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ABSTRACT 

In animals, piRNAs, siRNAs, and miRNAs silence transposons, fight viral infections, 

and regulate gene expression. piRNA biogenesis concludes with 3′ terminal trimming 

and 2′-O-methylation. Both trimming and methylation influence piRNA stability. Here, 

we report that trimming and methylation protect mouse piRNAs from different decay 

mechanisms. In the absence of 2′-O-methylation, mouse piRNAs with extensive 

complementarity to long RNAs become unstable. In flies, 2′-O-methylation similarly 

protects both piRNAs and siRNAs from complementarity-dependent destabilization. 

Animal miRNAs are unmethylated, and complementarity-dependent destabilization 

helps explain differences in miRNA decay rates in both mice and flies. In contrast, 

trimming protects mouse piRNAs from a separate degradation pathway unaffected by 

target complementarity but sensitive to the 3′ terminal, untrimmed sequence. Because 

distinct sets of mouse piRNAs are protected by each of these mechanisms, loss of 

both trimming and 2′-O-methylation causes the piRNA pathway to collapse, 

demonstrating that these two small RNA modifications collaborate to stabilize piRNAs. 
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Highlights 

• 2′-O-methylation protects mouse and fly piRNAs from complementarity-dependent 

decay 

• 2′-O-methylation protects fly siRNAs with extensive complementarity to long RNAs 

• Complementarity to long RNAs predicts the half-life of fly and mouse miRNAs 

• Mouse pre-piRNA decay reflects both pre-piRNA sequence and PIWI protein 

identity 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.08.287979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287979


INTRODUCTION 

In animals, three classes of small silencing RNAs direct Argonaute proteins to target 

RNAs. MicroRNAs (miRNAs) regulate host mRNAs (Bartel, 2018). Small interfering 

RNAs (siRNAs) target host, transposon and viral transcripts (Carthew and Sontheimer, 

2009). PIWI-interacting RNAs (piRNAs) defend the genome against transposable 

elements and, in some animals, also regulate gene expression or fight viral infection 

(Huang et al., 2017; Czech et al., 2018; Yamashiro and Siomi, 2018; Ozata et al., 2019). 

Although their sequences, lengths and genomic origins vary, piRNAs guide members 

of the PIWI clade of Argonaute proteins (PIWI proteins) in nearly all animals, including 

sponges, cnidarians, arthropods, nematodes and chordates (Aravin et al., 2006; Girard 

et al., 2006; Lau et al., 2006; Vagin et al., 2006; Grivna et al., 2006; Saito et al., 2006; 

Houwing et al., 2007; Grimson et al., 2008; Das et al., 2008; Batista et al., 2008; Juliano 

et al., 2014; Lim et al., 2014; Lewis et al., 2018). 

Unlike miRNA and siRNA biogenesis, piRNA production begins with long single-

stranded, not double-stranded, RNA (Vagin et al., 2006). piRNA precursors are 

transcribed by RNA polymerase II from dedicated genomic loci called piRNA clusters 

(Brennecke et al., 2007; Aravin et al., 2006; Girard et al., 2006; Li et al., 2013; Fu et al., 

2018; Özata et al., 2020). PIWI proteins guided by pre-existing piRNAs cleave these 

precursors, creating 5′ monophosphorylated pre-pre-piRNAs on which piRNA 

biogenesis initiates (Wang et al., 2014; Han et al., 2015; Gainetdinov et al., 2018). The 

5′ monophosphate is required to load the pre-pre-piRNA into a PIWI protein, a process 

believed to occur in a structure called nuage (Kawaoka et al., 2011; Cora et al., 2014; 

Wang et al., 2014; Mohn et al., 2015; Han et al., 2015; Matsumoto et al., 2016; 

Yamaguchi et al., 2020). After relocalization of the PIWI-bound pre-pre-piRNA to the 

outer mitochondrial membrane, the endonuclease PLD6 (Zucchini in Drosophila 

melanogaster) cleaves the pre-pre-piRNAs 3′ to the footprint of the PIWI protein, 

releasing a PIWI-bound pre-piRNA and a new 5′ monophosphorylated pre-pre-piRNA 
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that can bind yet another PIWI protein (Haase et al., 2010; Ipsaro et al., 2012; 

Nishimasu et al., 2012; Han et al., 2015; Mohn et al., 2015; Homolka et al., 2015; 

Gainetdinov et al., 2018; Ge et al., 2019; Munafò et al., 2019; Ishizu et al., 2019; Izumi 

et al., 2020). Successive cycles of pre-pre-piRNA binding by PIWI proteins and 

cleavage by PLD6 convert the original piRNA precursor transcript into phased, tail-to-

head strings of pre-piRNAs. 

In the penultimate step in piRNA biogenesis, the 3′-to-5′ exoribonuclease 

PNLDC1 in Mus musculus, Trimmer in most arthropods, or PARN1 in Caenorhabditis 

elegans establishes the mature length of the piRNA, which reflects the footprint of the 

specific PIWI protein to which the piRNA is bound (Tang et al., 2016; Izumi et al., 2016; 

Zhang et al., 2017; Ding et al., 2017; Nishimura et al., 2018; Gainetdinov et al., 2018). 

(In flies and likely other members of the Brachycera suborder of Diptera, the miRNA-

trimming endoribonuclease, Nibbler, takes the place of PNLDC1 to trim a subset of 

piRNAs; Feltzin et al., 2015; Wang et al., 2016; Hayashi et al., 2016; Han et al., 2011; 

Liu et al., 2011). piRNA biogenesis concludes when the S-adenosylmethionine-

dependent methyltransferase HENMT1 in mice, Hen1 in arthropods, and HENN1 in 

worms modifies the 2′ hydroxyl at the 3′ end of the piRNA (Saito et al., 2007; Horwich 

et al., 2007; Kirino and Mourelatos, 2007; Kamminga et al., 2010; Montgomery et al., 

2012; Billi et al., 2012; Kamminga et al., 2012; Lim et al., 2015; Svendsen et al., 2019). 

Pnldc1−/− mutant mice accumulate untrimmed pre-piRNAs bound to PIWI proteins 

(Ding et al., 2017; Zhang et al., 2017; Nishimura et al., 2018; Gainetdinov et al., 2018). 

The abundance of these piRNA intermediates is 50–70% lower than in wild-type 

(Gainetdinov et al., 2018). Conversely, Henmt1−/− mutant males trim their piRNAs but 

cannot methylate their 3′ termini. Failure to methylate piRNAs halves the abundance of 

unmethylated piRNAs (Lim et al., 2015). The molecular defects in these mutants 

suggest that both trimming and 2′-O-methylation play a role in stabilizing piRNAs. 
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Dicer enzymes set the mature length of animal miRNAs and siRNAs, and they 

are typically stable without further modification (Bartel, 2018). However, most 

arthropod siRNAs are 2′-O-methylated (Pélisson et al., 2007; Lewis et al., 2018; Fu et 

al., 2018); in flies, siRNAs are unstable in the absence of 2′-O-methylation (Ameres et 

al., 2010). 

Here, we report that 3′ terminal 2′-O-methylation and 3′-to-5′ trimming protect 

mouse piRNAs against distinct degradation mechanisms. In the absence of 2′-O-

methylation, piRNAs with extensive complementarity to long RNAs are destroyed. We 

provide evidence that 2′-O-methylation similarly blocks complementarity-dependent 

destabilization for both piRNAs and siRNAs in flies. Complementarity-dependent 

destabilization also helps explain differences in decay rates among miRNAs in both 

mouse and fly cell lines. In contrast, long complementary RNAs do not destabilize 

untrimmed mouse pre-piRNAs. Instead, both PIWI protein identity and the presence of 

oligouridine or oligoguanine tracts in the untrimmed sequence of a pre-piRNA correlate 

with instability. In Pnldc1em1/em1; Henmt1em1/em1 double-mutant males, which can neither 

trim nor methylate piRNAs, the piRNA pathway collapses. Our data demonstrate that 

piRNA trimming and methylation collaborate to stabilize piRNAs: the double-mutant 

mice make sixfold fewer piRNAs, and spermatogenesis arrests at the pachytene stage 

of meiosis. The reduction in piRNA abundance derepresses both mRNA and 

transposon transcript targets. We propose that by decreasing the degradation rate of 

piRNAs, methylation and trimming maintain the high steady-state abundance that 

piRNAs require to repress their RNA targets. 
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RESULTS 

2′-O-methylation Inhibits Complementarity-Dependent Destabilization of Mouse 

piRNAs 

miRNAs with extensively complementary targets are unstable—a phenomenon termed 

Target RNA-Directed miRNA Degradation (TDMD; Cazalla et al., 2010; Ameres et al., 

2010; Baccarini et al., 2011; Libri et al., 2012; Marcinowski et al., 2012; Rüegger and 

Großhans, 2012; Lee et al., 2013; de la Mata et al., 2015; Bitetti et al., 2018; Kleaveland 

et al., 2018; Ghini et al., 2018; Sheu-Gruttadauria et al., 2019a; Zhang et al., 2019). In 

most animals, miRNAs bear a 2′-hydroxyl at their 3′ terminus. In D. melanogaster, the 

subset of miRNAs loaded into the siRNA-guided protein Ago2 are 2′-O-methylated, 

and this modification protects Ago2-bound miRNAs against TDMD (Ameres et al., 

2010). miRNAs in the sea anemone Nematostella vectensis often target transcripts 

through near-perfect complementarity (Moran et al., 2014). All N. vectensis miRNAs are 

2′-O-methylated to some extent, and depletion of the N. vectensis homolog of the 

methyltransferase HENMT1 reduces miRNA stability (Moran et al., 2014; Modepalli et 

al., 2018). 

Does 2′-O-methylation also protect mouse piRNAs from a degradation 

mechanism dependent on extensive complementarity to long RNAs? We generated a 

mouse mutant lacking functional HENMT1 protein, Henmt1em1Pdz/em1Pdz (henceforth, 

Henmt1em1/em1). piRNAs in Henmt1em1/em1 mice lack 2′-O-methylation at their 3′ termini, 

and the abundance of most piRNAs decreases, albeit to varying extents, ranging from 

0 to 100% of C57BL/6 levels (Figure S1A). If complementarity-dependent 

destabilization explains piRNA degradation in the absence of 2′-O-methylation, 

unstable piRNAs are expected to have more abundant and higher affinity 

complementary sites in the transcriptome than stable piRNAs. 
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We sequenced long transcripts from FACS-sorted mouse germ cells, and, for 

each piRNA, calculated the cumulative concentration of all sites with 5 to 11 

contiguously complementary nucleotides present in the transcriptome, 

[complementary sites]total (Figure 1A). RNA duplexes shorter than 5 nt are not expected 

to be stable (Duchesne, 1973); 11 nucleotides was the longest stretch for which the 

majority of piRNAs contained at least one complementary site in the transcriptome. We 

iteratively determined the [complementary sites]total for stretches of complementarity 

starting at each piRNA nucleotide from g2 to g25 (Figure 1A). Using the equilibrium 

assumption allows calculation of the fraction of each piRNA region bound to its 

complementary sites (see STAR Methods): 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑏𝑜𝑢𝑛𝑑, 𝑓 = 	
𝐾! × [complementary	sites]"#$$

1 + 𝐾! × [complementary	sites]"#$$
	. 

We used two approximations to compare fraction bound (𝑓) among piRNAs. 

First, we presumed that the rank order of [complementary sites]free for different piRNAs 

can be approximated by the rank order of [complementary sites]total for those piRNAs. 

Second, because the binding affinity of different regions of a piRNA bound to a PIWI 

protein remains unknown, we used the predicted Gibbs free energy (∆G0) of base 

pairing between two RNA strands at 33°C (Kandeel and Swerdloff, 1988) to estimate 

the rank order of affinities of different piRNA regions for complementary sites (Krel 

=	𝑒∆&!/()). The fraction of an individual piRNA species bound to complementary sites 

can therefore be approximated as: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑏𝑜𝑢𝑛𝑑	~	 $"∆$
!/&'×[,-./01.123456	89318]()(*+

;	<	$"∆$!/&'×[,-./01.123456	89318]()(*+
 . 

For each nucleotide of each piRNA, we estimated the fraction bound accounting for 

the contribution of 5–11 nt stretches of complementarity starting at the same 

nucleotide: e.g., the fraction bound for g4 includes sites complementary to piRNA 

nucleotides g4–g8, g4–g9, g4–g10, g4–g11, g4–g12, g4–g13, and g4–g14 (Figure 1A). 
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For complementarity sites starting at g2, g9, and g13, the median fraction bound 

was ≥ 0.9 for unstable piRNAs, those whose steady-state abundance in Henmt1em1/em1 

was reduced to ≤ 20% of C57BL/6 levels (Figures 1B and 1C). In contrast, the median 

fraction bound was ≤ 0.3 for stable piRNAs, those whose steady-state abundance 

remained ≥ 80% of C57BL/6 levels (Figures 1B and 1C). Thus, the predicted fraction 

bound was higher for unstable piRNAs compared to stable piRNAs for sites 

complementary to piRNA seed, central, and 3′ regions (Figures 1B, 1C, S1B and S1C): 

e.g., in primary spermatocytes, for complementary sites starting at nucleotide g2, the 

difference in median fraction bound between unstable and stable piRNAs was ~0.9 

(95% confidence interval [CI]: 0.87–0.92; all CIs calculated by bootstrapping; Figure 

1B). These analyses suggest that piRNAs with extensively complementary sites in the 

transcriptome are more likely to be degraded in the absence of 2′-O-methylation. 

Pairing to the seed region (g2–g7) of a miRNA is required to trigger TDMD 

(Cazalla et al., 2010; Ameres et al., 2010; Sheu-Gruttadauria et al., 2019a). In contrast, 

seed complementarity was not needed to trigger complementarity-dependent 

destabilization of mouse piRNAs: complementary sites starting at piRNA position g13 

were as effective in promoting complementarity-dependent destabilization as sites 

bearing complementarity to both the seed (g2–g7) and a region of extensive 

complementarity beginning at g13. For both site types, the estimated fraction of a 

piRNA bound to its complementary sites was 10–100 times greater for unstable 

piRNAs compared to stable piRNAs (Figures 1B and S1D). That is, complementary 

sites starting at position g13 promoted piRNA loss, and targets combining such sites 

with seed complementarity caused no additional destabilization. Together, these data 

suggest that complementarity-dependent piRNA destabilization in the absence of 2′-

O-methylation does not require pairing to the piRNA seed sequence. 

Unmethylated piRNAs were most unstable when the 3′ terminal nucleotides of a 

piRNA were not paired to the complementary long RNA. We examined contiguous 
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matches of different lengths and, for each length, identified the base pairing pattern 

associated with the largest difference in the fraction bound between stable and 

unstable piRNAs (Figure S2A). For all contiguous stretches of complementarity, the 

base pairing pattern that best explained piRNA instability did not extend beyond 

position g24 (Figure S2A). Because most mouse piRNAs are ≥ 26 nt long, we conclude 

that an unmethylated piRNA is most unstable when its 3′ terminal nucleotides are 

unpaired. Perhaps unpaired terminal nucleotides allow endo- or 3′-to-5′ exo-

ribonucleases to access the piRNA. 

Sufficiently efficient, piRNA-directed, PIWI-catalyzed target cleavage might 

protect an unmethylated piRNA from complementarity-dependent destabilization. Our 

data suggest that target cleavage is not protective. Extensive pairing between a long 

RNA and a piRNA starting at nucleotide g2 destabilizes the piRNA in the absence of 2′-

O-methylation (Figures 1B, 1C, S1B, and S1C). Such a pattern of pairing is expected to 

permit target cleavage (Reuter et al., 2011; Zhang et al., 2015; Goh et al., 2015; Wu et 

al., 2020). To identify piRNAs that direct target RNA cleavage, we sequenced long 5′ 

monophosphorylated RNA from C57BL/6 primary spermatocytes, and identified 

candidate piRNA-directed 3′ cleavage products: long 5′ monophosphorylated RNAs 

predicted to be produced by PIWI-catalyzed cleavage directed by pairing to piRNA 

nucleotides g2–g14 (Reuter et al., 2011; Wang et al., 2014; Zhang et al., 2015; Goh et 

al., 2015), i.e., 5′ monophosphorylated RNAs whose first nine nucleotides plus four 

nucleotides immediately 5′ to the cleavage site are fully complementary to piRNA 

nucleotides g2–g14 (Figure S2B). piRNAs with and without detectable 3′ cleavage 

products were similarly unstable: the median unmethylated piRNA abundance was 

~45% of C57BL/6 levels for piRNAs with 3′ cleavage products compared to ~48% of 

C57BL/6 levels for piRNAs with no detectable 3′ cleavage products (Figure S2B). Thus, 

target cleavage has little impact on complementarity-dependent piRNA destabilization, 

likely because the concentration of sites whose extent of complementarity is sufficient 
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to elicit complementarity-dependent destabilization but not to direct target cleavage is 

much greater than the concentration of sites that can both induce destabilization and 

be cleaved. We conclude that, in the mouse testis, 3′ terminal 2′-O-methylation 

protects piRNAs from degradation elicited by complementary long RNAs. 

2′-O-methylation Inhibits Complementarity-Dependent Destabilization of Fly 

piRNAs 

Does 2′-O-methylation protect piRNAs from complementarity-dependent 

destabilization in other animals? We sequenced small and long RNAs from the ovaries 

of control (w1118) and hen1f00810 mutant D. melanogaster (Horwich et al., 2007): the 

majority of unmethylated piRNAs in hen1f00810 fly ovaries were ≤ 20% of control (Figures 

S3A). Using the equilibrium approach we developed for mouse piRNAs (Figure 1A), we 

estimated the fraction of each fly piRNA bound to contiguously complementary sites in 

the transcriptome at 25°C. As in mice, the fraction of unstable piRNAs bound to 

complementary long RNAs was greater than that of stable piRNAs: e.g., for 

complementary sites starting at piRNA nucleotide g14, the difference in the median of 

the predicted fraction bound between unstable and stable piRNAs was ~0.74 (95% CI: 

0.11–0.82; Figure 2A). In contrast to mouse piRNAs for which complementarity-

dependent destabilization was triggered by long RNAs complementary to any region of 

piRNA (Figures 1B, 1C, S1B and S1C), fly piRNAs were destabilized by transcripts with 

extensive complementarity to either the central or 3′ regions of the piRNA: i.e., 

complementary sites beginning at nucleotides g9–g16 (Figures 2A and S3B). 

Like unmethylated piRNAs in mice, unmethylated fly piRNAs did not require 

pairing with the seed sequence to become unstable when bound to a complementary 

long RNA: e.g., for complementary sites starting at piRNA nucleotide g14 the estimated 

fraction bound was ~10 times higher for unstable piRNAs compared to stable piRNAs 
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both when only 3′ region was required to pair (Figure S3B) and when both seed and 3′ 

region pairing were required (Figure S3C).	

We conclude that, as in mice, 3′ terminal 2′-O-methylation in flies protects 

piRNAs from complementarity-dependent destabilization. Unlike mice, whose 

unmethylated piRNAs are destabilized by long RNAs with a sufficiently long stretch of 

complementarity to any part of the piRNA, fly piRNAs are destabilized only by 

complementarity to the central or 3′ regions. 

2′-O-methylation Protects Fly siRNAs from Complementarity-Dependent 

Destabilization 

The 3′ termini of siRNAs are 2′-O-methylated in most insect orders, including 

Hymenoptera, Coleoptera, and Diptera, but not Lepidoptera (Pélisson et al., 2007; 

Lewis et al., 2018; Fu et al., 2018). In flies, siRNAs derive from long hairpin RNAs 

encoded in the genome, double-stranded RNAs from viral replication intermediates, 

transposon transcripts, or convergent transcription (Wang et al., 2006; Galiana-Arnoux 

et al., 2006; Czech et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura 

et al., 2008b; Okamura et al., 2008a; Lau et al., 2009). Fly siRNAs therefore target 

transposon, viral, and endogenous transcripts via extensive or complete 

complementarity and are expected to be subject to complementarity-dependent 

destabilization when unmethylated. Indeed, endo-siRNA abundance declines in 

hen1f00810 mutant flies (Ameres et al., 2010). 

To determine if complementarity-dependent destabilization can explain the 

instability of unmethylated siRNAs, we used an eye-specific Gal4 driver, P(longGMR-

GAL4)3, to promote transcription of the transgene P(UAS-GFP.dsRNA.R)142, which 

produces a 1,440-nt inverted-repeat RNA corresponding to the entire GFP coding 

sequence and measured the abundance of GFP siRNAs in control (w1118) and hen1f00810 

mutant flies. The abundance of siRNAs derived from the GFP inverted repeat transcript 
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was halved in hen1f00810 heads (Figure S3D). As we observed for piRNAs in mice and 

flies, the abundance of some GFP-siRNAs was unaltered by loss of 3′ terminal 2′-O-

methylation, while other GFP-siRNAs became unstable (Figure 2B). 

We used the equilibrium approach (Figure 1A) to estimate the fraction of each 

siRNA bound to various contiguously complementary sites in long RNAs. The majority 

of the predicted fraction bound data clustered near ~1, primarily due to the high 

predicted binding energies of GFP-derived siRNAs at 25°C (Figure S3E; GC content of 

GFP sequence is ~62% compared to ~43% for the fly transcriptome). Our approach to 

estimating the fraction bound assumes that the rank order of the affinities of piRNA-

bound PIWI proteins for long RNAs can be approximated by the rank order of the 

computationally predicted affinities of two naked RNA strands. We therefore assessed 

the difference in fraction bound between stable and unstable siRNAs by standardizing 

the fraction bound estimates, i.e., calculating their Z-scores. We divided siRNAs by 

quintile of their fraction remaining in mutants (siRNA abundance in w1118; hen1f00810 

divided by siRNA abundance in w1118; +). The Z-score of each estimate of fraction 

bound for unstable siRNAs (≤ 20% of w1118; +) was then calculated against the 

background, the median fraction bound for the four other bins (Figure 2B). Consistent 

with the idea that extensive pairing to long RNAs destabilizes unmethylated siRNAs, 

the medians of Z-scores were >1.96 (i.e., p < 0.05) for contiguous pairing to the siRNA 

seed, central, or 3′ regions (complementary sites starting at nucleotides g2–g5, g10, 

and g15–g17; Figure 2B). We conclude that both piRNAs and siRNAs are protected 

from complementarity-dependent destabilization by 3′ terminal 2′-O-methylation in 

flies and likely other arthropods. 
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Complementarity-Dependent Destabilization Contributes to Differences in miRNA 

Decay Rates 

Global measurements of small RNA half-lives show that individual miRNA species in 

the same cell turnover at different rates (Kingston and Bartel, 2019; Reichholf et al., 

2019). In TDMD, extensively complementary targets elicit miRNA destruction (Cazalla 

et al., 2010; Ameres et al., 2010; Xie et al., 2012; Baccarini et al., 2011; Libri et al., 

2012; Marcinowski et al., 2012; Rüegger and Großhans, 2012; Lee et al., 2013; de la 

Mata et al., 2015; Bitetti et al., 2018; Kleaveland et al., 2018; Ghini et al., 2018; Sheu-

Gruttadauria et al., 2019a). Do miRNAs that were not documented as TDMD targets 

but bear abundant complementary sites in the transcriptome also show faster turnover 

rates? 

We used recently reported measurements of fly (Reichholf et al., 2019) and 

mouse miRNA decay rates (Kingston and Bartel, 2019) to identify highly stable and 

unstable miRNA species. Again, we used the equilibrium approach to estimate the 

fraction of stable and unstable miRNAs predicted to bind contiguously complementary 

sites of various types in the transcriptome (Figure 1A). Supporting the idea that 

complementarity-dependent destabilization increases miRNA turnover rate, the fraction 

of miRNA bound to complementary sites was greater for unstable than stable miRNAs. 

In Drosophila S2 cells, mouse embryonic stem cells and contact-inhibited mouse 

embryonic fibroblasts, pairing of long RNAs to the miRNA central or 3′ regions best 

explained difference in miRNA turnover rates (Figures 3, 4, and S4). 

For fly S2 cells, the decay rates of Ago1-bound miRNAs were best explained by 

contiguous pairing between a long RNA and a miRNA starting at positions g11–g16: 

e.g., for complementary sites starting at nucleotide g11, the difference in median 

fraction bound between miRNAs with half-lives < 10 hours and miRNAs with half-lives 

> 20 hours was ~0.69 (95% CI: 0.06–0.96; Figures 3 and S4A). For mouse embryonic 
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stem cells, contiguous pairing beginning at positions g7–g13 best explained the 

difference between stable and unstable miRNAs: e.g., for complementary sites starting 

at miRNA nucleotide g10, the difference in median fraction bound between unstable 

(half-life < 10 hours) and stable (half-life > 20 hours) miRNAs was ~0.58 (95% CI: 0.15–

0.89; Figures 4A and S4B). For contact-inhibited mouse embryonic fibroblasts, 

contiguous pairing starting at positions g7–g11 best explained miRNA decay: e.g., for 

complementary sites starting at miRNA nucleotide g8 the difference in median fraction 

bound between miRNAs with half-lives < 10 hours and miRNAs with half-lives > 40 

hours was ~0.9 (95% CI: 0.35–0.99; Figures 4B and S4C). We did not find evidence for 

complementarity-dependent destabilization in dividing mouse embryonic fibroblasts 

(Figure S4D). The differences between animals and cell types may reflect the identity of 

the Argonaute protein partner of miRNAs or other, yet-to-be-discovered determinants 

of miRNA stability. 

TDMD is triggered by targets that are complementary to both the miRNA seed 

and miRNA 3′ region but not to ≥ 1 miRNA central nucleotides (Sheu-Gruttadauria et 

al., 2019a). Our data show that, for mice, complementarity-dependent destabilization 

of miRNAs is elicited by long RNAs contiguously complementary to the miRNA central 

region (Figures 4A and 4B). For both flies and mice, we also find that, in many cases, 

complementarity only to the miRNA 3′ region in the absence of a seed match explains 

differences in miRNA turnover rates whereas pairing to the same 3′ region plus the 

seed does not: those also containing a seed match as well as contiguous 

complementarity to miRNA 3′ regions had essentially equivalent differences in fraction 

bound between stable and unstable miRNAs (Figures 3, 4, S4E, S4F, and S4G; 

permitting a ≤ 10 nt insertion in the target opposite the central region of miRNA; Sheu-

Gruttadauria et al., 2019b; Becker et al., 2019). 
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Taken together, these data suggest that miRNAs are also subject to 

complementarity-dependent destabilization and that abundant, high-affinity 

complementary sites in the transcriptome reduce miRNA half-lives. 

Pre-piRNA Trimming and 2′-O-methylation Protect Mouse piRNAs From Different 

Degradation Mechanisms 

In mice, both piRNA 2′-O-methylation by HENMT1 and pre-piRNA trimming by 

PNLDC1 protect piRNAs from degradation (Figure S5A; Lim et al., 2015; Ding et al., 

2017; Gainetdinov et al., 2018). Do methylation and trimming protect piRNAs from the 

same or different degradation mechanisms? Untrimmed pre-piRNAs in 

Pnldc1em1Nkn/em1Nkn mice are 2′-O-methylated (Nishimura et al., 2018), suggesting that a 

pathway insensitive to 2′-O-methylation degrades pre-piRNAs in the absence of 

trimming. If different degradation mechanisms act on unmethylated piRNAs and 

untrimmed pre-piRNAs, then the abundance of the same unmethylated but trimmed 

piRNA in a Henmt1 mutant and untrimmed but 2′-O-methylated pre-piRNA in a Pnldc1 

mutant are predicted to be uncorrelated. We compared the decrease in abundance of 

unmethylated piRNAs and the corresponding untrimmed pre-piRNAs by identifying 

piRNAs in Henmt1em1/em1 and pre-piRNAs in Pnldc1em1Pdz/em1Pdz (henceforth, Pnldc1em1/em1; 

Gainetdinov et al., 2018) that began with the same 24-nt sequence (i.e., 5′ prefix). 

Consistent with the prediction, the decrease of piRNAs in Henmt1em1/em1 and of pre-

piRNAs in Pnldc1em1/em1 were poorly correlated (Pearson’s r = 0.25 and R2 = 0.06 for 

spermatogonia; Pearson’s r = 0.14 and R2 = 0.02 for primary spermatocytes; Figure 

5A). Instead, overlapping but distinct subsets of piRNAs or pre-piRNAs were lost in 

each mutant, suggesting that 2′-O-methylation and trimming protect piRNAs from 

different degradation mechanisms. 

In theory, if the rate of 2′-O-methylation were much slower than the rate of 

destruction of unmethylated, untrimmed pre-piRNAs, then degradation of untrimmed 
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pre-piRNAs could still be explained by complementarity-dependent destabilization. 

The hypothesis predicts that, like unmethylated piRNAs, unstable, untrimmed pre-

piRNAs should have highly abundant, high-affinity complementary sites in the 

transcriptome. We estimated the fraction of stable (≥ 80% of C57BL/6) and unstable (≤ 

20% of C57BL/6) pre-piRNAs bound to complementary sites in transcriptome. 

Contrary to the prediction, the difference in the median fraction bound for unstable and 

stable untrimmed pre-piRNAs in Pnldc1em1/em1 (Figures S5B, S5C, S5D, and S5E) was 

smaller than the corresponding difference for unstable and stable unmethylated 

piRNAs in Henmt1em1/em1 (Figures 1B, 1C, S1B, and S1C): e.g., in primary 

spermatocytes for complementarity starting at position g2, the difference in median 

fraction bound between unstable and stable pre-piRNAs was ~0.21 (95% CI: 0.11–

0.21; Figure S5B) vs. ~0.9 between unstable and stable unmethylated piRNAs (95% CI: 

0.87–0.92; Figure 1B). Moreover, in primary spermatocytes, pre-piRNAs were more 

stable when they had highly abundant, high-affinity complementary sites starting at 

nucleotides g13 to g19 (Figure S5B): for complementarity starting at position g15, the 

median fraction bound was higher for stable compared to unstable pre-piRNAs 

(median difference = 0.28; 95% CI: 0.21–0.35; Figure S5B). Thus, the instability of 

untrimmed pre-piRNAs is unlikely to be driven by complementarity to sequences within 

long RNAs. We conclude that untrimmed pre-piRNAs and unmethylated piRNAs are 

degraded by distinct mechanisms. 

Determinants Triggering Degradation of Untrimmed Mouse Pre-piRNAs 

Unlike unmethylated piRNAs, the instability of untrimmed pre-piRNAs best correlated 

with both the identity of the PIWI protein to which the pre-piRNA was bound and the 

presence of oligoguanine or oligouridine tracts in the pre-piRNA sequence. We sought 

to compare the stability of untrimmed pre-piRNAs bound to MILI to those bound to 

MIWI. PIWI proteins and other Argonautes are typically unstable without a small RNA 
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guide (Haase et al., 2010; Zamparini et al., 2011; Derrien et al., 2012; Martinez and 

Gregory, 2013; Martinez et al., 2013; Smibert et al., 2013; Kobayashi et al., 2019). 

Because piRNA biogenesis requires binding of PIWI protein to the 5′ end of a pre-pre-

piRNA, all pre-piRNAs and piRNAs are anticipated to be bound by PIWI proteins 

(Gainetdinov et al., 2018). We therefore used the change in the abundance of MIWI and 

MILI (Figures S6A and S6B) to infer the change in abundance of MIWI- and MILI-bound 

pre-piRNAs in Pnldc1em1/em1 and piRNAs in Henmt1em1/em1 males. In Pnldc1em1/em1 primary 

spermatocytes, MIWI abundance was ~30% of C57BL/6, whereas MILI level was 

~80% of C57BL/6 (Gainetdinov et al., 2018). In contrast, in Henmt1em1/em1 primary 

spermatocytes, the abundance of MIWI and MILI declined by similar extents (~70% of 

C57BL/6 for MIWI and ~80% for MILI; Figure S6B). We conclude that pre-piRNAs 

bound to MIWI are less stable than those bound to MILI. 

Pre-piRNAs bound to MIWI are, on average, ~3 nt longer than their MILI-bound 

counterparts (Ding et al., 2017; Gainetdinov et al., 2018). Irrespective of the PIWI 

protein to which they are bound, long pre-piRNAs might be inherently unstable. Our 

analyses do not support this hypothesis: for MIWI-bound pre-piRNAs, length was not 

correlated with instability in Pnldc1em1/em1 primary spermatocytes (Spearman’s r = 0.01; 

Figure S6C, left). Similarly, the instability of pre-piRNAs bound to MILI in Pnldc1em1/em1 

primary spermatocytes did not correlate with the length of the pre-piRNAs bound to 

MILI (Spearman’s r = −0.08; Figure S6C, right). We conclude that PIWI protein partner 

identity, not pre-piRNA length, determines the instability of untrimmed pre-piRNAs. 

In addition to PIWI protein identity, the rate of degradation of untrimmed pre-

piRNAs also reflected the sequence of the guide RNA itself. In control C57BL/6 primary 

spermatocytes, the majority of piRNAs bound to MILI are prefixes of piRNA sequences 

bound to MIWI. Similarly, in Pnldc1em1/em1 primary spermatocytes, the majority of MILI- 

and MIWI-bound pre-piRNAs share the same 5′ prefix. The stability of such pairs of 

MILI- and MIWI-bound untrimmed pre-piRNAs was moderately correlated (Pearson’s r 
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= 0.65, R2 = 0.42), consistent with a pre-piRNA stability in part reflecting pre-piRNA 

sequence (Figure S6D). Neither positional mononucleotide (Figure S6E) nor the 

strength of predicted secondary structures within a pre-piRNA sequence correlated 

with untrimmed pre-piRNA instability (Spearman’s r = 0.08; Figure S6F). In contrast, 

untrimmed pre-piRNA instability correlated with the presence of oligouridine or 

oligoguanine tracts in the section of pre-piRNA that is removed by trimming (Figure 

S6G). We observed enrichment of oligouridine or oligoguanine tracts in unstable pre-

piRNAs in primary spermatocytes, which express both MILI and MIWI, but not in 

spermatogonia, which contain only MILI (Figure S6H). These data suggest that some 

RNA decay machinery recognizes the combination of distal oligouridine or 

oligoguanine sequences and MIWI itself. 

Tailing and 3′-to-5′ Shortening of Untrimmed pre-piRNAs and Unmethylated 

piRNAs in Mice 

Our analyses suggest that 3′-to-5′ shortening of mature, trimmed piRNAs and 3′ 

addition of non-templated nucleotides (tailing) to piRNAs or pre-piRNAs play a limited 

role in the destruction of untrimmed or unmethylated piRNAs. Most unmethylated 

piRNAs show increased tailing and 3′-to-5′ shortening (Kamminga et al., 2010; Lim et 

al., 2015; Svendsen et al., 2019; Figures S6I and S6J) irrespective of their stability: 

unstable unmethylated piRNAs were no more likely to be tailed or shortened than their 

stable unmethylated brethren (Figures S6J, S6K, and S6L). In Pnldc1em1/em1 primary 

spermatocytes, tailing of untrimmed pre-piRNAs increased for some but decreased for 

other species and was not correlated with pre-piRNA instability (Figures S6I, S6K, and 

S6L). We note that we cannot exclude the possibility that destruction of unmethylated 

or untrimmed piRNAs requires tailing or 3′-to-5′ shortening, but the rates of such 

terminal modifications are not rate-determining for piRNA destruction. 
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Decreased piRNA Abundance in Henmt1em1/em1 and Pnldc1em1/em1 Mouse 

Spermatocytes Results in Reduced Cleavage of Target mRNAs 

Previous studies suggest that pachytene piRNAs regulate their targets by an siRNA-

like cleavage mechanism (Reuter et al., 2011; Zhang et al., 2015; Goh et al., 2015; Wu 

et al., 2020). Consistent with this model, our data show that cleavage is reduced for 

mRNAs whose slicing is directed by unstable, unmethylated piRNAs or unstable, 

untrimmed pre-piRNAs in Henmt1em1/em1 and Pnldc1em1/em1 mouse primary 

spermatocytes. 

We sequenced 5′ monophosphorylated long RNAs to identify candidate 3′ 

cleavage products of piRNA-guided slicing (Figure 5B). To restrict the candidates to 

high-confidence cleavage sites, we required piRNA nucleotides g2–g14 to pair with the 

site of complementarity such that the cleavage occurred between target nucleotides 

t10 and t11 (Reuter et al., 2011; Wang et al., 2014; Zhang et al., 2015; Goh et al., 2015; 

Wu et al., 2020)). We then classified the putative 3′ cleavage products by the stability 

of the piRNAs in Henmt1em1/em1 or pre-piRNAs Pnldc1em1/em1 predicted to generate them. 

We find that in Henmt1em1/em1 primary spermatocytes, the abundance of 3′ cleavage 

products produced by unstable piRNAs decreased more than those produced by 

stable piRNAs (two-tailed KS test, p = 0.0002; Figure 5B). Similarly, in Pnldc1em1/em1 

primary spermatocytes, the abundance of 3′ cleavage products generated by unstable 

pre-piRNAs decreased more than those generated by stable pre-piRNAs (two-tailed 

KS test, p = 0.00004; Figure 5B). 

For both Henmt1em1/em1 and Pnldc1em1/em1 mutants, piRNA-directed, 3′ cleavage 

products mapped to both mRNAs and solitary transposon and repeat insertions (Figure 

5B). Many cleavage sites in mRNAs corresponded to transposon- or repeat-derived 

sequences (Figure 5B). In fact, the decrease in 3′ cleavage product abundance in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.08.287979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287979


Henmt1em1/em1 and Pnldc1em1/em1 mutants was greater for these sites than for 3′ cleavage 

sites mapping to unique portions of mRNAs (Figure 5B). 

The majority of repeat-derived cleavage sites were in microsatellite repeats and 

muroid-specific SINE transposons (Figure 5B). Transposon subfamily age has been 

estimated using the relative extent to which one transposon subfamily has integrated 

into another (Giordano et al., 2007). Using this information, we find that ~85% of LINE- 

and LTR transposon-derived cleavage products mapped to evolutionarily older 

subfamilies of these transposon classes (16 of 19 LINE and 21 of 25 LTR transposons). 

Yet both evolutionarily younger and older subfamilies of LINE and LTR elements were 

derepressed in Henmt1em1/em1 and Pnldc1em1/em1 primary spermatocytes (Table S1, 

Figures S7A and S7B; Giordano et al., 2007). 

In Henmt1em1/em1, the decreased abundance of individual unmethylated piRNAs 

explained the increased steady-state level of 15 mRNAs. We note that the decrease in 

unmethylated piRNA abundance was first detected in primary spermatocytes, but 

increased target RNA abundance lagged and was often observed only in secondary 

spermatocytes or round spermatids (Table S2). This phenomenon was observed 

previously for mice mutant for a piRNA-producing locus on chromosome 6 (Wu et al., 

2020). 

The reduction in abundance of untrimmed pre-piRNAs in Pnldc1em1/em1 primary 

spermatocytes similarly explained the increase of steady-state levels of 26 mRNAs 

observed in Pnldc1em1/em1 mutant primary spermatocytes, secondary spermatocytes, or 

round spermatids (Table S2). The cleavage sites in many of these mRNAs map to 

transposon- or repeat-derived sequences. Consistent with the finding that different 

subsets of piRNAs are unstable in Henmt1em1/em1 and Pnldc1em1/em1animals, just three 

mRNAs targeted by unstable piRNAs or pre-piRNAs were common to the two mutants 

(Table S2). 
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The Mouse piRNA Pathway Collapses in the Absence of Both Trimming and 2′-O-

Methylation 

Single mutant Henmt1em1/em1 and Pnldc1em1/em1 spermatogonia exhibited a ~2–3-fold 

decline in piRNA abundance (Figures 6A and 6B). Trimming and 2′-O-methylation 

protect overlapping but distinct sets of piRNAs (Figure 5A), so removing both PNLDC1 

and HENMT1 should cause a greater decrease in piRNA abundance. Consistent with 

the prediction, the piRNA pathway collapsed in the spermatogonia of Henmt1em1/em1; 

Pnldc1em1/em1 double mutants: piRNA abundance decreased ~sixfold (Figures 6A and 

6B). Consistent with the larger loss of piRNAs, double mutant spermatogonia displayed 

a more severe phenotype than Henmt1em1/em1 or Pnldc1em1/em1 mice: germ cells in double 

mutants developed no further than the pachytene stage of meiosis, whereas the single 

mutants arrest after concluding meiosis (Figures 6C, 6D, and 6E). 

Unlike in Henmt1em1/em1 or Pnldc1em1/em1 single mutant spermatogonia, steady-

state abundance of transposon mRNAs increased in Henmt1em1/em1; Pnldc1em1/em1 

spermatogonia (~2-fold for L1-A, padj = 10–8; ~1.7-fold for L1-Gf, padj = 0.045; ~3.6-fold 

for IAPEY4, padj = 2 × 10–8; Figure S7C, Table S1). piRNAs bound to MIWI2 direct DNA 

methylation of transposons in the fetal testis (Aravin et al., 2008; Kuramochi-Miyagawa 

et al., 2008). We used targeted bisulfite sequencing to measure the extent of DNA 

methylation of evolutionarily younger LINE subfamilies L1-Gf and L1-A, and IAP LTR 

elements. Two pairs of primers specific to thousands of L1-Gf and L1-A genomic 

copies and a primer pair specific to a single copy of IAP LTR element (Kojima-Kita et 

al., 2016; Nishimura et al., 2018) were used to amplify bisulfite treated DNA. In both 

C57BL/6 and Henmt1em1/em1; Pnldc1em1/em1 spermatogonia, the median level of CpG 

methylation was ≥ 80% (Figure S7D), suggesting that transposon derepression in the 

double mutants reflects impaired post-transcriptional silencing. 
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Our data suggest that, in the double mutant, pre-piRNAs are degraded both by 

complementarity-dependent destabilization acting on their unmethylated 3′ termini and 

by a pathway specifically targeting untrimmed pre-piRNAs. The decreased abundance 

of untrimmed, unmethylated pre-piRNAs in double mutant spermatogonia did not 

correlate strongly with the decrease of unmethylated piRNAs in Henmt1em1/em1 

(Pearson’s r = 0.33, R2 = 0.11; Figure 7A, right) or the decrease in untrimmed pre-

piRNAs in Pnldc1em1/em1 single mutant spermatogonia (Pearson’s r = 0.63, R2 = 0.40; 

Figure 7A, center). These data suggest that unmethylated, untrimmed pre-piRNAs with 

abundant, high-affinity complementary sites in transcriptome are unstable. 

To test this prediction, we compared the fraction of stable (≥ 80% of C57BL/6 

levels) and unstable (≤ 20% of C57BL/6 levels) pre-piRNAs bound to complementary 

sites in Henmt1em1/em1; Pnldc1em1/em1 double mutant spermatogonia. Consistent with 

complementarity-dependent degradation of unmethylated pre-piRNAs in 

Henmt1em1/em1; Pnldc1em1/em1 spermatogonia, the fraction bound to long RNAs was 

higher for unstable compared to stable pre-piRNAs: e.g., for complementary sites 

starting at nucleotide g2, the difference in the median fraction between stable and 

unstable pre-piRNAs was ~0.62 (95% CI: 0.56–0.68; Figures S7E and S7F). 

We also find evidence for a third degradation pathway destroying untrimmed, 

unmethylated pre-piRNAs in Henmt1em1/em1; Pnldc1em1/em1 double mutants. If piRNA 

degradation in double mutants reflects the joint action of only two degradation 

pathways, piRNAs that are stable in both Henmt1em1/em1and Pnldc1em1/em1 single mutants 

should be stable in the double mutants. Yet of the ~220 piRNAs that were stable in 

both Henmt1em1/em1 and Pnldc1em1/em1 single mutants, just half remained stable in the 

Henmt1em1/em1; Pnldc1em1/em1 double mutants (Figure 7A). These data suggest that 

untrimmed, unmethylated pre-piRNAs in Henmt1em1/em1; Pnldc1em1/em1 are degraded by a 

pathway that can act on neither trimmed, unmethylated piRNAs in Henmt1em1/em1 nor 

untrimmed, methylated pre-piRNAs in Pnldc1em1/em1 (Figure 7B). 
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DISCUSSION 

The data presented here show that 3′-to-5′ trimming by PNLDC1 and 2′-O-methylation 

by HENMT1 protect mouse piRNAs from two separate degradation mechanisms, and 

in the absence of both maturation steps, untrimmed, unmethylated pre-piRNAs are 

destabilized by the two destruction pathways as well as an additional third mechanism 

that cannot act on trimmed but unmethylated piRNAs or untrimmed but methylated 

pre-piRNAs (Figure 7B). 

In mice, 2′-O-methylation protects piRNAs from decay triggered by binding to 

extensively complementary RNAs. In mammals, the testis has a highly complex 

transcriptome, with as many as ~27,300 distinct mRNAs and lncRNAs (for comparison, 

liver tissues express ~16,500 different transcripts; Soumillon et al., 2013). 

Consequently mouse piRNAs have a greater probability of encountering a 

complementary target than small RNAs in the soma. 

Complementarity-dependent destabilization of piRNAs is conserved in animals 

as evolutionarily distant as mice and flies, whose last common ancestor existed ~800 

million years ago (Kumar et al., 2017). For piRNAs in mice and flies, complementarity to 

different regions of the guide trigger destabilization. We speculate that this distinction 

may be partly attributed to the different PIWI protein partners of piRNAs. In flies, 2′-O-

methylation also protects siRNAs from complementarity-dependent destabilization. 

Our data, together with studies in Cnidaria, Ciliophora, and plants (Park et al., 2002; 

Chen et al., 2002; Yu et al., 2005; Li et al., 2005; Kurth and Mochizuki, 2009), suggest 

an ancestral function of 2′-O-methylation in protecting small silencing RNAs from 

complementarity-dependent destabilization. 

If 2′-O-methylation protects piRNAs and siRNAs from nucleases, the protection 

mechanism is unlikely to be explained by the two-to-six-fold greater affinity of the PAZ 

domain of PIWI proteins to a 2′-O-methylated compared to an unmethylated guide 
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(Tian, 2011; Simon et al., 2011). To the contrary: we propose that the need to protect 

piRNAs by 3′ terminal 2′-O-methylation put pressure on PIWI proteins to 

accommodate the 2′-O-methyl moiety in their PAZ domain. This hypothesis predicts 

that in a mouse expressing a PIWI protein with a mutated PAZ domain, piRNA stability 

should not be impacted. 

miRNAs are not 2′-O-methylated in most animals and were likely under 

evolutionary pressure to avoid extensive pairing with transcripts (Ameres et al., 2010). 

Supporting this view, we show that miRNAs are subject to complementarity-dependent 

destabilization, and that miRNA decay rates are, in part, determined by the abundance 

and affinity of their complementary sites. Unlike TDMD (Sheu-Gruttadauria et al., 

2019a), complementarity-dependent destabilization of mouse miRNAs can be triggered 

by long RNAs bearing contiguous pairing to the miRNA central region and that 

complementarity-dependent destabilization of mouse and fly miRNAs can be elicited 

by contiguous pairing to the miRNA 3′ region in the absence of seed pairing. The exact 

molecular mechanism of complementarity-dependent destabilization and whether 

TDMD and complementarity-dependent destabilization of small RNAs are overlapping 

or distinct molecular pathways remains to be assessed (De et al., 2013; Park et al., 

2017; Kleaveland et al., 2018; Sheu-Gruttadauria et al., 2019a). 

The susceptibility of untrimmed pre-piRNAs to degradation does not depend on 

complementarity to long RNAs, but is determined by both loading into MIWI rather than 

MILI and the presence of oligouridine or oligoguanine tracts in the trimmed portion of 

the pre-piRNA. Pre-piRNA trimming by PNLDC1 is also required for stabilizing mature 

piRNAs in silkmoth (Izumi et al., 2016; Izumi et al., 2020). PNLDC1 is present in most 

animals, except fish and dipteran insects, whose pre-piRNAs are just a few nucleotides 

longer than mature piRNAs (Hayashi et al., 2016; Gainetdinov et al., 2018). Similarly, 

lengthening of miRNAs by viral poly(A) polymerase results in their destabilization 

(Backes et al., 2012), suggesting that, in general, small RNAs are produced at or 
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mature to an optimal length that enhances their stability. In flies, 3′ terminal trimming 

by the 3′-to-5′ exonuclease Nibbler is required for the biogenesis of piRNAs loaded in 

cytoplasmic PIWI proteins (Hayashi et al., 2016). It is not known why worm piRNAs 

(21U-RNAs) are stable when untrimmed (Tang et al., 2016). 

The finding that pre-piRNA trimming and 2′-O-methylation act additively to 

protect different subsets of piRNAs from distinct decay mechanisms offers an 

explanation for the surprisingly mild phenotype—post-meiotic spermatogenic arrest—

of Henmt1em1/em1 and Pnldc1em1/em1single mutants (Lim et al., 2015; Zhang et al., 2017; 

Ding et al., 2017; Nishimura et al., 2018): removing both PNLDC1 and HENMT1 results 

in the collapse of the piRNA pathway and the arrest of spermatogenesis at the onset of 

meiosis as observed for mice deficient for other piRNA biogenesis proteins (Tanaka et 

al., 2000; Kuramochi-Miyagawa et al., 2004; Carmell et al., 2007; Soper et al., 2008; Ma 

et al., 2009; Shoji et al., 2009; Yoshimura et al., 2009; Zheng et al., 2010; Frost et al., 

2010; Huang et al., 2011; Watanabe et al., 2011). By collaborating, 3′-to-5′ trimming 

and 2′-O-methylation maintain the high steady-state abundance required for the piRNA 

pathway to function.  
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MAIN FIGURE TITLES AND LEGENDS 

Figure 1. Mouse piRNA 2′-O-methylation Protects from Destabilization Dependent 

on Complementarity to Long RNAs 

(A) Strategy to estimate the fraction of piRNA bound to complementary sites in long 

RNAs. 

(B) Predicted fraction for different regions of mouse pachytene piRNAs bound to 

complementary sites in the transcriptome for a representative experiment from FACS-

purified Henmt1em1/em1 primary spermatocytes. The 95% confidence interval for the 

effect size of median difference was calculated with 10,000 bootstrapping iterations. 

(C) Analysis of mouse pachytene piRNAs from FACS-purified primary spermatocytes 

showing the median predicted fraction bound for complementarity starting at piRNA 

positions g2–g25 for stable piRNAs (≥ 80% of C57BL/6 levels in Henmt1em1/em1) for 

unstable piRNAs (≤ 20% of C57BL/6 levels in Henmt1em1/em1), as well as the difference 

between the two (i.e., unstable piRNAs − stable piRNAs) for two independent 

experiments (shown in different shades of the same color). The 95% confidence 

interval for the effect size of median difference was calculated with 10,000 

bootstrapping iterations. 

Figure 2. Fly piRNA and siRNA 2′-O-methylation Protects against Destabilization 

Promoted by Complementarity to Long RNAs 

(A) Left, mean (n = 2) predicted fraction for different regions of fly piRNAs bound to 

complementary sites in the transcriptome. Right, the difference (i.e., unstable piRNAs - 

stable piRNAs) between the median predicted fraction bound for complementarity 

starting at piRNA positions g2–g15 for stable (≥ 80% of w1118 levels in hen1f00810) and 

unstable piRNAs (≤ 20% of w1118 levels in hen1f00810). Grey: effect size for patterns of 
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complementarity for which the median predicted fraction bound of adjacent quintiles 

failed to decrease monotonically in the unstable-to-stable direction in Figure S3B. The 

95% confidence interval for the effect size of median difference was calculated with 

10,000 bootstrapping iterations. 

(B) Change in abundance (top) of GFP-derived siRNAs in heads from hen1f00810 flies, 

and Z-scores of predicted fraction of different regions of unstable siRNAs bound to 

complementary sites in the transcriptome.  

Figure 3. Complementarity-Dependent Destabilization Contributes to Differences 

in Fly miRNA Half-lives 

Left, mean (n = 2) predicted fraction of different regions of fly miRNAs bound to 

complementary sites in the transcriptome. Right, the difference (i.e., unstable miRNAs 

- stable miRNAs) between the median predicted fraction bound for complementarity 

starting at miRNA positions g2–g16 for stable (half-lives ≥ 20 hours) and unstable 

miRNAs (half-lives ≤ 10 hours). Grey: effect size for patterns of complementarity for 

which the median predicted fraction bound of adjacent quintiles failed to decrease 

monotonically in the unstable-to-stable direction in Figure S4A. The 95% confidence 

interval for the effect size of median difference was calculated with 10,000 

bootstrapping iterations. 

Figure 4. Complementarity-Dependent Destabilization Contributes to Differences 

in Mouse miRNA Half-lives 

(A, B) Left, mean (n = 2) predicted fraction of different regions of mouse embryonic 

stem cell (A) or contact-inhibited mouse embryonic fibroblast (B) miRNAs bound to 

complementary sites in the transcriptome. Right, the difference (i.e., unstable miRNAs 

- stable miRNAs) between the median predicted fraction bound for complementarity 

starting at miRNA positions g2–g14 for stable (half-lives ≥ 20 hours) and unstable 
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miRNAs (half-lives ≤ 10 hours). Grey: effect size for patterns of complementarity for 

which the median predicted fraction bound of adjacent quintiles failed to decrease 

monotonically in the unstable-to-stable direction in Figures S4B and S4C. The 95% 

confidence interval for the effect size of median difference was calculated with 10,000 

bootstrapping iterations. 

Figure 5. Pre-piRNA Trimming and Methylation Protect Mouse piRNAs From 

Different Degradation Mechanisms 

(A) Mean (n = 2) change in mouse piRNA abundance in Henmt1em1/em1 and Pnldc1em1/em1 

pre-pachytene piRNAs from FACS-purified spermatogonia (left) and pachytene piRNAs 

from FACS-purified primary spermatocytes (right). 

(B) Change in steady-state abundance of 3′ cleavage products explained by 

contiguous pairing with piRNA nucleotides g2–g14. Data are from FACS-purified 

primary spermatocytes from Henmt1em1/em1 and Pnldc1em1/em1 mice. Data are from a 

single representative experiment for piRNAs whose abundance was ≥ 50 molecules 

per C57BL/6 primary spermatocyte and reduced in both Henmt1em1/em1 and 

Pnldc1em1/em1 to ≤ 20% of C57BL/6 levels (unstable piRNAs and pre-piRNAs) and to ≥ 

80% of C57BL/6 levels (stable piRNAs and pre-piRNAs). P values were calculated 

using two-tailed KS test; msat, microsatellite repeats. 

Figure 6. piRNA Pathway Collapses in Henmt1em1/em1; Pnldc1em1/em1 double mutants  

(A) Median (n = 2–4) abundance of mouse pre-pachytene piRNAs in FACS-purified 

spermatogonia (24–33-nt small RNAs for C57BL/6 and Henmt1em1/em1; 24–45-nt small 

RNAs for Pnldc1em1/em1 and Pnldc1em1/em1; Henmt1em1/em1). 
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(B) Mean (n = 2) small RNA length profiles for ≥ 20-nt small RNAs from C57BL/6, 

Henmt1em1/em1, Pnldc1em1/em1 and Henmt1em1/em1; Pnldc1em1/em1 FACS-purified 

spermatogonia. 

(C) Size and median (n = 4–13) weight of testes from 2–4 month-old C57BL/6, 

Henmt1em1/em1, Pnldc1em1/em1 and Henmt1em1/em1; Pnldc1em1/em1 mice. P values calculated 

using Mann–Whitney U test. 

(D) Hematoxylin and eosin staining of sections from 2–4 month-old C57BL/6, 

Henmt1em1/em1, Pnldc1em1/em1and Henmt1em1/em1; Pnldc1em1/em1 testes. 

(E) Germ cell type composition of C57BL/6 and Henmt1em1/em1; Pnldc1em1/em1 testes. 

Each data point corresponds to one animal. 

Figure 7. Three Distinct Pathways Destroy Unmethylated, Untrimmed Pre-piRNAs 

(A) Mean (n = 2) change in piRNA abundance for FACS-purified spermatogonia from 

Henmt1em1/em1 and Pnldc1em1/em1 single mutants and Henmt1em1/em1; Pnldc1em1/em1 double 

mutants. Open circles indicate piRNAs whose abundance in both Henmt1em1/em1 and 

Pnldc1em1/em1 single mutants remained ≥ 80% of C57BL/6 levels. 

(B) A model for how trimming and 2′-O-methylation collaborate to stabilize mouse 

piRNAs. 
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SUPPLEMENTAL FIGURE TITLES AND LEGENDS 

Figure S1. Related to Figure 1 

(A) Mean (n = 2) length profiles of ≥ 20-nt small RNAs from Henmt1+/em1 and 

Henmt1em1/em1 FACS-purified primary spermatocytes. 

(B) Predicted fraction bound to complementary sites in the transcriptome for different 

regions of mouse pre-pachytene piRNAs from FACS-purified Henmt1em1/em1 

spermatogonia. The 95% confidence interval for the effect size of median difference 

was calculated with 10,000 bootstrapping iterations. 

(C) Median predicted fraction bound of spermatogonial pre-pachytene piRNAs for 

complementarity starting at piRNA positions g2–g25 for stable (≥ 80% of C57BL/6 

levels in Henmt1em1/em1) and unstable piRNAs (≤ 20% of C57BL/6 levels in 

Henmt1em1/em1), as well as the difference between the two (i.e., unstable piRNAs − 

stable piRNAs). Two independent experiments are shown in different shades of the 

same color. The 95% confidence interval for the effect size of median difference was 

calculated with 10,000 bootstrapping iterations. 

(D) Predicted fraction of pachytene piRNAs from FACS-purified mouse primary 

spermatocytes bound to sites in the transcriptome bearing g2–g7 seed matches as 

well as complementarity starting at piRNA nucleotide g13. 

Figure S2. Related to Figure 1 

(A) Predicted fraction bound for piRNAs from FACS-purified mouse primary 

spermatocytes for complementarity starting at positions g2–g25 for stable (≥ 80% of 

C57BL/6 levels in Henmt1em1/em1) and unstable piRNAs (≤ 20% of C57BL/6 levels in 

Henmt1em1/em1), as well as the difference between the two (i.e., unstable piRNAs - stable 

piRNAs). Data are shown separately for 5-nt, 6-nt, 7-nt, 8-nt, and 9-nt stretches of 

complementarity. Two independent experiments are shown in different shades of the 
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same color. The 95% confidence interval for the effect size of median difference was 

calculated with 10,000 bootstrapping iterations. 

(B) Change in abundance of piRNAs from Henmt1em1/em1 FACS-purified, mouse primary 

spermatocytes for those piRNAs with and without detectable 3′ cleavage products. P 

value calculated using two-tailed KS test. 

Figure S3. Related to Figure 2 

(A) Change in abundance of Drosophila melanogaster piRNAs between control (w1118) 

and hen1f00810 ovaries. Data represent the mean of two independent experiments. 

(B) Predicted fraction of different regions of fly piRNAs bound to complementary sites 

in the transcriptome. Data are for piRNAs in fly ovaries. Data represent the mean of two 

independent experiments. 

(C) For piRNAs in fly ovaries bearing g2–g7 seed pairing sites, predicted fraction of 

piRNAs bound to complementary sites in the transcriptome starting at piRNA 

nucleotide g14. Data represent the mean of two independent experiments. 

(D) Mean (n = 2) length profiles of GFP-derived siRNAs in control (w1118) and hen1f00810 

flies. 

(E) Fraction of fly siRNAs bound to sites in the transcriptome complementary to 

different siRNA regions. Data are for GFP-derived siRNAs in heads from hen1f00810 flies. 

Figure S4. Related to Figures 3 and 4. 

(A, B, C, D) The fraction of miRNAs bound to sites in the transcriptome complementary 

to different miRNA regions for (A) fly S2 cells, (B) mouse embryonic stem cells, (C) 

contact-inhibited mouse embryonic fibroblasts, and (D) dividing mouse embryonic 

fibroblasts. 
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(E, F, G) The same analysis as in (A)–(D) but for miRNAs also bearing g2–g7 seed 

complementarity to sites in the transcriptome. 

Figure S5. Related to Figure 5. 

(A) Median (n = 3) abundance of piRNAs and pre-piRNAs from FACS-purified mouse 

primary spermatocytes, secondary spermatocytes, and round spermatids. RNA sizes 

used for analysis were: 24–33-nt small RNAs for C57BL/6 and Henmt1em1/em1, and 24–

45-nt small RNAs for Pnldc1em1/em1. 

(B) Predicted fraction of mouse pre-piRNAs bound via different small RNA regions to 

complementary sites in the transcriptome. A representative experiment is shown for 

mouse pachytene pre-piRNAs from FACS-purified Pnldc1em1/em1 primary 

spermatocytes. The 95% confidence interval for the effect size of median difference 

was calculated with 10,000 bootstrapping iterations. 

(C) Analysis of mouse pre-piRNAs from FACS-purified primary spermatocytes showing 

median predicted fraction bound for complementarity starting at pre-piRNA positions 

g2–g25 for stable (≥ 80% of C57BL/6 levels in Pnldc1em1/em1) and unstable pre-piRNAs 

(≤ 20% of C57BL/6 levels in Pnldc1em1/em1), as well as the difference between the two 

(i.e., unstable pre-piRNAs − stable pre-piRNAs). Two independent experiments are 

shown in different shades of the same color. The 95% confidence interval for the effect 

size of median difference was calculated with 10,000 bootstrapping iterations. 

(D) Predicted fraction of mouse pre-piRNAs bound via different small RNA regions to 

complementary sites in the transcriptome. Data are from a representative experiment 

for mouse pre-pachytene pre-piRNAs from FACS-purified spermatogonia. The 95% 

confidence interval for the effect size of median difference was calculated with 10,000 

bootstrapping iterations. 
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(E) Analysis of mouse pre-piRNAs from FACS-purified spermatogonia showing median 

predicted fraction bound for complementarity starting at pre-piRNA positions g2–g25 

for stable (≥ 80% of C57BL/6 levels in Pnldc1em1/em1) and unstable pre-piRNAs (≤ 20% 

of C57BL/6 levels in Pnldc1em1/em1), as well as the difference between the two (i.e., 

unstable pre-piRNAs − stable pre-piRNAs). Two independent experiments are shown 

in different shades of the same color. The 95% confidence interval for the effect size of 

median difference was calculated with 10,000 bootstrapping iterations. 

Figure S6. Related to Figure 5. 

(A) Dynamic range of western-blotting assay using anti-MILI (Abcam #ab36764) and 

anti-MIWI (Abcam Cat# ab12337) antibodies. 

(B) Relative abundance of MILI and MIWI (mean ± SD, n = 3) in C57BL/6 and 

Henmt1em1/em1 animals. FACS-purified cell types: Spg, spermatogonia; SpI, primary 

spermatocytes; SpII, secondary spermatocytes; RS, round spermatids. Each lane 

contains lysate from ~11,000 cells. 

(C) Length and stability of pre-piRNAs from FACS-purified Pnldc1em1/em1 primary 

spermatocytes. 

(D) Change in abundance for MILI- and MIWI-bound pre-piRNAs in FACS-purified 

primary spermatocytes from Pnldc1em1/em1 mice. 

(E) Positional nucleotide bias of pre-piRNAs in FACS-purified Pnldc1em1/em1 primary 

spermatocytes. 

(F) Predicted ∆G° of secondary structure and the change in abundance for pre-piRNAs 

in FACS-purified primary spermatocytes of Pnldc1em1/em1 mice. 

(G) Frequency of 5-mers in pre-piRNA sequences in FACS-purified Pnldc1em1/em1 mouse 

primary spermatocytes. 
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(H) Frequency of 5-mers in pre-piRNA sequences in FACS-purified Pnldc1em1/em1 mouse 

spermatogonia. 

(I) Change in the fraction of piRNAs and pre-piRNAs bearing 3′ terminal non-templated 

nucleotides in FACS-purified Henmt1em1/em1 and Pnldc1em1/em1 primary spermatocytes. 

(J) Stability and change in mean length for piRNAs from FACS-purified Henmt1em1/em1 

primary spermatocytes. 

(K) Stability and fraction bearing 3′ terminal non-templated nucleotides for piRNAs 

from Henmt1em1/em1 and pre-piRNAs from Pnldc1em1/em1 FACS-purified primary 

spermatocytes. 

(L) Stability and change in fraction bearing 3′ terminal non-templated nucleotides for 

piRNAs in Henmt1em1/em1 and pre-piRNAs in Pnldc1em1/em1 FACS-purified primary 

spermatocytes. 

Figure S7. Related to Figure 6.  

(A) Relative abundance of L1 ORF1 protein (L1 ORF1p) in C57BL/6, Miwi—/—, 

Henmt1em1/em1 and Pnldc1em1/em1 animals (mean ± SD; n = 2 for Pnldc1em1/em1; n = 3 for 

Henmt1em1/em1). FACS-purified cell types: Spg, spermatogonia; SpI, primary 

spermatocytes; SpII, secondary spermatocytes; RS, round spermatids. Data were 

normalized to Miwi—/— primary spermatocytes. Representative western blotting images 

used for quantification are shown in (B). 

(B) Relative abundance of L1 ORF1p in FACS-purified male germ cells of C57BL/6, 

Henmt1em1/em1 and Pnldc1em1/em1 mice assessed by Western blotting. Spg, 

spermatogonia; SpI, primary spermatocytes; SpII, secondary spermatocytes; RS, 

round spermatids. Each lane contains lysate from ~27,000 cells. Miwi−/− and Mael−/− 

cells provided positive controls. 
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(C) Relative steady-state abundance of transposon transcripts in spermatogonia from 

Henmt1em1/em1, Pnldc1em1/em1, and Henmt1em1/em1; Pnldc1em1/em1 mice. Adjusted p values 

were corrected for multiple hypothesis testing using the Benjamini-Hochberg 

procedure. 

(D) CpG methylation levels of transposons in spermatogonia of Henmt1em1/em1, 

Pnldc1em1/em1, and Henmt1em1/em1; Pnldc1em1/em1 mice. The number of individual clones is 

shown. 

(E) Predicted fraction of mouse pre-piRNAs bound via different small RNA regions to 

complementary sites in the transcriptome. Data are from a representative experiment 

for mouse pre-pachytene pre-piRNAs from FACS-purified Henmt1em1/em1; Pnldc1em1/em1 

spermatogonia. The 95% confidence interval for the effect size of median difference 

was calculated with 10,000 bootstrapping iterations. 

(F) Analysis of mouse pre-piRNAs from FACS-purified spermatogonia showing median 

predicted fraction bound for complementarity starting at pre-piRNA positions g2–g25 

for stable (≥ 80% of C57BL/6 levels in Henmt1em1/em1; Pnldc1em1/em1) and unstable pre-

piRNAs (≤ 20% of C57BL/6 levels in Henmt1em1/em1; Pnldc1em1/em1), as well as the 

difference between the two (i.e., unstable pre-piRNAs − stable pre-piRNAs). Two 

independent experiments are shown in different shades of the same color. The 95% 

confidence interval for the effect size of median difference was calculated with 10,000 

bootstrapping iterations. 
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SUPPLEMENTAL ITEM TITLES 

Table S1. Transposon Sub-families Derepressed in Spermatogonia of 

Henmt1em1/em1; Pnldc1em1/em1 Mice and in Primary Spermatocytes from 

Henmt1em1/em1 and Pnldc1em1/em1 Mice, Related to Figure 5. 

Table S2. mRNAs whose Derepression in Henmt1em1/em1 and Pnldc1em1/em1 Mice can 

be Explained by the Reduced Cleavage by Destabilized piRNAs, Related to Figure 

5. 

Data are for the intersection of datasets from two biological samples. 

Table S3. Sequences of Synthetic 5′ Monophosphorylated Spike-in RNA 

Oligonucleotides Included in the Mix for Small RNA Sequencing Libraries. 

Table S4. Number of Cells and Amount of Spike-In Mix Used to Prepare Small 

RNA Sequencing Libraries, Related to Figure 1. 

Table S5. Number of Cells and Amount of ERCC Spike-In Mix 1 Used to Prepare 

RNA Sequencing Libraries (A) and List of Libraries of 5′ Monophosphorylated 

Long RNAs (B), Related to Figure 1. 

Table S6. Primers Used for Bisulfite Analysis of DNA Methylation, Related to 

Figure S7. 

Table S7. Data Sets Used in This Study, Related to Figures 2, 3, and 4. 
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STAR METHODS 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to, and 

will be fulfilled by, the Lead Contact, Phillip D. Zamore 

(phillip.zamore@umassmed.edu), or by completing the request form at 

https://www.zamorelab.umassmed.edu/reagents. 

Materials Availability 

Strains generated in this study are available for non-commercial use upon request 

without restriction by request or, where indicated, from the Bloomington Drosophila 

Stock Center (https://bdsc.indiana.edu) or the Jackson Laboratory 

(https://www.jax.org/jax-mice-and-services/find-and-order-jax-mice). 

Data and Code Availability 

Sequencing data are available from the National Center for Biotechnology Information 

Sequence Read Archive using accession number PRJNA660633. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Mouse Strains and Mutants 

Mice (wild-type C57BL/6J, IMSR Cat# JAX:000664, RRID:IMSR_JAX:000664; and 

Pnldc1em1Pdz/em1Pdz mutants, MGI: 6161374) were maintained and sacrificed according to 

the guidelines of the Institutional Animal Care and Use Committee of the University of 

Massachusetts Medical School. 

Guide RNA (sgRNA: 5′-GGC ATC TCC ACA TCC CAG GTC GG-3′) targeting 

exon 4 of Henmt1 to generate Henmt1em1Pdz/em1Pdz (MGI: 6452642) was designed using 

CRISPR design tool (crispr.mit.edu/). sgRNA was transcribed with T7 RNA Polymerase 
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and then purified by electrophoresis on 10% denaturing polyacrylamide gel. As a 

donor to generate Henmt1em1Pdz/em1Pdz single stranded oligonucleotide was ordered from 

IDT. A mix of sgRNA (20 ng/µl), Cas9 mRNA (50 ng/µl, TriLink Biotechnologies, L-7206) 

and 195-nt, single-stranded oligonucleotide (100 ng/µl) donor were injected together 

into the pronucleus of one-cell C57BL/6 zygotes in M2 medium (Sigma, M7167). After 

injection, the zygotes were cultured in KSOM with amino acids at 37°C under 5% CO2 

until the blastocyst stage (3.5 days), which further transferred into uterus of 

pseudopregnant ICR females at 2.5 dpc. 

To screen for mutant founders, genomic DNA extracted from tail tissues was 

analyzed by PCR. Primers used for genotyping Henmt1em1Pdz/em1Pdz are 5′-GTT GCC 

AAC GCT GTA GCC-3′ and 5′-AAT AAG GGC ACC CTG CAC TA-3′. Mutant 

sequences were confirmed by Sanger sequencing. In Henmt1em1Pdz/em1Pdz mutants, 

genomic sequence is altered resulting in changing amino acid residues 54–58 from 

DLGCG to NAVAV, which likely leads to loss of catalytic activity {Kirino and 

Mourelatos, 2007, #68317} and misfolding of the protein: Henmt1 mRNA level in 

Henmt1em1Pdz/em1Pdz is identical to that in C57BL/6 animals; HENMT1 protein level in 

Henmt1em1Pdz/em1Pdz is ~0.04 of that in C57BL/6 animals (data not shown). 

Drosophila melanogaster Strains and Mutants 

Fly stocks were maintained at 25°C. All strains were in the w1118 background. Before 

dissection, flies were isolated 0–3 days after eclosion and given yeast paste for two 

days. Fly ovaries or heads were then dissected and collected in 1× phosphate-buffered 

saline [pH 7.4] (1×PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) 

cooled on ice. Ovaries or heads were washed once with ice-cold 1×PBS and then used 

for subsequent experiments.  
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METHOD DETAILS 

Mouse Phenotypic Analysis 

All potential mutant male mice (2–8 months old) were housed with one 2–4 months old 

C57BL/6J female. The presence of a vaginal plug was examined the following morning 

to confirm insemination. If a plug was observed, the female was separated and 

observed for potential pregnancy. Males mated to females who failed to produce pups 

within 2 months after a vaginal plug was detected were deemed sterile. Presence of 

epididymal sperm, testis weight, and testis histology were also scored. 

Histology. Testes were (1) collected from 2–6 month-old mice; (2) fixed overnight 

in Bouin’s solution; (3) washed three times with 70% (v/v) ethanol then stored in 70% 

ethanol. Tissues were embedded in paraffin and cut into 5 µm cross-sections, then 

stained with hematoxylin and counter stained with eosin (UMass Morphology Core). 

FACS Isolation and Immunostaining of Mouse Germ Cells 

Testes of 2–5 month-old mice were isolated, decapsulated, and incubated for 15 min 

at 33°C in 1× Gey′s Balanced Salt Solution (GBSS, Sigma, G9779) containing 

0.4 mg/ml collagenase type 4 (Worthington LS004188) rotating at 150 rpm. 

Seminiferous tubules were then washed twice with 1× GBSS and incubated for 15 min 

at 33°C in 1× GBSS with 0.5 mg/ml Trypsin and 1 µg/ml DNase I rotating at 150 rpm. 

Next, tubules were homogenized by pipetting through a glass Pasteur pipette for 3 min 

on ice. Fetal bovine serum (FBS; 7.5% f.c., v/v) was added to inactivate trypsin, and 

the cell suspension was then strained through a pre-wetted 70 µm cell strainer and 

cells collected by centrifugation at 300 × g for 10 min. The supernatant was removed, 

cells were resuspended in 1× GBSS containing 5% (v/v) FBS, 1 µg/ml DNase I, and 

5 μg/ml Hoechst 33342 (Thermo Fisher, 62249) and rotated at 150 rpm for 45 min at 

33ºC. Propidium iodide (0.2 μg/ml, f.c.; Thermo Fisher, P3566) was added, and cells 

strained through a single pre-wetted 40 µm cell strainer. Four-way cell sorting 
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(spermatogonia, primary spermatocytes, secondary spermatocytes, round spermatids; 

File S1) using a FACSAria II Cell Sorter (BD Biosciences; UMass Medical School FACS 

Core) was performed as described {Bastos et al., 2005, #41953} with modifications. 

Briefly, the 355-nm laser was used to excite Hoechst 33342; the 488-nm laser was 

used to excite Propidium iodide and record forward (FSC) and side (SSC) scatter. 

Propidium iodide emission was detected using a 610/20 bandpass filter (YG PE-Texas 

Red-A in File S1). Hoechst 33342 emission was recorded using 450/50 (UV-B Blue 

DAPI-A in File S1) and 670/50 (UV-A Red Side Pop-A in File S1) band pass filters. 

Germ cell stages in the unsorted population and the purity of sorted fractions 

were assessed by immunostaining aliquots of cells. Cells were incubated for 20 min in 

25 mM sucrose and then fixed on a slide with 1% (w/v) paraformaldehyde containing 

0.15% (v/v) Triton X-100 for 2 h at room temperature in a humidifying chamber. Slides 

were washed sequentially for 10 min in: (1) 1× PBS containing 0.4% (v/v) Photo-Flo 

200 (Kodak, 1464510); (2) 1× PBS containing 0.1% (v/v) Triton X-100; and (3) 1× PBS 

containing 0.3% (w/v) BSA, 1% (v/v) donkey serum (Sigma, D9663), and 0.05% (v/v) 

Triton X-100. After washing, slides were incubated with primary antibodies in 1× PBS 

containing 3% (w/v) BSA, 10% (v/v) donkey serum, and 0.5% (v/v) Triton X-100 

overnight at room temperature in a humidified chamber. Rabbit polyclonal anti-SYCP3 

(Abcam Cat# ab15093, RRID:AB_301639, 1:1000 dilution) and mouse monoclonal anti-

gH2AX (Millipore Cat# 05-636, RRID:AB_309864, 1:1000 dilution) were used as primary 

antibodies. Slides were washed again as described and then incubated with secondary 

donkey anti-mouse IgG (H+L) Alexa Fluor 594 (Thermo Fisher Scientific Cat# A-21203, 

RRID:AB_2535789, 1:2000 dilution) or donkey anti-rabbit IgG (H+L) Alexa Fluor 488 

(Thermo Fisher Scientific Cat# A-21206, RRID:AB_2535792, 1:2000 dilution) antibodies 

for 1 h in at room temperature in a humidified chamber. After incubation, slides were 

washed three times (10 min each) in 1× PBS containing 0.4% (v/v) Photo-Flo 200 and 

once for 10 min in 0.4% (v/v) Photo-Flo 200. Finally, slides were dried, mounted with 
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ProLong Gold Antifade Mountant with DAPI (Thermo Fisher, P36931). To assess the 

purity of sorted fractions, 50–100 cells were staged by DNA, gH2AX, and SYCP3 

staining {Bastos et al., 2005, #41953}. All samples met these criteria: 

Spermatogonia, ~95–100% pure with ≤5% pre-leptotene spermatocytes; 

Primary spermatocytes, ~10–15% leptotene/zygotene spermatocytes, 

~45–50% pachytene spermatocytes, ~35–40% diplotene spermatocytes; 

Secondary spermatocytes, ~100%; 

Round spermatids, ~95–100%, ≤5% elongated spermatids. 

Western Blotting 

Cells were homogenized in Lysis Buffer (20 mM Tris-HCl pH 7.5, 2.5 mM MgCl2, 

200 mM NaCl, 0.05% (v/v) NP-40, 0.1 mM EDTA, 1 mM 4-(2-Aminoethyl) 

benzenesulfonyl fluoride hydrochloride, 0.3 µM Aprotinin, 40 µM Bestatin, 10 µM E-64, 

10 µM Leupeptin) and centrifuged at 20,000 × g for 20 min at 4°C. The supernatant 

was moved to a new tube, an equal volume of loading dye (120 mM Tris-HCl, pH 6.8, 

4% (w/v) SDS, 20% (v/v) glycerol, 2.5% (v/v) 2-Mercaptoethanol, 0.2% (w/v) 

bromophenol blue) was added, and the sample incubated at 90°C for 5 min and 

resolved by electrophoresis through a 4–20% gradient polyacrylamide/SDS gel (Bio-

Rad Laboratories, 5671085). Next, proteins were transferred to PVDF (Millipore, 

IPVH00010), the membrane blocked in Blocking Buffer (Rockland Immunochemicals, 

MB-070) at room temperature for 2 h and then incubated overnight at 4°C in Blocking 

Buffer containing primary antibody (anti-mouse PIWIL2/MILI, Abcam Cat# ab36764, 

RRID:AB_777284, 1:1000 dilution; anti-PIWIL1/MIWI, Abcam Cat# ab12337, 

RRID:AB_470241, 1:1000 dilution; anti-mouse LINE-1 ORF1p rabbit polyclonal, 

1:10000 dilution (generous gift of Alex Bortvin; {*Martin, 1991, #45866; Soper et al., 

2008, #89272}). The membrane was washed three times (30 min each) with Blocking 
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Buffer at room temperature and incubated for 2 h at room temperature with donkey 

anti-rabbit IRDye 680RD secondary antibody (LI-COR Biosciences Cat# 926-68073, 

RRID:AB_1095444, diluted 1:20,000) in Blocking Buffer. Then the membrane was 

washed three times (30 min each) with Blocking Buffer at room temperature and the 

signal detected using an Odyssey Infrared Imaging System. In our assays, anti-MILI 

and anti-MIWI assesses the abundance of MILI and MIWI across a broad dynamic 

range: 1% to 120% of the level in C57BL/6 primary spermatocytes (Figure S6A). 

Small RNA Immunoprecipitation 

Sorted mouse germ cells were homogenized with Lysis Buffer (see Western Blotting) 

and then centrifuged at 20,000 × g for 20 min at 4°C, retaining the supernatant. Anti-

MIWI (Wako, Cat# 017-23451, RRID:AB_2721829, ~5 µg) or anti-MILI (Abcam Cat# 

ab36764, RRID:AB_777284, ~5 µg) antibodies were incubated with rotation with 30 µl 

of Protein G Dynabeads (Thermo Fisher, 10003D) in 1× PBS containing 0.02% (v/v) 

Tween 20 (PBST) at 4°C for 1 h. The bead-antibody complex was washed with PBST. 

Freshly prepared testis or cell lysate was added to the bead-antibody complex and 

incubated with rotation at 4°C overnight. The next day, the beads were washed once 

with lysis buffer and three times with 0.1 M trisodium citrate. After washing, RNA was 

extracted with Trizol reagent (Thermo Fisher, 15596026) and used for small RNA library 

preparation. 

Small RNA-seq Library Preparation 

Total RNA from sorted mouse germ cells was extracted using the mirVana miRNA 

isolation kit (Thermo Fisher, AM1560). Small RNA libraries were constructed as 

described {Gainetdinov et al., 2018, #64592} with several modifications. Briefly, before 

library preparation, a mix of nine synthetic RNA oligonucleotides (Table S3) was added 

to each RNA sample to enable absolute quantification of small RNAs (Table S4; median 

cell volume from {*Gainetdinov et al., 2018, #64592} was used to calculate intracellular 
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concentrations). To reduce ligation bias and eliminate PCR duplicates, 3′ and 

5′ adaptors each contained nine random nucleotides at their 5′ and 3′ ends, 

respectively {Fu et al., 2018, #88843}; 3′ adaptor ligation reactions contained 20% 

(w/v) PEG-8000 (f.c.). After 3′ adaptor ligation, RNA was purified by 15% urea 

polyacrylamide gel electrophoresis (PAGE), selecting for 15–55 nt small RNAs (i.e., 50–

90 nt with 3′ adaptor). Small RNA-seq libraries for 2–4 biological samples were 

sequenced together using a NextSeq 500 (Illumina) to obtain 75 nt, single-end reads. 

Data sets of MILI- and MIWI-bound piRNAs in C57BL/6 and Pnldc1em1Pdz/em1Pdz are from 

{*Gainetdinov et al., 2018, #64592}. 

RNA-seq Library Preparation 

Total RNA from sorted germ cells was extracted using the mirVana miRNA isolation kit 

(Thermo Fisher, AM1560) and used for library preparation as described {Zhang et al., 

2012, #98422} with modifications, including the addition of the ERCC spike-in mix to 

enable absolute quantification of RNAs and the use of unique molecular identifiers to 

eliminate PCR duplicates {Fu et al., 2018, #88843}. Briefly, before library preparation, 

1 µl of 1:100 dilution of ERCC spike-in mix 1 (Thermo Fisher, 4456740, LOT00418382; 

Table S5) was added to 0.5–1 µg total RNA to enable absolute quantification of mRNA. 

For ribosomal RNA depletion, RNA was hybridized in 10 µl to a pool of 186 rRNA 

antisense oligos (0.05 µM each) in 10 mM Tris-HCl (pH 7.4), 20 mM NaCl, heating the 

mixture to 95°C, cooling it at −0.1°C/sec to 22°C, and incubating at 22°C for 5 min. 

RNase H (10U; Lucigen, H39500) was added and the mixture incubated at 45°C for 

30 min in 20 µl containing 50 mM Tris-HCl (pH 7.4), 100 mM NaCl, and 20 mM MgCl2. 

Reaction was adjusted to 50 µl with 1× TURBO DNase buffer (ThermoFisher) and then 

incubated with 4U DNase (Thermo Fisher, AM2238) at 37°C for 20 min. Next, RNA was 

purified using RNA Clean & Concentrator-5 (Zymo Research, R1016). RNA-seq libraries 

for three samples were sequenced together using a NextSeq 500 (Illumina) to obtain 
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79 + 79 nt, paired-end reads. Data sets of C57BL/6 secondary spermatocytes and 

round spermatids are from {*Gainetdinov et al., 2018, #64592}. 

Cloning and Sequencing of 5′ Monophosphorylated Long RNAs 

Total RNA from sorted mouse germ cells was extracted using mirVana miRNA isolation 

kit (Thermo Fisher, AM1560) and used to prepare a library of 5′ monophosphorylated 

long RNAs as described {Wang et al., 2014, #4083}. Libraries for two independent 

biological replicates were sequenced using a NextSeq 500 (Illumina) to obtain 

79 + 79 nt, paired-end reads (Table S5). 

DNA Methylation Detection 

DNA methylation was assessed using DNA bisulfate sequencing. FACS-sorted 

spermatogonia were lysed and DNA was treated with bisulfite using EZ-DNA 

Methylation Direct Kit (Zymo Research). Imprinted locus H19 was used as the 

methylated DNA control. Bisulfate-treated DNA served as the template in one round 

(L1-Gf and L1-A) or two nested rounds (H19 and IAP) of PCR with EipMark Hot Start 

Taq DNA Polymerase (NEB) using the following protocol: initial denaturation – 95°C for 

30 seconds; 35 cycles of 95°C for 30 seconds, annealing temperature for 60 seconds, 

and 68°C for 30 seconds; final extension – 68°C for 5 minutes (Table S6 contains 

primer sequences and annealing temperatures). Primers were specific to different 

genomic copies of the same transposon family. PCR products were cloned and 

sequenced. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Analysis of Small RNA Data Sets 

The sequences were filtered by requiring their Phred quality score to be ≥ 20 for all 

nucleotides, the 3′ adapter and PCR duplicates were removed from raw reads. 

Sequences of synthetic spike-in oligonucleotides were identified allowing no 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.08.287979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287979


mismatches (Table S3). Reads not fully matching the genome were analyzed using the 

Tailor pipeline {Chou et al., 2015, #600} to account for non-templated tailing of small 

RNAs. All unambiguously mapping piRNA or pre-piRNA reads were grouped by their 

5′, 24-nt prefix. 

RNA-seq Library Analysis 

RNA-seq analysis was performed using piPipes for genomic alignments {Han et al., 

2015, #98844} and custom scripts to remove PCR duplicates {Fu et al., 2018, #88843}. 

Briefly, sequences were first reformatted to extract unique molecular identifiers {Fu et 

al., 2018, #88843}, and then aligned to ribosomal RNA using Bowtie2 (v2.2.0; 

{*Langmead and Salzberg, 2012, #26610}). Unaligned reads were then mapped to 

mouse genome mm10 using STAR (v2.3.1; {*Dobin et al., 2013, #39763}), and PCR 

duplicates removed {Fu et al., 2018, #88843}. Sequencing depth and gene 

quantification were calculated with StringTie (v1.3.4; {*Pertea et al., 2016, #52019}). 

Differential expression analysis was performed using DESeq2 (v1.18.1; {*Love et al., 

2014, #2502}). In parallel, reformatted reads were aligned to an index of ERCC spike-in 

transcripts (Thermo Fisher, 4456740, LOT00418382) using Bowtie (v1.0.0; {*Langmead 

et al., 2009, #34306}), PCR duplicates were removed, and the absolute quantity of 

transcripts assessed (Table S5). 

Analysis of 5′ Monophosphorylated Long RNA Sequencing Data 

Analysis of 5′ monophosphorylated long RNA sequencing data was performed with 

piPipes {Han et al., 2015, #98844}. Briefly, RNAs were first aligned to ribosomal RNA 

(rRNA) sequences using Bowtie2 (v2.2.0). Unaligned reads were then mapped to 

mouse genome mm10 using STAR (v2.3.1) and alignments with soft clipping of ends 

were removed with SAMtools (v1.0.0; {*Li et al., 2009, #15771}). 
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Biochemical Model to Calculate Fraction of Small RNA Bound to Long RNA 

We considered the enzymatic mechanism: 

 PIWI:piRNA + RNA ⇄ PIWI:piRNA:RNA → PIWI:piRNA + RNAcleaved 

For a given piRNA binding site i, we considered these molecular species, 

[RNAi], the concentration of unbound RNA bearing the binding site i; 

[PIWI:piRNA], the concentration of unbound, piRNA-loaded PIWI protein; 

and [PIWI:piRNA:RNA i], the concentration of piRNA-loaded PIWI protein bound 

to RNA, bearing the binding site i; 

and defined the following kinetic rates, 

kon,i, association rate of PIWI:piRNA for complementary RNAi, 

koff,i, dissociation rate of PIWI:piRNA from complementary RNAi, 

kcleave,i, single-turnover cleavage rate for PIWI:piRNA on complementary RNAi. 

This rate equation describes PIWI:piRNA activity: 
(1) 

𝑑[PIWI: piRNA: RNA!]
𝑑𝑡 = 	𝑘"#,![RNA!][PIWI: piRNA] − 𝑘"%%,![PIWI: piRNA: RNA!] − 𝑘&'()*(,![PIWI: piRNA: RNA!] 

Assuming that the cleavage step is slow, i.e., kcleave << koff, equation (1) becomes: 

(2) 
𝑑[PIWI: piRNA: RNA=]

𝑑𝑡 = 	𝑘>?,=[RNA=][PIWI: piRNA] − 𝑘>"",=[PIWI: piRNA: RNA=] 

At equilibrium (i.e., when d[PIWI:piRNA:RNAi]/dt is 0), we can rewrite equation (2) as: 

(3) 
[PIWI: piRNA: RNA=] = 	 [PIWI: piRNA][RNA=] ×	𝐾!,= , 

where Ka represents the association constant of PIWI:piRNA for complementary RNA. 

We define fraction bound 𝑓 as: 

(4) 

𝑓 = 	
∑ [PIWI: piRNA: RNA=]?
=A;
[PIWI: piRNA]3-340

	, 

where n is the total number of piRNA binding sites. 
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Substituting [PIWI:piRNA:RNAi] in equation (4) using equation (3) yields 

𝑓 = 	
∑ [PIWI: piRNA][RNA=] ×	𝐾!,=?
=A;

[PIWI: piRNA]3-340
	, 

which rearranges to 
(5) 

𝑓 = 	
[PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
[PIWI: piRNA]3-340

.	 

Considering that 

[PIWI: piRNA]3-340 = [PIWI: piRNA] +Q [PIWI: piRNA: RNA=]
?

=A;
, 

equation (5) becomes: 
(6) 

𝑓 = 	
[PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
[PIWI: piRNA] + ∑ [PIWI: piRNA: RNA=]?

=A;
. 

Substituting [PIWI:piRNA:RNA i] in equation (6) using equation (3) yields 
 

𝑓 = 	
[PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
[PIWI: piRNA] + ∑ [PIWI: piRNA][RNA=] ×	𝐾!,=?

=A;
, 

 

𝑓 = 	
[PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
[PIWI: piRNA] + [PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
, 

 

𝑓 = 	
[PIWI: piRNA] × ∑ [RNA=] ×	𝐾!,=?

=A;
[PIWI: piRNA] × (1 + ∑ [RNA=] ×	𝐾!,=)?

=A;
, 

(7) 

𝑓 = 	
∑ [RNA=] ×	𝐾!,=?
=A;

1 + ∑ [RNA=] ×	𝐾!,=?
=A;

. 

Using the assumptions (1) that the rank order of [RNA] can be approximated by the 

rank order of [RNA]total, and (2) that the rank order of affinities of PIWI:piRNA for 

complementary RNA can be approximated using the computationally predicted Gibbs 

free energy (∆G0) of base pairing between two RNA strands (Ka =	𝑒B∆&!/()), equation (7) 

becomes equation (8): 
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𝑓	~	
∑ [RNA=]3-340 ×?
=A; 𝑒B

∆&,
!

()

1	 + ∑ [RNA=]3-340 ×?
=A; 	𝑒B

∆&,
!

()

 

where R = 1.987 cal∙K−1∙mol−1 and T = 298.15 K for fly heads, T = 300.15 K for S2 cells, 

T = 306.15 K for mouse testis, and T = 310.15 K for mESC and MEF cells. 

PredictedΔG0 was calculated from nearest neighbor values using RNAfold 

2.4.14 {Lorenz et al., 2011, #46902}. Total intracellular concentrations of long RNAs 

([RNAi]total) in mouse germ cells were measured with RNA-seq using ERCC spike-ins 

(Table S5) and cellular volumes reported from {*Gainetdinov et al., 2018, #64592}. For 

other types of data (Table S7), relative transcript abundance was converted to 

intracellular concentration based on the mean total transcript concentration in mouse 

spermatogonia and primary spermatocytes (~1,500,000 transcripts per 1000 µm3). For 

fly piRNAs, the mean (n = 2) change of piRNA abundance and the mean (n = 2) 

abundance of mRNAs were used to calculate a fraction bound estimate for each region 

of each piRNA. For fly and mouse miRNAs, the mean (n = 2) miRNA half-life and the 

mean (n = 2) abundance of mRNAs were used to calculate a fraction bound estimate 

for each region of each miRNA. 

Statistical Tests 

Statistical tests are described in the figure legends. 
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Gainetdinov et al., Figure 1
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Gainetdinov et al., Figure 2
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Gainetdinov et al., Figure 3
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Gainetdinov et al., Figure 4
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Gainetdinov et al., Figure 5
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Gainetdinov et al., Figure 6
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