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Abstract 
Quality	control	of	morphometric	neuroimaging	data	is	essential	to	improve	reproducibility.	Owing	
to	the	complexity	of	neuroimaging	data	and,	subsequently,	the	interpretation	of	their	results,	visual	
inspection	by	trained	raters	is	the	most	reliable	way	to	perform	quality	control.	Here,	we	present	a	
protocol	for	visual	quality	control	of	the	anatomical	accuracy	of	FreeSurfer	parcellations,	based	on	
an	easy	to	use	open	source	tool	called	VisualQC.	We	comprehensively	evaluate	its	utility	in	terms	of	
error	detection	rate	and	inter-rater	reliability	on	two	large	multi-site	datasets	and	discuss	and	
demonstrate	site	differences	in	error	patterns.		This	evaluation	shows	that	VisualQC	is	a	practically	
viable	protocol	for	community	adoption.	
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Introduction 
Morphometric	analysis	is	central	to	much	of	neuroimaging	research,	as	a	structural	T1-
weighted	magnetic	resonance	imaging	(sMRI)	scan	is	almost	always	acquired	in	all		
neuroimaging	studies	for	a	variety	of	reasons.	The	sMRI	scans	are	used	in	a	number	of	
important	ways	including	as	a	reference	volume	for	multimodal	alignment,	delineating	
anatomical	regions	of	interest	(ROIs),	and	deriving	a	number	of	imaging	markers	such	as	
volumetric,	shape	and	topological	properties.		FreeSurfer	(FS)	is	a	popular	software	
package	for	fully-automated	processing	of	structural	T1-weighted	MRI	(T1w-MRI)		scans,	
often	to	produce	whole-brain	cortical	reconstruction	of	the	human	brain,	including	the	
aforementioned	outputs	(Fischl	2012).	Hence,	rigorous	quality	control	(QC)	of	FS	outputs	is	
crucial	to	ensure	their	quality	and	to	improve	the	reproducibility	of	subsequent	
neuroimaging	research	results.		
	
FSFreeSurfer	processing	is	often	completed	without	any	issues	when	the	properties	of	
input	sMRI	scans	are	favorable	for	automatic	processing.	The	ideal	characteristics	of	the	
input	sMRI	scans	include,	but	are	not	limited	to,	strong	tissue	contrast,	high	signal-to-noise	
ratio	(SNR),	absence	of	intensity	inhomogeneities,	absence	of	imaging	artefacts	(e.g.,	due	to	
motion	and	other	challenges	during	acquisition)	and	lack	of	pathology-related	confounds.	
In	the	absence	of	one	or	more	of	such	ideal	characteristics,	which	is	often	the	case	in	large	
multi-site	neuroimaging	studies,	and	owing	to	the	challenging	nature	of	the	fully	automatic	
whole-brain	reconstruction,	FS	processing	leads	to	errors	in	parcellation.	Failure	to	identify	
and/or	correct	such	errors	could	result	in	inaccurate	and	irreproducible	results.	Hence,	a	
robust	FS	QC	is	crucial.		
	
Research	into	developing	assistive	tools	and	protocols	for	the	QC	of	morphological	data	can	
be	roughly	divided	into	the	following	categories:		

● visual	protocols	for	rating	the	quality	of	an	sMRI	scan	as	a	whole	(Backhausen	et	al.	
2016;	Marcus	et	al.	2013).	These	protocols	are	helpful	as	QC	of	input	sMRI	is	
required	at	the	MRI	acquisition	stage	(e.g.,	to	increase	sample	sizes)	as	well	as	at	the	
subsequent	archival	and	sharing	stages	(to	improve	the	quality	and	reproducibility	
of	analyses)		

● assistive	tools	(manual	as	well	as	automatic)	to	expedite	the	automated	assessment	
of	the	sMRI	quality	(Raamana	2018;	SIG	2019;	Woodard	and	Carley-Spencer	2006;	
Gedamu,	Collins,	and	Arnold	2008;	Rosen	et	al.	2017;	Esteban	et	al.	2017;	Keshavan	
et	al.	2018;	Klapwijk	et	al.	2019;	White	et	al.	2018).	Some	of	these	tools	may	employ	
image	quality	metrics	(IQMs)	(Shehzad	et	al.	2015),	or	metrics	from	derived	outputs	
produced	by	FS	and	related	tools,	to	aid	in	the	prediction	of	scan	quality.	The	IQMs	
can	be	extracted	directly	from	the	scan	itself	(e.g.,	properties	of	intensity	
distributions)	or	be	based	on	one	or	more	of	the	FreeSurfer	outputs	(e.g.	Euler	
number,	volumetric	and	thickness	estimates	etc)	

● image	processing	algorithms	to	detect	imaging	artefacts	such	as	motion,	ghosting	
etc	(Pizarro	et	al.	2016;	Alfaro-Almagro	et	al.	2018;	Mortamet	et	al.	2009).	
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However,	much	of	the	previous	research	has	been	limited	to	rating	the	quality	of	input	
sMRI	scan,	but	not	the	quality	of	subsequently	derived	outputs	such	as	FreeSurfer	
parcellation.	The	FreeSurfer	team	provides	a	troubleshooting	guide	(Freesurfer	Team	
2017),	that	is	a	series	of	visual	checks	and	manual	edits	for	a	diverse	set	of	the	outputs	it	
produces.	While	this	guide	is	comprehensive,	it	is	quite	laborious	to	perform	even	for	a	
single	subject,	presents	a	steep	learning	curve	to	typical	neuroimaging	researchers,	and	is	
simply	infeasible	to	employ	on	the	large	datasets	that	are	commonplace	today.	Hence,	
assistive	tools	and	protocols	to	expedite	or	automate	this	tedious	FS	QC	process	are	
essential.	There	has	been	notable	effort	in	developing	protocols	(ENIGMA	Consortium	
2017)	as	well	as	assistive	tools	(Keshavan	et	al.	2018;	Klapwijk	et	al.	2019)	for	the	QC	of	
FreeSurfer	outputs.	While	the	mindcontrol	webapp	(Keshavan	et	al.	2018)	is	more	
accessible	(being	browser-based)	and	provides	easy	navigation	through	the	dataset,	the	
overall	QC	process	is	no	different	from	the	FreeSurfer’s	recommended	troubleshooting	
guide	(which	employs	tkmedit	and	slice-by-slice	review),	and	hence	is	still	slow	and	labor-
intensive.	While	operating	in	the	cloud	using	a	browser	interface	may	present	some	
benefits	of	accessibility,	the	complicated	initial	setup	creates	an	additional	barrier	for	non-
expert	users	(large	amounts	of	costly	cloud	storage	space),	issues	related	to	privacy	and	
anonymization	(transferring	imaging	data	to	the	cloud),	as	well	as	creating	a	major	
dependency	on	the	cloud	can	make	it	unreliable	and/or	slow.	Moreover,	it	does	not	present	
the	important	visualizations	for	pial	surface	(see	Figure.	1,	Panel	B),	which	are	necessary	to	
identify	topological	defects.		
	
In	another	related	effort	to	reduce	the	QC	burden	as	well	as	rater	subjectivity,	(Klapwijk	et	
al.	2019)	developed	a	statistical	model	to	automatically	predict	a	composite	quality	rating	
based	on	a	combination	of	properties	of	input	T1w	MRI	scan	(presence	of	motion)	and	a	
few	checks	on	the	FS	outputs.	Their	predictive	model	demonstrated	very	good	performance	
(>80%	accuracy;	varying	depending	on	evaluation	setup)	in	discriminating	‘Failed	Scans’	
from	the	rest	(rated	as	Excellent,	Good	or	Doubtful).	However,	the	rater	agreement	in	this	
manual	QC	protocol	was	as	low	as	7.5%	i.e.	only	six	subjects	out	of	80	had	ratings	with	a	
complete	agreement	among	the	five	raters,	increasing	to	>85%	when	majority	rating	is	
used	to	evaluate	agreement.		This	may	likely	be	due	to	the	composite	rating	used	(based	on	
both	input	T1w	MRI	scan	and	FS	outputs),	which	confounds	the	ratings,	making	it	harder	to	
disambiguate	the	source	of	bad	quality	(input	vs.	output),	and	hence	making	it	a	non-ideal	
comparison	target.	Moreover,	their	extensive	analyses	clearly	highlight	an	important	need	
of	reliable	and	accurate	ratings	with	high	inter-rater	reliability	(IRR).	
	
Aiming	to	deliver	a	quick	method	to	QC	FreeSurfer	outputs	from	multiple	large	datasets,	
the	Enhancing	Neuro	ImaGing	through	Meta-Analysis	(ENIGMA)	consortium	(Thompson	et	
al.	2020),	developed	an	useful	visual	rating	protocol	for	FS	QC	(denoted	by	ENQC)	based	on	
a	set	of	batch	processing	scripts,	visualizations	embedded	in	html	and	manual	ratings	
collected	in	a	spreadsheet.	ENQC	is	a	practical	approach	to	greatly	expedite	an	otherwise	
tedious	process	by	selecting	four	volumetric	slices	for	inspection	(see	Figure	1,	Panel	A	for	
an	example	slice).	While	drastically	reducing	the	amount	of	work	for	the	rater,	this	also	
greatly	increases	the	likelihood	of	missing	subtle	errors,	as	they	may	fall	between	or	
outside	the	limited	number	of	views.	Moreover,	having	to	deal	with	multiple	disparate	tools	
without	clear	integration	(spreadsheets,	shell	scripts	and	html	etc)	leads	to	much	higher	
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human	error	(in	maintaining	integrity	across	multiple	spreadsheets	with	complex	
identifiers),	especially	in	large	datasets.		
	
To	address	the	complexity	and	limitations	of	the	various	tools	we	mentioned	so	far	
(including	ENQC)	and	the	need	for	more	reliable	and	accurate	QC	ratings,	we	developed	
VisualQC	(Raamana	2018),	a	new	open	source	QC	rating	framework,	designed	to	ease	the	
burden	involving	any	visual	QC	tasks	in	neuroimaging	research.	The	tool	to	rate	the	quality	
of	FS	parcellations	is	one	of	many	within	VisualQC,	which	are	built	on	a	generic	visual	
rating	framework	that	is	modular	and	extensible,	allowing	for	manual/visual	QC	of	
virtually	any	digital	medical	data.	Other	tools	within	VisualQC	include	quality	rating	and	
artefact	identification	within	T1w	MRI,	EPI	and	DTI	scans,	as	well	as	tools	to	easily	check	
the	accuracy	of	registration,	defacing	and	volumetric	segmentation	algorithms.	VisualQC’s	
custom-designed	rating	interface	for	FreeSurfer	parcellation	provides	a	seamless	
workflow,	integrating	all	the	necessary	data	and	visualizations	to	achieve	a	high	rating	
accuracy.		
	
Based	on	a	systematic	study	of	two	large	multi-site	datasets,	from	the	Ontario	Brain	
Institute’s	(OBI):	the	Canadian	Biomarker	Integration	Network	in	Depression	(CAN-BIND)	
and	the	Ontario	Neurodegeneration	Research	Initiative	(ONDRI)	programs,	we	show	that	
the	VisualQC	protocol	leads	to	a	higher	and	more	reliable	error	detection	rate	(EDR)	than	
ENQC.	As	visual	inspection	is	a	subjective	process,	it	is	prone	to	bias	or	variation	in	a	rater’s	
judgement	and	interpretation,	especially	in	the	case	of	subtle	errors	and	those	within	tricky	
regions	(with	convoluted	contours	on	2D	cross-sectional	slices)	such	as	entorhinal	cortex,	
parahippocampal	gyrus,	superior	temporal	sulcus,	etc.	Hence,	we	also	quantify	the	inter-
rater	reliability	(IRR)	for	each	combination	of	dataset,	for	the	two	protocols	ENQC	and	
VisualQC.	Our	goal	in	choosing	these	two	datasets	is	to	evaluate	the	protocols	on	a	diverse	
range	of	participants.	In	addition,	we	also	chose	to	evaluate	the	QC	protocols	for	two	
different	versions	of	FreeSurfer:	v5.3	and	v6.0,	as	the	parcellation	accuracy	and	error	
patterns	differ	for	different	versions,	and	these	two	have	been	in	use	widely.	These	
combinations	would	expose	our	study	to	a	diverse	range	of	issues,	as	well	as	test	the	
reproducibility	and	robustness	of	the	protocol	to	differing	datasets	and	software	versions.	
Given	the	multi-site	nature	of	these	datasets,	we	also	investigated	site-wise	differences	in	
error	patterns	of	FreeSurfer	cortical	parcellations.	In	particular,	we	built	a	predictive	model	
of	site	to	identify	the	factors	influencing	site-wise	differences	in	FS	error	patterns.	Based	on	
this	comprehensive	evaluation,	we	show	that	VisualQC	outperforms	ENQC	for	FreeSurfer	
QC,	becoming	a	strong	candidate	for	a	community	consensus	protocol	for	the	visual	QC	
rating	of	FS	parcellations.	

Methods 

Datasets 
We	analyzed	two	large	multi-site	datasets	that	were	drawn	from	previous	studies	1)	the	
Canadian	Biomarker	Integration	Network	in	Depression	(CAN-BIND)	with	308	participants	
(MacQueen	et	al.	2019;	Lam	et	al.	2016),		and	2)	the	Parkinson's	disease	cohort	from	the	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286807
http://creativecommons.org/licenses/by/4.0/


Ontario	Neurodegeneration	Research	Initiative	(ONDRI)	(Farhan	et	al.	2017;	Scott	et	al.	
2020),	with	140	participants	with	Parkinson’s	Disease.	Demographic	information	of	the	
two	datasets	are	shown	in	Table	1.	More	detailed	information	on	site-differences,	in	terms	
of	vendors,	models	and	acquisition	parameter	information,	is	presented	in	Appendix	A	in	
the	supplementary	information.	
	
TABLE	1:	Demographics	for	the	two	multi-site	datasets	in	this	study	
Dataset	 N	 Male/Female	 Age		 Group	

CANBIND	 308	 110/198	 34.45	(12.13)	 Healthy	controls	(n=111)	
Major	depressive	disorder	(n=197)	

ONDRI	 140	 109/31	 67.94	(6.35)	 Parkinson’s	Disease	(n=140)	

Processing 
All	scans	in	the	two	datasets	were	processed	with	the	FreeSurfer	cross-sectional	pipeline	
(Fischl	2012),	to	obtain	the	default	whole-brain	reconstruction	with	no	special	flags.	No	
manual	editing	was	performed	on	the	output	parcellation	from	FreeSurfer,	to	focus	the	
analysis	purely	on	fully	automatic	processing.	Each	dataset	was	processed	with	two	widely-
used	versions	of	5.3	and	6.0,	on	a	CentOS	6	Linux	operating	system	in	a	Compute	Canada	
high-performance	computing	cluster.	

Rating Methodology 
The	primary	purpose	of	FS	QC	via	manual	visual	rating	is	to	identify	parcellation	errors	and	
rate	their	level	e.g.	as	Pass,	Major	error,	Minor	error,	[complete]	Fail	etc.	An	error	in	FS	
cortical	parcellation	occurs	when	the	pial	or	white	surface	do	not	follow	their	respective	
tissue-class	boundaries,	such	as	gray	matter	(GM)	and	white	matter	(WM)	respectively.	
		
All	error	inspection	was	completed	by	three	raters,	following	protocols	from	ENQC,	in	
terms	of	Pass	vs.	Fail	for	subject-wise	parcellation.	Briefly,	ENQC	rates	the	quality	of	the	
parcellation	based	on	two	types	of	visualizations:	1)	Internal	QC:	Four	cross-sectional	slices	
in	coronal	and	axial	views	overlaying	the	labels	voxel-wise	on	top	of	the	input	T1w	MRI	in	
opaque	color	(see	Figure	1),	and	2)	External	QC:	Four	views	of	the	anatomical	regional	
labels	visualized	on	the	fsaverage	surface1.	If	there	are	no	issues	of	any	kind	in	the	internal	
or	external	QC,	it	is	rated	as	Pass	in	that	corresponding	section.	Parcellation	errors	
localized	to	particular	regions	are	labelled	as	Moderate,	whereas	presence	of	severe	errors,	
large	mislabeling,	mis-registration	and	imaging	artefacts	as	well	as	global	failures	would	be	
rated	as	Fail.	Location	of	the	error,	in	terms	of	left	(L)	or	right	(R)	hemispheres	as	well	as	
the	particular	region	of	interest	(ROI),	is	also	noted,	following	the	FreeSurfer	Color	Lookup	
Table	(FSCLUT)	[link].	

                                                
1 Please refer to the VisualQC manual for illustrations of the two protocols at URL: 
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.286807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286807
http://creativecommons.org/licenses/by/4.0/


	
	
FIGURE	1:	Panel	(A):	Example	illustrations	of	a	single	slice	presented	in	the	ENQC	and	
VisualQC	workflows	respectively.	The	opaque	overlay	of	cortical	labels	in	ENQC	makes	it	
harder	to	see	the	boundaries	of	white	and	gray	matter,	and	leads	to	errors	in	judging	the	
accuracy	of	pial/white	surfaces.	Panel	(B):	Illustration	of	external	surface	visualizations	
annotating	a	typical	FS	parcellation	on	the	fsaverage	surface.	These	are	integrated	into	the	
default	interface	of	VisualQC	to	enable	easy	detection	of	any	topological	defects	and	
mislabellings,	which	is	not	the	case	with	ENQC	creating	additional	sources	of	error	and	
burden.		
	
The	FS	QC	interface	for	VisualQC	is	shown	in	Figure	2.	This	is	highly	customized	for	rating	
the	accuracy	of	FS	parcellation,	and	presents	a	comprehensive	picture	in	all	the	relevant	
views:	contours	of	pial	and	white	surfaces	in	all	three	cross-sectional	views	with	at	least	12	
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slices	per	view	(default	is	two	rows	of	six	slices,	but	it	is	customizable),	along	with	six	views	
of	the	pial	surface	(in	the	top	row).	The	cortical	labels	in	both	the	cross-sectional	and	
surface	views	are	color-annotated	in	the	same	manner	as	the	Freesurfer’s	tksurfer	tool	to	
leverage	the	familiarity	of	the	default	color	scheme.	This	design,	while	rigorous,	still	allows	
for	rapid	review	of	the	quality	and	bookkeeping	of	the	rating	along	with	any	other	notes.	
VisualQC,	compared	to	ENQC,	enabled	recording	additional	intermediate	levels,	encoded	as	
Pass,	Minor	Error,	Major	Error	and	[complete]	Fail.	The	locations	of	parcellation	errors	are	
also	noted	in	VisualQC	using	the	Notes	section	in	the	rating	interface	below	the	radio	
buttons	for	rating,	using	the	same	names	and	codes	as	in	the	FSCLUT.	The	detailed	rating	
system,	along	with	examples	for	different	levels	of	errors	is	presented	in	the	VisualQC	
manual	at	github.com/raamana/visualqc.	

Exceptions to Rating 
Accurate	parcellation	in	highly	convoluted	areas	such	as	the	entorhinal	cortex	(EC),	
parahippocampal	gyrus	(PH)	and	insula	(IN)	is	highly	challenging.	Although	FreeSurfer	is	
generally	accurate	in	many	regions	of	the	cortex	in	the	absence	of	imaging	quality	issues,	it	
routinely	is	erroneous	in	these	ROIs	(see	Figure	3,	and	quantification	below).	Minor	errors	
in	these	ROIs	are	so	common,	ENQC	protocol	chose	to	rate	them	as	Pass	(ignoring	them	for	
the	overall	quality	for	the	whole	brain	parcellation),	so	long	as	the	errors	are	minor	and	the	
parcellation	is	free	from	any	other	issues.	This	is	in	line	with	the	official	troubleshooting	
guide	(Freesurfer	Team	2017)	which	recommends	avoiding	editing	these	minor	errors	to	
avoid	introducing	bias	and	reducing	reliability.	In	the	VisualQC	protocol,	we	choose	to	note	
them	as	Minor	Error	in	the	interest	of	recording	the	most	accurate	reflection	of	the	
parcellation	quality.	Our	data	confirms	these	errors	are	almost	universal:	only	4/2688	
ratings	from	three	raters	(0.1%)	were	free	from	errors	in	EC,	PH	and	IN.	In	our	statistical	
analyses	comparing	error	frequencies,	we	have	recoded	minor	errors	in	EC,	PH	and	IN	with	
no	other	issues	in	VisualQC	ratings	as	Pass,	to	make	them	commensurable	with	ENQC.	A	
similar	approach	is	taken	with	minor	errors	(over-	and	underestimates)	in	superior	frontal	
(interacting	with	the	cingulate	gyrus),	superior	parietal	(interacting	with	cuneus	and/or	
precuneus),	supramarginal	gyrus	(also	impacts	superior	temporal	(ST)),	and	middle	
temporal	(MT)	gyrus	(interacting	with	inferior	temporal	(IT)).	
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Figure	2:	An	instance	of	the	VisualQC	interface	for	the	rating	of	parcellation	accuracy	of	
FreeSurfer	output.	This	customized	interface	presents	a	comprehensive	picture	of	the	
parcellation	in	all	the	relevant	views:	contours	of	pial	and	white	surfaces	in	all	three	cross-
sectional	views	with	12	slices	each,	along	with	six	views	of	the	pial	surface,	color-annotated	
with	corresponding	cortical	labels.	This	design,	while	rigorous,	still	allows	for	rapid	review	
of	the	quality	and	bookkeeping	of	the	rating	along	with	any	other	notes.	

Error statistics 
Error	detection	rate	(EDR)	for	a	brain	region	was	calculated	as	the	number	of	participants	
with	detected	errors,	divided	by	the	total	number	of	participants	in	that	dataset.	For	valid	
comparison	with	VisualQC	in	quantifying	EDR,	we	considered	a	parcellation	as	Pass	in	
ENQC	only	when	it	is	rated	as	Pass	in	both	Internal	and	External	evaluations,	and	as	Fail	for	
all	other	combinations.	Under	the	VisualQC	protocol,	only	Pass	is	considered	Pass	and	any	
other	rating	as	Fail.	This	statistic	helps	us	judge	which	FS	version	is	generally	more	
accurate,	and	how	that	performance	is	related	to	experimental	conditions	(e.g.	site,	
scanner).	EDR	was	calculated	separately	for	each	dataset,	FreeSurfer	version,	and	rating	
protocol.	
	
The	ratings	were	hierarchical	in	nature	as	each	rating	was	initially	approached	with	a	Fail	
vs.	Pass	mindset,	which	was	then	followed	by	dividing	the	Fail	category	further	into	
multiple	levels	(Major	vs.	Minor	vs.	complete	Fail)	with	differing	intervals	between	the	
three	levels.	Hence,	they	cannot	be	treated	as	numerical	or	ordinal	variables.	Therefore,	we	
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encoded	them	as	categorical	variables	to	produce	valid	statistics	to	respect	their	properties	
and	measurement	methods.	This	inter-rater	reliability	(IRR)	for	ratings	was	computed	
based	on	the	most	native	form	of	ratings	possible,	such	as	“Pass”	and	“Fail”	for	VisualQC	
and	“Pass_Pass”	(concatenated	ratings	from	Internal	and	External	QC	respectively),	
“Pass_Fail”,	“Fail_Pass”	and	“Fail_Fail”	for	ENQC.		
	
We	quantified	IRR	using	the	Fleiss	Kappa	statistic	on	ratings	from	the	three	raters	(Fleiss	
1971;	Randolph	2005),	separately	for	each	dataset,	FreeSurfer	version,	and	rating	protocol.	
In	addition,	we	have	also	bootstrapped	this	computation	100	times	selecting	80%	of	the	
sample	for	each	combination,	to	analyze	the	stability	of	estimates.	
	

Automatic Site Identification 
Another	way	to	demonstrate	the	site	differences	is	by	trying	to	automatically	predict	the	
site	based	on	morphometric	features,	as	they	play	a	direct	role	in	tissue	contrast	and	hence	
FS	accuracy.	Towards	this,	we	computed	region-wise	descriptive	statistics	(such	as	mean,	
SEM,	kurtosis,	skew	and	range)	on	all	cortical	features	(i.e.	thickness,	area,	curvature)	and	
contrast-to-noise	ratio	(CNR)2	values	in	all	FS	labels.		
	
For	site-identification,	a	random	forest	classifier	was	trained	on	the	aforementioned	
features	to	predict	the	site	label.	We	evaluated	its	performance	with	neuropredict	
(Raamana	2017;	Raamana	and	Strother	2017)	using	repeated-holdout	cross-validation	
(80%	training,	repeated	30	times;	feature	selection	based	on	f-value).		

Software 
All	calculations	were	performed	based	on	the	scientific	Python	ecosystem	(Python	version	
3.6),	with	the	Fleiss	Kappa	implementation	coming	from	the	statsmodels	package	version	
0.10.1	(Seabold	and	Perktold	2010).	
	
VisualQC	is	an	open	source	QC	rating	framework	(Raamana	2018)	freely	and	publicly	
available	at	https://github.com/raamana/visualqc.	The	tool	to	rate	the	quality	of	FS	
parcellations	is	one	of	the	many	within	VisualQC,	which	are	built	on	a	generic	visual	rating	
framework	that	is	modular	and	extensible,	allowing	for	manual/visual	QC	of	virtually	any	
digital	medical	data.	Other	tools	within	VisualQC	include	quality	rating	and	artefact	
identification	within	T1w	MRI,	EPI	and	DTI	scans,	as	well	as	tools	to	easily	check	the	
accuracy	of	registration,	defacing	and	volumetric	segmentation	algorithms.	They	are	
documented	at	https://raamana.github.io/visualqc/,	which	also	includes	a	comprehensive	
manual	to	train	the	rater	to	learn	and	use	VisualQC3.	

                                                
2 CNR is computed as (Mean(WM)-Mean(GM)) / sqrt((Var(WM)+Var(GM))), 
where	all	data	used	to	compute	means	and	variances	are	intensity	values	in	WM/GM.	
3 URL: https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf 
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Results and discussion 

Error detection rate 
	
The	EDR	measured	by	different	raters	in	the	CANBIND	and	ONDRI	datasets	for	FS	v6	are	
shown	in	Figure	3,	and	reveals	the	following:	1)	there	are	some	ROIs	that	are	consistently	
picked	up	as	erroneous	by	all	raters	using	both	QC	packages,	e.g.	in	the	medial	temporal	
lobe	(MTL),	such	as	the	ET,	ST	and	PH.	This	is	not	surprising	given	the	challenges	involved	
in	producing	an	accurate	parcellation	in	these	challenging	areas	in	a	fully	automatic	
fashion;	2)	beyond	the	MTL,	there	is	large	diversity	in	EDR	patterns	across	the	three	raters,	
both	between	the	two	protocols,	and	even	within	the	same	protocol;	3)	There	is	clear	
variability	in	EDR	per	region	either	across	the	raters	within	the	same	protocol,	or	across	
the	protocols	for	the	same	rater.	The	regions	where	this	variability	is	large,	both	across	
raters	and	protocols,	are	the	hard-to-segment	temporal	lobe	ROIs	as	well	as	the	central	
sulcus.	
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FIGURE	3:	Visualization	showing	the	differences	in	EDR	across	multiple	raters	for	
FreeSurfer	v6.0	parcellations	in	the	CANBIND	and	ONDRI	datasets	for	ENQC	and	VisualQC	
protocols.	All	the	visualizations	in	this	paper	are	annotated	with	the	default	Desikan-
Killiany	parcellation	unless	otherwise	stated.	

Error Comparison 
	
Differences	in	EDR	found	between	VisualQC	and	ENQC,	computed	as	EDR(VisualQC)-
EDR(ENQC)	are	shown	in	Figure	4,	on	the	default	Desikan-Killiany	parcellation.	We	observe	
some	interesting	patterns	in	the	difference	plot.	The	majority	of	those	differences	in	EDR	
can	be	divided	into	two	categories:	

● a	higher	percentage	of	errors	detected	in	the	temporal	poles	by	VisualQC,	in	slices	
below	that	of	the	lowest	available	view	using	ENQC,	and		
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● a	higher	percentage	of	errors	detected	by	ENQC	in	the	upper	pial	surface	(superior	
parietal	lobule,	superior	frontal,	pre-	and	postcentral	sulcus),	primarily	in	the	
CANBIND	cohort.		

	
Due	to	ENQC’s	choice	of	an	opaque	overlay	of	segmentation	labels	onto	the	anatomical	MRI	
(see	Figure	1),	this	increased	rate	of	error	detection	is	likely	due	to	a	reduction	in	visibility	
of	the	structural	scan	itself,	resulting	in	a	higher	false	positive	rate	(FPR).	
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FIGURE	4:	Percentage	differences	of	error	detection	found	between	ENQC	and	VisualQC,	
where	negative	value	(in	blue)	indicates	that	ENQC	detected	a	greater	percentage	of	errors,	
whereas	a	positive	value	(in	red)	indicates	that	VisualQC	found	greater	percentage	of	
errors,	for	that	dataset	and	version	of	Freesurfer.	The	color	bars	for	all	panels	visualizing	
the	EDR	differences	range	from	-0.2	to	0.2.	The	four	panels	shown	are:	(A)	CAN-BIND,	FS	
v5.3,	(B)	CAN-BIND,	FS	v6.0,	(C)	ONDRI,	FS	v5.3	and	(D)	ONDRI,	FS	v6.0.	Each	panel	shows	
lateral/medial	views	of	the	EDR	map	in	top/bottom	rows	respectively.		
	

Inter-rater reliability 
	
The	IRR	estimates	for	different	combinations	of	datasets	and	FreeSurfer	versions	are	
presented	in	Table	2	for	the	two	protocols.	This	shows	that	VisualQC	is	more	reliable	across	
the	board.		In	addition,	the	bootstrapped	estimates	(presented	in	Appendix	B)	are	quite	
identical	to	those	shown	in	Table	2.	We	believe	this	is	due	to	presenting	the	rater	with	a	
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vastly	more	comprehensive	view	of	parcellation,	the	ability	to	zoom-in	to	each	slice	as	well	
as	toggle	the	overlay	to	evaluate	the	anatomical	accuracy	in	a	confident	manner.	
	

	 CANBIND	v6.0	 ONDRI	v6.0	 CANBIND	v5.3	 ONDRI	v5.3	

ENQC	 0.28	 0.215	 0.360	 0.253	

VisualQC	 0.638	 0.537	 0.584	 0.556	

	
TABLE	2:	Inter-rater	reliability	(IRR)	estimates	for	the	three	raters	for	different	
combinations	of	the	dataset	and	FreeSurfer	versions.		

Site differences 
	
Given	FS	performance	is	dependent	on	the	quality	of	the	input	T1w	MRI	scan	and	the	
underlying	tissue	contrast,	we	wanted	to	study	if	the	acquisition	site	played	any	role	in	EDR	
and	whether	different	sites	presented	different	error	patterns.	Hence,	we	visualized	the	
parcellation	errors	segregated	by	site,	which	are	presented	in	Figure	5	for	the	CANBIND	
dataset	processed	with	FS	v6.0.	This	visualization	illustrates	the	large	variability	across	
sites	in	multiple	ROIs	of	the	brain	across	the	cortex.	This	variability	can	also	be	observed	
even	in	the	frequently	erroneous	temporal	lobe	regions.		
	

	
	
FIGURE	5:	Visualization	of	the	site	differences	in	error	ratings	(average	of	the	percent	
errors	across	the	three	raters)	across	different	sites	for	the	CANBIND	dataset	(FS	v6.0)	
	
The	corresponding	site	differences	for	the	ONDRI	dataset	(FS	v6.0)	are	shown	in	Figure	6.	
We	observe	some	clear	patterns	common	across	the	sites	here,	such	as	the	relatively	higher	
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error	rate	observed	in	the	medial	temporal	lobe	(MTL)	and	superior	frontal	(SF)	cortex.	
Although	higher	error	rate	is	expected	in	MTL,	which	was	also	observed	in	the	CANBIND	
dataset,	similar	high	error	rate	in	SF	is	an	interesting	surprise.	
	

	
FIGURE	6:	Visualization	of	the	site	differences	in	error	ratings	(average	of	the	percent	
errors	across	the	three	raters)	across	different	sites	for	the	ONDRI	dataset	(FS	v6.0)	

Automatic Site Identification 
	
The	performance	estimates	of	a	predictive	model	for	automatic	site	identification	on	the	FS	
v6	outputs	from	the	CANBIND	dataset	are	visualized	in	the	confusion	matrix	shown	in	
Figure	7.	This	shows	some	sites,	especially	UBC	and	QNS,	are	readily	identifiable	with	over	
80%	accuracy.	Given	the	chance	accuracy	in	this	6-class	experiment	is	16%,	sites	TGH,	MCU	
and	UCA	seem	relatively	easily	identifiable	as	well.		
	
It	is	rather	interesting	CAM	and	MCU	have	often	been	misclassified	(>25%)	as	UCA.,	which	
can	also	be	seen	in	the	similarity	of	site-wise	error	patterns	in	Figure	5.	Moreover,	all	these	
3	sites	use	the	same	scanner	(GE	3.0T	Discovery	MR750),	which	might	explain	the	
confusion	exhibited	by	the	site-predicting-classifier.	
	
The	corresponding	feature	importance	values	(median	values	from	the	30	repetitions	of	
cross-validation)	are	visualized	in	Figure	8.	It	is	quite	clear	from	the	top	10	features	that	
CNR	played	a	crucial	role	in	site	identification,	and	their	source	ROIs	are	in	challenging	
areas	such	as	the	lateral	occipital	cortex,	fusiform	gyrus,	cuneus,	postcentral	gyrus,	
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superior	parietal	cortex	and	temporal	lobe.	These	site-differentiating	ROIs	are	difficult	to	
identify	just	based	on	raw	patterns	shown	in	visualizations	such	as	Figure	5.	
	

	
Figure	7:	Confusion	matrix	from	a	machine	learning	experiment	to	identify	site	from	the	
morphometric	features	extracted	from	FreeSurfer	outputs	(v6.0)	from	the	CANBIND	
dataset,	such	as	the	region-wise	statistics	on	all	cortical	features	(thickness,	area,	
curvature)	and	CNR	values	in	the	FS	labels.		
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Figure	8:	Feature	importance	values	from	the	random	forest	predictive	model	for	site	
identification	on	CANBIND	dataset	FS	v6.0.	
	
We	also	performed	the	site	differences	analysis	on	the	ONDRI	dataset	(FS	v6.0)	with	results	
shown	in	Figure	9.	Similar	to	CANBIND,	we	can	see	that	a	few	sites	are	quite	identifiable	in	
ONDRI	as	well,	such	as	TOH	and	TWH	with	84%	and	71%	accuracy.	Given	the	chance	
accuracy	in	this	5-class	experiment	is	20%,	we	can	consider	the	sites	LHS	and	SBH	to	be	
identifiable	as	well.	The	features	contributing	most	to	the	automatic	site	identification	
model	were	sulcal	depth	in	rostral	anterior	cingulate	and	precentral	gyrus,	thickness	
distributional	statistics	(such	as	mean,	skew,	range,	SEM)	in	paracentral,	inferior	temporal,	
lingual	and	precentral	gyri,	along	with	precuneus	volume	(fraction	relative	to	the	whole	
brain).	It	is	interesting	to	note	these	features	are	a	different	set	compared	to	those	in	
CANBIND	which	were	mostly	based	on	CNR	profiles	in	different	ROIs.	These	results	from	
the	two	datasets	show	the	importance	of	being	cognizant	about	site	differences	while	
QCing	FS	parcellations.	
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Figure	9:	Confusion	matrix	(left	panel)	from	of	the	predictive	model	for	site	identification	
based	on	FS	outputs	(v6.0)	from	the	ONDRI	dataset.	We	utilize	the	same	features	as	were	
extracted	in	the	CANBIND	dataset.	The	corresponding	feature	importance	values	are	shown	
in	the	right	panel.	

Future work 
As	easy	and	integrated	as	VisualQC	is,	manual	QC	still	is	not	effortless,	especially	with	the	
increasingly	large	sample	sizes	reaching	many	10s	of	thousands	today.	Hence,	an	
automated	tool	to	predict	the	quality	of	a	given	FS	parcellation	without	human	rating	
would	be	useful	in	reducing	the	QC	burden.	A	frequently	requested	feature	is	an	automatic	
tool	to	identify	clear	failures	and	major	errors	sufficiently	accurately,	so	the	raters	can	
focus	on	the	subtle	and	minor	errors,	which	would	expedite	the	QC	process	significantly.		
However,	as	highlighted	by	previous	efforts	in	this	direction	(Klapwijk	et	al.	2019),	the	
development	of	accurate	automatic	predictive	QC	tools	requires	that	we	have	a	reliable		
approach	to	create	ground	truth	(via	visual	QC)	for	these	tools	to	be	trained	on	and	
optimized	for.	Development	of	such	a	reliable	protocol	as	a	candidate	for	community	
adoption	was	the	main	thrust	of	this	paper.	Based	on	this	protocol,	we	plan	to	pursue	to	
development	of	a	predictive	tool	and	validate	it	for	different	application	scenarios	such	as	
high	sensitivity	(not	missing	even	a	single	bad	parcellation)	or	more	narrowly	to	clear	
certain	ROIs	(posterior	cingulate	gyrus	or	medial	temporal	lobe	etc)	of	any	errors.	
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Conclusions 
In	this	study,	we	presented	a	protocol	for	the	visual	QC	of	FreeSurfer	parcellations	based	on	
an	open	source	QC	tool.	Based	on	systematic	comparison,	we	demonstrate	that	VisualQC	
leads	to	higher	EDR,	lower	FPR	and	higher	IRR	for	the	manual	QC	of	FreeSurfer	parcellation	
relative	to	ENQC.	We	characterized	its	utility	and	performance	on	two	large	multi-site	
datasets	showing	it	is	robust	across	two	different	age	ranges	and	disease	classes.	Moreover,	
it	is	seamless	and	is	significantly	faster	than	following	ENQC	or	the	standard	FreeSurfer	
troubleshooting	guide.	Further,	we	highlight	the	need	to	be	cognizant	of	the	site-differences	
in	parcellation	errors.	
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Appendix A – Site information 
The two datasets studied here are large and multi-site by design. The detailed information on 
site-differences in terms of acquisition parameters and scanners have been carefully tabulated in 
the respective dataset papers for ONDRI (Scott et al. 2020) and CANBIND (MacQueen et al. 
2019). 
 
CANBIND: 
 

 
 
ONDRI: 
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Appendix B – Bootstrapped results of interrater reliability 
 
The	bootstrapped	estimates	(80%	of	the	sample,	repeated	100	times)	of	the	IRR	for	the	3	
raters	for	different	combinations	of	the	dataset	and	FreeSurfer	versions	are	shown	below: 
	

	 CANBIND	v6.0	 ONDRI	v6.0	 CANBIND	v5.3	 ONDRI	v5.3	

ENQC	 0.279	(0.02)	 0.215	(0.033)	 0.361	(0.022)	 0.249	(0.026)	

VisualQC	 0.635	(0.028)	 0.539	(0.046)	 0.586	(0.03)	 0.555	(0.041)	
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