ηgv,u. These expected values can be efficiently obtained 686

for all v by representing Equation 7 as a factor graph comprising nodes consisting of factors 687

corresponding to both the constraints and the flow probabilities through each node with 688

variables ηgv,u. We can then find the marginal probabilities for both the ηgv,u and the φgv using 689

the Junction Tree algorithm [41], from these we can calculate the required expectations. 690

Next we consider the mean field update for the γg,s:

ln q∗(γg,s) = 〈lnP 〉−γg,s

= −

〈
V∑
v=1

τ

2

(
xv,s − θvLv[

G∑
h=1

φhvγh,s]

)2〉
−γg,s

− 〈λg〉γg,s
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ln q∗(γg,s) =

− 〈τ〉
2

 V∑
v=1

−2xv,s〈θv〉Lv〈φgv〉γg,s + 2〈θ2v〉L2
vγg,s〈φgv〉

∑
h 6=g
〈γh,s〉〈φhv〉+ 〈θ2v〉L2

vγ
2
g,s〈[φgv]2〉


− 〈λg〉γg,s

with the restriction γg,s > 0 this gives a normal distribution but truncated to (0, inf) for γg,s,
with mean and precision:

µg,s =

∑
v xv,sθvLv〈φ

g
v〉 − 〈φgv〉

∑
h 6=g〈γh,s〉〈φhv〉〈θ2v〉L2

v∑
v L

2
v〈[φ

g
v]2〉

− 〈λg〉
τg,s

(8)

τg,s = 〈τ〉
∑
v

L2
v〈[φgv]2〉 (9)

(10)

Derivations for the other updates follow similarly giving a Gamma posterior for the τ with
parameter updates:

ατ = α0 + Ω/2 (11)

βτ = β0 +
∑
v,s

〈(xv,s − λv,s)2〉 (12)

where Ω = V S and we have used λv,s as a short hand for the predicted count number:

λv,s = θv
∑
g

γg,sφ
g
v.

Then the τ have the following expectations and log expectations:

〈τv,s〉 = ατ/βτ (13)

〈log τv,s〉 = ψ (ατ + 1/2)− log (βτ ) (14)

where ψ is the digamma function. The biases θv have a truncated normal distribution and their 691

updates can be derived similar to the above. 692

Evidence lower bound (ELBO) 693

Iterating the CAVI updates defined above will generate a variational approximation that is
optimal in the sense of maximising the evidence lower bound (ELBO) so called because it
bounds the log evidence, log(p(x)) ≥ ELBO(q(z)). It is useful to calculate the ELBO whist
performing CAVI updates to verify convergence and the ELBO itself is sometimes used as a
Bayesian measure of model fit, although as a bound that may be controversial [7]. The ELBO
can be calculated from the relationship:

ELBO(q) = E [log p(x|z)] + E [log p(z)]− E [log q(z)] (15)
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The first term is simply the expected log-likelihood of the data given the latent variables. In
our case it is:

E [log p(x|z)] =
1

2
Ω (〈log τ〉 − log(2π))− 1

2
〈τ〉〈(xv,s − Lvθv

G∑
h=1

φhvγh,s)
2〉 (16)

where Ω = V S and the expectations are over the optimised distributions q. 694

The second term is the expectation under q(z) of the log prior distributions. In our case
with standard distributions it is easy to calculate for instance for each of the γg,s:

E [log p(γg,s)] =
1

2
log
(τg,s

2π

)
− τg,s

2

(
〈γ2g,s〉+ µ2g,s − 2µg,s〈γg,s〉

)
− log

[
1

2
erf

(
µg,s

√
τg,s
2

)]
.

With the µg,s and τg,s given by their current values derived from Equation 10 and the moments 695

of γg,s calculated from a truncated normal distribution with those current parameters. The 696

third terms are simply the negative entropy of the variational approximations and for the 697

standard distributions used here are easily calculated. 698

Implementation details 699

One update of the algorithm consists of updating each variable or sets of variables in turn given 700

the current optimal solutions of the other distributions. In practice we update: 701

• Compute the marginal flows {ηgv,u}u,v∈A for each strain g = 1, . . . , G in turn using 702

Equation 7 and the Junction Tree algorithm. This can be performed for each single 703

copy-core gene independently 704

• Update the truncated normal strain abundances q(γg,s) for each strain in each sample, 705

s = 1, . . . , S using Equation 10 706

• Update the q(τ) 707

• Update the ARD parameter distributions q(λg) if used 708

• Update the nodes biases q(θv) 709

• Check for redundant or low abundance strains and remove (see below) 710

After a maximum fixed number of iterations or if the ELBO converges we stop iterating. 711

Variational inference can be sensitive to initial conditions as it can only find local maxima of 712

the ELBO, we therefore use a previously published variational Bayesian version of non-negative 713

matrix factorisation [8], to find an initial approximate solution. 714

Empirical modelling of node variances 715

For low-coverage MAGs a precision that is identical for all nodes performs satisfactorily, but
since the true distribution of read counts is Poisson this overestimates the precision for nodes
with high counts xv,s. To address we developed an empirical procedure where we first calculate
〈log τv,s〉 for each node using Equation 14 as:

〈log τv,s〉 = ψ (α0 + 1/2)− log

(
β0Xv,s +

1

2
〈(xv,s − λv,s)2〉

)
(17)
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a quantity which exhibits high variability, so we then smooth this over log(xv,s) using 716

generalised additive models as implemented in pyGAM [36] to give 〈log τv,s〉∗. The term β0Xv,s 717

gives a prior which is effectively Poisson. We then obtain 〈τv,s〉 as exp(〈log τv,s〉∗). This 718

procedure has no theoretical justification but gives good results in practice. This approach of 719

modelling a non-Gaussian distribution as a Gaussian with empirical variances is similar to that 720

used in voom for RNASeq [23]. 721

Cross-validation to determine optimum number of strains 722

The ARD procedure usually converges on the correct number of strains except for high-coverage
MAGs where overfitting may occur and too many strains can be predicted. We therefore
additionally implemented a cross-validation procedure, splitting the entire data matrix xv,s into
test and train folds (default ten folds) and training the model on the train fold and then testing
on the held out data. The correct number of strains was then taken to be the one that
maximised the log predictive posterior with an empirical variance reflecting the Poisson nature
of the data. The exact test statistic being:∑

v,s∈E

1

2
log(τ ′v,s)−

1

2

∑
v,s∈E

τ ′v,s〈(xv,s − λv,s)
2〉 (18)

where τ ′v,s = 1/(0.5 + xv,s) and E indicates data points in the test set to down-weight high read 723

count nodes reflecting approximately Poisson noise. 724

Nanopore sequence analysis 725

Sequence preprocessing 726

To enable a qualitative comparison between haplotypes obtained from the Nanopore reads and 727

the BayesPaths predictions we developed the following pipeline applied at the level of individual 728

single-copy core genes (SCGs) from MAGs: 729

1. We mapped all reads using minimap2 [26] against the SCG contig consensus ORF 730

sequence and selected those reads with alignments that spanned at least one third of the 731

gene with a nucleotide identity > 80%. 732

2. We then extracted the aligned portion of each read, reverse complementing if necessary, 733

so that all reads ran in the same direction as the SCG ORF. 734

3. We then obtained the variant positions on the consensus from the output of the 735

DESMAN pipeline [32]. These are variant positions prior to haplotype calling 736

representing the total unlinked variation observed in the short reads. 737

4. For each Nanopore fragment we aligned against the SCG ORF using a 738

Needleman-Wunsch global alignment and generated a condensed read comprising bases 739

only from the short read variant positions. 740

This provided us with a reduced representation of each Nanopore read effectively filtering 741

variation that was not observed in the short reads. These reduced representations were then 742

used to calculate distances, defined as Hamming distances on the variant positions normalised 743

by number of positions observed, both between the reads and between the reads and the 744
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predicted COG sequences from BayesPaths. From these we generated NMDS plots indicating 745

sequence diversity, and they provided an input to the hybrid Nanopore strain resolution 746

algorithm below. 747

EM algorithm for hybrid Nanopore strain resolution 748

We also developed a simple EM algorithm for direct prediction of paths and their abundances 749

on the short read assembly graph that are consistent with a set of observed long reads. We 750

began by mapping the set of n = 1, . . . , N Nanopore sequences denoted {Sn} onto the 751

corresponding simplified SCG graph generated by STRONG using GraphAligner [33]. This 752

provided us with N optimal alignment paths as walks in our SCG graph. We denote this graph 753

G comprising unitig vertices v and edges e ∈ {u, v} defining overlaps. 754

We assume, as is almost always the case that the graphs contain no unitigs in both forward 755

and reverse configurations, and that there are no cycles, so that each SCG is a directed acyclic 756

graph (DAG) with one copy of each unitig, and we only need to track the direction that each 757

overlap enters and leaves each unitig. Then best alignment walks comprise a sequence of edges, 758

en1 , . . . , e
n
Wn

where Wn is the number of edges in the walk of read n, that traverse the graph. 759

Given these observed Nanopore reads we aim to reconstruct G haplotypes comprising paths
from a dummy source node s, which has outgoing edges to all the true source nodes in the
graph, through the graph to a dummy sink t, which connects all the true sinks. We further
assume that each haplotype has relative frequency πg. Each such haplotype path
Pg = {s, eg1, . . . , e

g
Wg
, t} will translate into a nucleotide sequence Tg. We assume that these

haplotypes generate Nanopore reads with a fixed error rate ε which gives a likelihood:

P ({S1, . . . ,SN}|π, {T1, . . . , TG}) =
N∏
n=1

 G∑
g=1

πgε
mn,g(1− ε)Mn,g

 . (19)

where mn,g is the number of basepair mismatches between Sn and Tg counting insertions, 760

deletions and substitutions equally and Mn,g the number of matches. 761

To maximise this likelihood we used an Expectation-Maximisation algorithm. Iterating the 762

following steps until convergence: 763

1. E-step: Calculate the responsibility of each haplotype for each sequence as:

zn,g =
πgε

mn,g(1− ε)Mn,g∑
h πhε

mn,h(1− ε)Mn,h
(20)

Alignments of reads against haplotypes were performed using vsearch [34]. 764

2. M-step: We update each haplotype by finding the most likely path on the short read
graph given the current expectations. These are calculated by assigning a weight wge to
each edge e in the graph as:

wge =
∑
n∈e

zn,gLe (21)

where n ∈ e are the set of reads whose optimal alignment contains that edge and Le is the
unique length of the unitig the edge connects to, i.e. ignoring the overlap length. We then
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find for haplotype g the maximal weight path through this DAG using a topological sort.
The error rates are updated as:

ε =

∑
n

∑
g zn,gmn,g∑

n

∑
g zn,gLn,g

(22)

where Ln,g are the alignment lengths. 765

As is often the case with EM algorithms convergence depends strongly on initial conditions. 766

Therefore we initialise using a partitioning around medoids clustering using the distances 767

calculated in Methods - Nanopore Sequence Analysis. We can estimate the number of 768

haplotypes from the negative log-likelihood as a function of haplotype number. 769
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