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Abstract 
 
Background: Cognitive gains following cognitive training interventions (CT) are 
associated with improved functioning in people with schizophrenia (SCZ). However, 
considerable inter-individual variability is observed. Here, we evaluate the sensitivity 
of brain structural features to predict functional response to auditory-based cognitive 
training (ABCT) at a single subject level.  
 
Methods: We employed whole-brain multivariate pattern analysis (MVPA) with 
support vector machine (SVM) modeling to identify grey matter (GM) patterns that 
predicted ‘higher’ vs. ‘lower’ functioning after 40 hours of ABCT at the single subject 
level in SCZ patients. The generalization capacity of the SVM model was evaluated 
by applying the original model through an Out-Of-Sample Cross Validation analysis 
(OOCV) to unseen SCZ patients from an independent sample that underwent 50 
hours of ABCT. 
 
Results: The whole-brain GM volume-based pattern classification predicted ‘higher’ 
vs. ‘lower’ functioning at follow-up with a balanced accuracy (BAC) of 69.4% 
(sensitivity 72.2%, specificity 66.7%) as determined by nested cross-validation. The 
neuroanatomical model was generalizable to an independent cohort with a BAC of 
62.1% (sensitivity 90.9%, specificity 33.3%).  
 
Conclusions: In particular, greater baseline GM volume in regions within superior 
temporal gyrus, thalamus, anterior cingulate and cerebellum -- predicted improved 
functioning at the single-subject level following ABCT in SCZ participants. 
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Introduction 
 
Occupational and social functioning are impaired in patients with schizophrenia 
(SCZ) and are associated with a range of neural system and clinical impairments(1–
3). Cognitive training interventions (CT) can drive neural system changes (4,5) that 
are in turn associated with functional improvement (6–8). Previous studies have 
shown training-induced restoration of neural activation patterns in the medial 
prefrontal cortex and anterior cingulate cortex (mPFC/ACC) which were associated 
with improved performance on a reality monitoring task (4,9,10), and which in turn 
predicted durable gains in real-world social functioning 6 months later. We have also 
shown enhanced activation in the dorsal lateral prefrontal cortex, which was 
associated with improved performance on a working memory task, and predicted 
better occupational functioning at 6 months follow-up (11).  
 
Although these findings are promising at the group level, it is clear that there is a 
large amount of inter-individual variability in neural system and functional response to 
various forms of CT. Previous group-based studies have shown that baseline 
structural anatomical integrity (12–14) is associated with greater responsiveness to 
CT, suggesting that certain individual neurobiological characteristics might determine 
who will benefit the most from this intervention, but individual-level predictions have 
not yet been demonstrated. In particular, prior research indicates that patients with 
schizophrenia (SCZ) show most prominent deficits in auditory processing, that 
contributed to higher-level cognitive impairments and poor functioning(15–17) 
Promisingly, we have also found that the most prominent gains in auditory/verbal 
functions were induced after auditory-based CT (ABCT) interventions (18–22) 
This work prompted us to investigate multivariate pattern analyses (MVPA) to identify 
baseline patterns in grey matter (GM) volume in patients with schizophrenia (SCZ) 
that predicted improved functioning after an auditory-based CT (ABCT) intervention, 
operating at the single subject level. Multivariate analyses of neuroanatomical brain 
properties have revealed high specificity of predicting improved functioning in Clinical 
High Risk (CHR) individuals with psychosis in single-site studies at the individual 
level (23,24), and have also shown remarkable multi-site generalizability (25). 
However, no study has yet examined the critical question of which structural features 
at baseline most predict responsiveness to ABCT, in terms of improving real-world 
functioning at the single subject level. 
 
Group-based studies have shown that increased GM volume has been predictive of 
improved functioning in SCZ patients and also associated with stronger resilience to 
functional deterioration (1,12).  Informed by these prior group-based studies and 
meta-analyses (1,12,13), we hypothesized that patients who had increased GM 
volumes at baseline, particularly in prefrontal, thalamic and temporal regions (1,12–
14) would show improved functioning at the single subject level in response to 40 
hours of ABCT. We further explored the relationship between the decision values of 
the functioning classifier generated in SCZ patients and their clinical characteristics 
at baseline and at follow-up to test whether clinical symptom severity or medication 
dose were associated with individual level of functioning after 40 hours of CT.  
Finally, we investigated whether our original GM machine learning model was 
sufficiently generalizable to an independent training cohort that also underwent 
ABCT.  
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.06.283481doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.283481


Results 

Participant Characteristics 

Table 1 summarizes the sociodemographic, clinical and cognitive characteristics of 
the two study samples. No significant differences with respect to age, premorbid IQ, 
years of education, illness duration and antipsychotic medication dosage 
(chlorpromazine equivalents) and GM volumes at baseline were found between lower 
and higher functioning SCZ in the original sample or in the IVS (p>0.05). 

                                    ---------------------------------------------------------------------------- 

Insert Table 1 

-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  

However, significant differences in PANSS positive symptoms (t=3.70, p=0.001) and 
general PANSS symptoms (t=2.53, p=0.016) were observed between SCZ patients 
with lower vs. higher functioning in the original sample.  In the IVS, SCZ patients with 
lower functioning had significantly more severe negative symptoms, compared to 
patients with higher functioning (t=2.88, p=0.04). Additionally, comparing patients 
with lower and higher functioning across two samples yielded significant differences 
in general PANSS symptoms (Table 1). Finally, the IVS consisted of more male 
participants (5.08, p=0.02), and the patients labeled as higher functioning exhibited 
significantly greater GM volume than patients from the original sample (2.71, p=0.01). 

Performance of Original Classification Model 

SCZ subjects with GAF<45 had significantly lower functioning than GAF>45 both at 
baseline and after ABCT (t=6.67, p<.0001; t=7.13, p<.0001). Due to the 
heterogeneous response to ABCT we did not find a significant difference in GAF 
between baseline and post-training at the group level (t=.26, p=.80). However, we 
found that SCZ subjects with GAF>45 after ABCT showed significant improvement in 
GAF scores from baseline (t=2.2, p=.05). Based on this ground GAF of >45 was 
determined as the most accurate median-split score for the sMRI classifier to 
determine the structural features at baseline that best predicted which individuals 
would show significantly improved and better functioning after ABCT, compared to 
baseline and compared to SCZ patients with GAF<45. 

The sMRI GM classifier correctly discriminated SCZ patients in the original sample 
with higher functioning from lower functioning after the CT intervention with a cross-
validated BAC of 69.4%, Sensitivity= 72.2%, Specificity=66.7%, NPV=70.6% and 
NND of 2.6. The permutation analysis showed that the classification models 
produced by the binary GAF classifier in response to ABCT were significant at p=.00.  

 

Inspection of the mean feature weights generated within the CV framework revealed 
that the classification of the higher functioning from lower functioning patients in 
response to the CT intervention was driven by increased baseline GM volumes in 
primarily temporal regions (i.e., in bilateral superior and inferior temporal regions, 
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including ventral visual word form area, and parahippocampal gyri), thalamic and 
frontal regions in the anterior cingulate cortex, as well as increases in the posterior 
cingulate cortex and cerebellum (Figure 1). Though the GM pattern was mainly 
characterized by baseline volume increases in the higher functioning patients, the 
lower functioning group also showed some volume increase in primarily motor (i.e., 
premotor cortex and supplementary motor area) and caudate regions within the basal 
ganglia (Figure 1). 

 

A)

 

 

B) 

 

 

Figure 1. Structural MRI-based Classifiers Predict Functional Response to Auditory-based 
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Cognitive Training. A) The reliability of predictive pattern elements in significant outcome 
classification models was measured in terms of a Cross-Validation Ratio (CVR) map (CVR = mean(w) 
/ standard error(w), where w = the normalized weight vectors of the SVM models.  Warm color scales 
indicate increased vs. decreased GM volume in the SCZ subsample with post-training GAF<45 vs. 
GAF≥45. Cool colors indicate increased vs. decreased GM volume in the GAF≥45 vs. GAF<45 
subsamples. B) Receiver-Operator-Curve of the class probability values obtained from the trained L1-
MVLR model in unseen SCZ persons, as determined by nested cross-validation.  

Although the MRI classification model provided accurate estimates (e.g. 
BAC=69.4%) of correctly discriminating higher vs. lower functioning in response to 
the ABCT, we also wanted to ensure that the MRI-based classifiers did not predict 
generic baseline variations in global functioning that were not specific to the ABCT 
and may have confounded response to the ABCT. To investigate this possibility 
further, we replaced the GAF post CT functioning labels of the SCZ patients at follow-
up with the respective classification labels derived from the baseline GAF scores and 
repeated the SVM analyses with the same machine learning pipeline as described 
previously. The MRI classifier differentiated lower from higher functioning SCZ with a 
non-significant classification at chance level with a BAC 44.4% (sensitivity 44.4%, 
specificity 44.4, NPV 44.4%). These results indicate that the individual structural 
features were therapeutically specific to predicting response to the CT intervention, 
rather than general baseline functioning levels. 

OOCV Model Performance 

We next applied the original GM classification model to the IVS to predict follow-up 
functioning after the ABCT intervention in order to test whether the original GM 
classification model would generalize to the IVS. The model was able to successfully 
discriminate lower from higher functioning SCZ patients in the IVS at post ABCT 
sufficiently above chance with a BAC of 62.5, Sensitivity 90.9 % and Specificity 
33.3%, NPV of 75.0 and NND of 4.1. 

Decision Scores and Correlational Analysis 

The decision values of the discriminative GM signature for lower vs. higher 
functioning after ABCT were not associated with the baseline functioning levels (r=-
3.02, p=0.07), indicating that the prediction of response to CT was not confounded by 
baseline patterns but was specific to predicting response to the intervention.  

We investigated the relationship between decision scores in both the original and 
OOCV models with PANSS symptoms as well as decision scores with sex, in order 
to exclude the possibility that the original classification was biased by respective 
differences within and between the two samples. None of the associations yielded 
significant results (p>0.05). 

We also correlated decision scores with antipsychotic medication dosage as 
assessed via CPZ equivalents, and found significant associations (r=0.42, p<0.02) in 
the original sample, suggesting that higher doses of medication were associated with 
better functioning after the CT intervention. No such correlation between decision 
scores and CPZ medication was observed in the IVS (r=0.08, p=0.53). 
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Discussion 

This is the first study to apply MRI-based machine learning to predict individual 
functional responses to an intensive course of ABCT in chronically-ill SCZ patients. 
The original classification model provided accurate estimates of 69.4% in correctly 
discriminating higher vs. lower functioning after the ABCT. Importantly, the MRI-
based classifiers did not predict baseline variations in functioning, indicating that the 
individual structural features were therapeutically specific to predicting response to 
the CT. The original classification model generalized to an independent validation 
sample (IVS) with an accuracy of 62.5%. These results confirm that GM volumes 
have high predictive specificity for individual therapeutic functional response to our 
ABCT intervention in SCZ patients. Multivariate pattern analyses methods thus have 
the potential to use neuroanatomical biomarkers to predict functional response to 
therapeutic interventions at the individual level (26,27).  
 
However, due to the heterogeneous response to ABCT, we did not find a significant 
difference in GAF between baseline and post-training at the group level, and thus 
used a median split of GAF score of 45 which significantly differentiated SCZ with 
high versus low functioning both at baseline and after the CT intervention. Although 
at a group level, we did not find a significant difference in GAF at post-training 
compared to baseline, this proved to be a strength rather than a limitation of the 
machine learning classifier as our findings revealed that it was still sensitive to subtle 
changes in GAF that allowed the classifier to accurately predict which individuals 
showed gains in individual functional responses after the ABCT compared to 
baseline.  
 
Two prior studies have shown that, at the group level, SCZ patients with higher GM 
volumes at baseline showed a stronger response to cognitive training (1,12),  GM 
volumes have also been shown to increase in response to cognitive training 
interventions (13). However, group-level analyses cannot take into account the 
substantial individual neuroanatomical heterogeneity that occurs at the individual 
level in SCZ (28). The goal of precision-medicine is to select and adapt therapeutic 
approaches based on each patient’s individual neural and clinical characteristics 
(29,30). In order to take into account individual neuroanatomical heterogeneity at 
baseline and reliably validate the origin of the predictive information, we replaced 
patients’ GAF scores at post ABCT with their baseline scores and repeated the sMRI 
GM analysis. Strikingly, we were not able to find significant GM patterns that 
successfully discriminated patients with lower from higher functioning at baseline. 
Moreover, the decision values of the discriminative GM signature for lower vs. higher 
functioning were not associated with baseline functioning levels. These results 
indicate that the prediction of functional response to CT was not confounded by 
baseline functioning.  
 
Accurate discrimination of participants with higher functioning after the CT 
intervention (GAF scores of ≥45) was specifically shown by GM volume increases in 
superior temporal gyrus (STG), ventral visual form areas, thalamus and 
parahippocampal gyri. Longitudinal studies indicate progressive decreases in STG 
volume after the first psychotic episode, and this neuroanatomical abnormality is 
consistently reported in people with established SCZ (33,34). These results are 
consistent with our prior group-based studies showing the functional importance of 
the STG during ABCT, and its responsiveness to our ABCT interventions (18,22). We 
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have specifically shown increased recruitment of the primary auditory cortex and the 
prefrontal cortex mediating auditory learning after ABCT (22). Additionally, the results 
from our recent study indicate that at baseline, even chronically-ill SCZ suffering from 
hallucinations were able to recruit the visual ventral word form area, which correlated 
with auditory and verbal working memory (9). Our data suggest that an intact GM 
reserve particularly in the STG at baseline drives plasticity to auditory cognitive 
training interventions, and is likely to predict which SCZ patients receive most benefit 
from auditory training interventions.   
 
We have previously shown at a group level, that the intact structure of thalamic-
prefrontal regions was also an important determinant of successful responsivity to 
cognitive training interventions in SCZ (14). Additionally, Ramsay et al showed that 
cognitive training was associated with increased thalamic-prefrontal activity and 
connectivity such that improved recruitment after cognitive training became 
correlated with overall improved cognitive functions (33). Importantly, previous 
studies have shown that the ACC/mPFC plays a critical role in supporting higher-
order cognitive control functions that are important for conflict resolution and reality-
monitoring functions (34–36). We have previously shown that increased recruitment 
of the ACC/mPFC induced by our cognitive training, correlated with successful reality 
monitoring performance that generalized to improved long-term social functioning (9). 
These prior studies support the data in the present study, in which we found 
increased GM volume in the ACC that predicted better functioning after ÁBCT. 
 
Interestingly, we also found that SCZ who showed greater GM volume increases in 
the cerebellum at baseline, also revealed better overall functioning induced by ABCT. 
The cerebellum is important for mediating sensory prediction-errors for updating an 
internal model of implicit learning and action-outcome behaviors that are fundamental 
for improving real-world functioning in schizophrenia(37–39). These data are 
consistent with the neuroplasticity principles of our ABCT intervention, which 
specifically trains SCZ to improve auditory detection, temporal integration, prediction-
error and learning, that have shown to directly contribute to higher-level functioning 
(18,40). In summary, SCZ patients who exhibit relatively increased GM structural 
volumes at baseline in STG, thalamus, ACC and cerebellum, in particular, may 
possess the needed neurological infrastructure to maximally benefit functionally from 
intensive ABCT. Together, our present findings are consistent with these prior meta-
analyses and group-based studies, indicating that the individual predictive value of 
recruitment of regions particularly in the cerebellum, STG and thalamic-prefrontal 
areas are important and critical targets for cognitive training interventions.  
 
It must also be noted that we also found that accurate discrimination of SCZ 
participants with lower functioning (i.e., GAF score of <45) was characterized by GM 
increases in premotor and basal ganglia regions. Aberrant connectivity in the motor 
system and disturbances in motor behavior have been observed in SZ patients with 
lower functioning (41,42). Basal ganglia volume increase (hypothesized to be due to 
striatal hyperdopaminergia) has also been shown in both medicated and 
antipsychotic-naive patients in meta-analytic studies (39) concurrent with motor 
disturbances as a one of the central clinical features of SCZ. 

Some studies have raised the question as to whether GM loss or increase can be 
attributed to cumulative exposure to antipsychotic medications, rather than to 
aberrant neural developmental processes (43). Importantly, the decision values of 
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our SVM analysis that accurately predicted higher functioning in response to the CT 
intervention, showed a significant relationship with medication dosage. Specifically, 
SCZ patients who had a higher medication dosage at baseline as well as lower 
positive symptoms, also had better functioning following the intervention. Taken 
together, these findings suggest that structural features together with medication 
dosage provide useful determinants of individual functional responsiveness to 
cognitive training interventions at the single subject level.  

The main limitation of the present study is that the findings here do not account for 
the heterogeneity associated with additional neurophysiologic, environmental, and 
genetic factors that play a role in the response to ABCT. In order to develop a more 
robust and definitive predictive model, future studies will require: 1) a wide variety of 
behavioral and neurophysiologic data analyzed in a multivariate fashion to develop 
more accurate predictive biomarkers, so that meaningful signals are less likely to be 
lost due to noise from highly variable and heterogeneous metrics (44); 2) larger study 
samples from a wide variety of multisite studies, in order to provide more extensive 
geographical generalizability; 3) participants with a range of illness durations. The 
participants in our study had, on average, been ill for more than 20 years, limiting the 
generalizability of our findings to only older people with chronic illness who are also 
likely to manifest more severe symptoms.  

In conclusion, with our whole-brain MVPA analyses, we have identified a structural 
MRI fingerprint associated with preserved GM volumes within particular regions in 
the STG, thalamus, ACC and cerebellum, that predicted improved functioning 
following an ABCT intervention, and that serves as a model for how to facilitate 
precision clinical therapies for SZ based on imaging data. Future studies should 
investigate if the individuals with greatest GM loss in these regions (who may also 
have the greatest vulnerability for more subsequent and severe psychotic episodes) 
can benefit from enhancements to CT that might include more intensive and 
integrative therapies of combined pharmacotherapy, cognitive training (45) and 
neuromodulation (46). If identified early in young adulthood, cerebellum-temporal-
thalamic-prefrontal GM loss may reflect an important opportunity to provide early and 
intensive interventions to mitigate and reduce the impact of future and more severe 
psychotic episodes on functioning (47,48).  

 
Methods 
 
Participants and Procedure Overview 
 
Two independent samples of SCZ participants who had structural imaging data were 
drawn from two larger clinical trials of that have been previously reported 
(ClinicalTrials.gov Identifier: NCT02105779)(49,50) and (ClinicalTrials.gov 
NCT00312962) (11). As is customary in predictive analytics, the MVPA model was 
constructed from the first set of subjects (the original sample, N=44) and then applied 
to a different set of subjects (the independent sample, N=23) using an out of cross-
validation (OOCV) approach. This process produces an unbiased estimate of the 
method’s predictive accuracy on new individuals rather than merely fitting the current 
study population (51). The study was carried out in accordance with The Declaration 
of Helsinki, and reviewed by the Institutional Review Board at the University of 
California, San Francisco.  
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All SCZ subjects were recruited from community mental health centers and 
outpatient clinics. Inclusion criteria were: Axis I diagnosis of schizophrenia, 
schizoaffective disorder, or psychosis not otherwise specified (NOS) (determined by 
the Structured Clinical Interview for DSM-IV [SCID])(52). All participants provided 
written informed consent and then underwent structural imaging, clinical and 
cognitive assessments at baseline and after the CT intervention.  Participants with 
poor signal-to-noise ratio in their neuroanatomical images were excluded from the 
final analyses for the original (N=5) and IVS (N=1) samples. Three participants from 
the original sample and two participants from the IVS cohort did not complete 
functioning assessments at the follow-up time point. An overview of our procedures 
can be found in Figure 2. Demographic characteristics of the two samples are 
presented in Table 1.  
 

 
Figure 2. Training Design of the Original and Independent Validation Samples. 
The machine learning support vector model reliably predicted GAF≥45 vs. GAF<45 in 
SCZ participants in response to the auditory-based cognitive training (CT) at the 
single subject level in both samples.  
 
 
 
 
Auditory-based CT Intervention 
 
The design of our neuroscience-informed computerized CT intervention is based on 
3 decades of research into known mechanisms of neural plasticity, which have been 
shown to increase neuronal activity, synaptic connectivity and neuronal fiber integrity 
(53,54). In particular, research has documented the neural plasticity of cortical 
responses as an individual acquires new perceptual and cognitive abilities (55). A 
rich body of work shows that improved functioning after our cognitive training 
regimens specifically results from neuroplasticity (defined as neural structural and 
functional changes induced by the CT intervention). Complete details of the ABCT 
exercises can be found here (http://www.positscience.com/our-products/brain-fitness-
program). Briefly, in the original sample performed auditory exercises for 1 hr a day 

CT
40%hrs%/%8%wks

CT
50%hrs%/%10%wks

Original%
Sample

Independent%
Sample

Baseline:
Clinical%Assessments

Post%Training:
Clinical%Assessments

n=36 n=20
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for a total of 40 hours of training and the IVS sample performed 50 hours of training 
over the course of ~10 weeks. In the exercises, patients were driven to make 
progressively more accurate discriminations and temporal integration about the 
spectro-temporal fine-structure of auditory stimuli under conditions of increasing 
working memory load under progressively briefer presentations, and to incorporate 
and generalize those improvements into working memory rehearsal and decision-
making. The auditory exercises were continuously adaptive:  they first established 
the precise parameters within each stimulus set required for an individual subject to 
maintain 80% correct performance, and once that threshold was determined, task 
difficulty increased systematically and parametrically as performance improved(20).  

Clinical and Functional Outcome Assessments 

The Structured Clinical Interview for DSM-IV Axis I Disorders (56) was administered 
at baseline to all participants. In both the original GM machine learning and the IVS 
samples, Global Assessment of Functioning (GAF) Scale of the DSM-IV (57), and 
Quality of Life Scale (58) were used to assess functioning and the Positive and 
Negative Syndrome Scale (PANSS)(59) was used to assess severity of clinical 
symptoms at baseline and after the CT intervention. Functional assessments such as 
the Global Assessment of Functioning (GAF) quantify how much a person's symptoms 
affect his or her real-world day-to-day life on a scale of 0 to 100.   

 
Machine Learning Strategy 

Following our aims, we employed a nested cross-validated machine learning pipeline 
to evaluate the sensitivity of GM volumetric features at baseline to predict GAF 
functional response to cognitive training at a single subject level, using a median split 
strategy with the machine learning analyses delineated below (24,25). 

Determining Median Split 

GAF scores were used to determine labels of lower vs. higher functioning after CT by 
setting a median split as a cut-off. GAF ≥45 determined selection criteria for patients 
with higher functioning (n=18) whereas GAF<45 determined selection criteria for 
patients with lower functioning (n=18).  In our OOCV analysis, the median split cut-off 
was identical, with 10 patients with lower and 10 with higher functioning in the IVS. 
The rationale for determining a GAF score of 45 as a cut-off to split higher functioning 
SCZ patient from lower functioning SCZ patients was based on several factors: 1) At 
baseline, SCZ subjects with GAF<45 had significantly lower functioning from 
GAF>45; 2) SCZ subjects with GAF>45 after auditory CT showed significant 
improvement in GAF scores from baseline; and 3) In our chronic SCZ sample, a GAF 
score of 45 represents moderate impairment in functioning, and was also the most 
representative level of functioning that the chronic SCZ patient population experience 
(e.g. range of GAF scores in the chronic SCZ patients was from 29-67 in the original 
sample and 23-70 in the OOCV sample). 

 

Machine Learning Analysis Pipeline 
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The in-house machine learning platform NeuroMiner, version 1.0 (25) was used to 
set up a machine learning analysis pipeline in which the individual classification 
ability (‘higher’ SCZ functioning-‘lower’ SCZ functioning); obtaining GM volume was 
performed for the prediction target GAF. To strictly separate the training process from 
the evaluation of the predictor's generalization capacity and prevent the leakage of 
information and overfitting, the pipeline was completely embedded into a nested 
cross-validation framework (nCV) (31) with a 10-by-5 cross-validation (CV) structure 
for both inner (CV1) and outer (CV2) cycles. Only the inner CV1 training cycle was 
used for the implementation of the preprocessing steps (e.g. scaling, hyperparameter 
optimization) which does not occur again on the outer cycle (CV2), but CV2 serves 
exclusively the purpose to measure the models’ generalizability to new, unseen data. 
This procedure was applied to each fold for each permutation combination 
independently.  

This analysis chain was applied to the outer CV cycle determining the patients’ 
classification of higher vs. lower functioning through majority voting determining 
balance accuracy (BAC) of the Support Vector Machine (SVM) model. Statistical 
significance of individual classifiers was assessed through permutation testing, with 
α=0.05 and 1000 permutations. Further information on this approach can found in in 
Koutsouleris et al.(60). 

Statistical analysis 

Sociodemographic differences between groups were examined using analysis of 
variance (ANOVA) for parametric data, and by χ2 test for non-parametric data, as 
implemented in Jamovi for Windows (0.9.5.12). Furthermore, potential interactions 
between subjects SVM functioning decision scores and their (1) GAF levels at 
baseline, (2) antipsychotic medication doses (in chlorpromazine equivalents), and (3) 
clinical symptoms at baseline and follow-up were assessed by means of correlational 
analysis (Pearson’s r). Significance was defined at P < 0.05.  
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Table 1. Demographic and clinical data (baseline and post-training CT) for SCZ participants in Original and Independent Validation 
Samples, separated by their GAF score median split at the post-training timepoint. YoE = years of education, CPZ = chlorpromazine 
equivalent; GAF = Global Assessment of Functioning; QLS = Quality of Life Scale, PANSS = Positive and Negative Syndrome Scale 

 

Original Sample 
(training time=40 h) 

Independent Validation Sample (IVS) 
(training time=50 h) 

ORIG vs. IVS  
for GAF<45 

IVS vs.ORIG 
 for GAF≥45 

  

GAF<45 
(N=18) 

GAF≥45 
(N=18) 

 
t/ χ2 

 
p GAF<45  

(N=10) 
  GAF≥45   

(N=10) 

t/ χ2 
t/ χ2 
 

p 
 
t/ χ2 
 

     p 
 
t/ χ2 

 
p 

age 47.06(9.10) 47.(8.99) 0.05 0.95 38.45(13.19) 41.0(11.84) -0.45 0.65 -2.08 0.05 -1.52 0.14 

sexa female=14 female=14 0.00 1.00 female=2 female=3 0.60 0.44 9.80 0.02 5.08 0.02 

YoE 13.39(1.69) 13.22(1.86) 0.28 0.78 12.82 (2.04) 13.67 (3.12) -0.73 0.47 -0.81 0.42 0.46 0.64 

IQ 103.56(11.28) 100.82(12.30) 0.68 0.49                

CPZb 
 

265.5(129.40) 
 

299.2(212.49)   
0.92 

 
398.71(354.95) 

 
290.06(188.2) 

 
0.82 

 
0.42      

0.45 
 

0.64 

Illness Duration 
 

26.2(15.4) 
 

26.8(10.1) 
 

0.15 
 

0.87 
 

20.4(14.4) 
 
19.3(11.1) 

 
0.18 

 
0.86 

 
-0.9         

 
0.34 

 
0.98 

 
0.33 

GM volume 
 

645 (66.)6 
 

602.8(63.9) 
 

343.35 
 

0.06 
 

656(84.0) 
 
674(65.1) 

 
-0.53 

 
0.60 

 
0.372 

 
0.71 

 
2.71 

 
0.01 

Training 
Intensity 

 
3.35(1.23) 

 
3.81(1.82) 

 
-0.89 

 
0.37 

 
n.a 

 
n.a.            

Clinical 
Baseline                   

PANSS 
Positive  16.56(5.26) 15.28 (5.83) 0.69 0.49 21.09(6.07) 19.56(6.41) 0.54 0.59 2.12 0.04 1.74 0.09 

PANSS 
Negative 16.67 (5.10) 15.94 (6.11) 0.38 0.70 21.91 (6.37) 16.11(6.11) 2.06 0.05 2.44 0.02 0.06 0.95 

PANSS 
General 35 (7.51) 30.61(9.11) 1.57 0.12 41.82(8.26)    36.0(4.2) 1.24 0.23 2.28 0.03 1.27 0.21 

PANSS Total 68.22(13.61) 61.83(17.22)  0.22      84.82(16.4) 71.67(22.87) 1.49 0.15 2.94 0.00 1.27 0.21 

GAF 42.94(6.24) 48.78(8.78) -2.29 0.02 43.4(10.66) 49.57(12.25) -1.10 0.28 0.14 0.88 0.18 0.85 

QLS  2.89(1.07) 3.10(1.00) -0.61 0.54 2.74(1.03) 3.57(1.01) -1.79 0.09 0.33 0.71 1.14 0.26 
 
Clinical Post 
Training 

                   

PANSS 
Positive  17.33(4.50) 13.50(3.33) 3.70 0.00  19.36(4.31) 17.78(5.56) 0.71 4.82 1.19 0.24 3.12 0.00 

PANSS 
Negative 

 
16(4.74) 

 
14.06(5.59) 

 
1.12 

 
0.26 

 
  23.36(5.46) 

 
15.00(7.48) 

 
2.88 

 
0.01 3.83 0.00 0.37 0.71 

PANSS 
General 

 
34.61 (7.88) 

 
28.11(7.50) 

 
2.53 

 
0.02 

 
43.36 (10.97) 

 
37.89(11.95) 

 
1.07 

 
0.3 2.49 0.01 2.61 0.00 

PANSS Total 
 

67.94(13.40) 
 

54.91(13.99) 
 

2.92 
 

0.00 
 

86.09 (14.64) 
 
70.67(23.58) 

 
1.79 

 
0.09 3.41 0.00 2.23 0.03 

GAF 
 

40.2.(3.08) 
 

51.9(6.30) 
 

-7.06 
 

0.00 
 

37.36 (7.29 
 
56.56(7.37) 

 
-5.82 

 
0.00 

 
-1.47 

 
0.15 

 
1.71 

 
0.09 

QLS  
 

3.0(1.10) 
 

3.28(1.06) 
 

-0.76 
 

0.44 
  

3.01(0.79) 
 
3.94(1.05) 

  
-2.24 

 
0.04 

  
 0.14 

 
0.97 

 
1.5 

 
0.15 
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