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Abstract

Aberrant oncogene functions and structural variation alter the chromatin structure in cancer
cells. While gene regulation by chromatin states has been studied extensively, chromatin
accessibility  and  its  relevance  in  aberrant  gene  expression  during  prostate  cancer
progression is not well understood. Here, we report a genome-wide chromatin accessibility
analysis of clinical tissue samples of benign prostatic hyperplasia (BPH), untreated primary
prostate  cancer  (PC)  and  castration-resistant  prostate  cancer  (CRPC)  and  integrative
analysis  with  transcriptome,  methylome,  and  proteome profiles  of  the  same samples  to
uncover  disease-relevant  regulatory  elements  and  their  association  to  altered  gene
expression during prostate cancer progression.  While promoter accessibility  is consistent
during disease initiation and progression, at distal sites chromatin accessibility is variable
enabling transcription factors (TFs) binding patterns that are differently activated in different
patients  and  disease  stages.  We  identify  consistent  progression-related  chromatin
alterations  during  the  progression  to  CRPC.  By  studying  the  TF  binding  patterns,  we
demonstrate  the  activation  and  suppression  of  androgen  receptor-driven  regulatory
programs  during  PC  progression  and  identify  complementary  TF  regulatory  modules
characterized by e.g. MYC and glucocorticoid receptor. By correlation analysis we assign at
least  one putative  regulatory region for  62% of  genes and 85% of  proteins  differentially
expressed during prostate cancer progression. Taken together, our analysis of the chromatin
landscape in PC identifies putative regulatory elements for the majority of cancer-associated
genes and characterizes their impact on the cancer phenotype. 
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Introduction

Prostate cancer (PC) is a common malignancy with heterogeneous phenotypes in men. In
18% of patients, disease progresses to lethal castration-resistant prostate cancer (CRPC)
(Siegel et al., 2018). Recurrent genomic alterations in primary and metastatic PC have been
identified and their role in disease progression has been studied extensively (Armenia et al.,
2018; Espiritu et al.,  2018; Grasso et al.,  2012; Gundem et al.,  2015; Peng et al.,  2015;
Quigley et al., 2018; Robinson et al., 2015). In addition to implicating cancer genes, genome
sequencing  studies  have  revealed  structural  variation  in  non-coding  regions,  including
enhancer elements driving oncogene expression  (Takeda et al., 2018; Viswanathan et al.,
2018). Epigenetic characterization studies have further extended understanding of the non-
coding genome by revealing the role of DNA methylation patterns (Bedford and van Helden,
1987; Börno et al., 2012; Friedlander et al., 2012; Jimenez et al., 2000; Lee et al., 1997;
Mahapatra et al., 2012; Varambally et al., 2002; Xu et al., 2012; Zhao et al., 2020), specific
transcription  factor  (TF)  binding  sites  and  histone  modifications,  including  the
characterization  of  the  active  enhancer  landscape  in  PC  tissues  (Kron  et  al.,  2017;
Pomerantz et al., 2015, 2020; Stelloo et al., 2018; Urbanucci et al., 2012, 2017; Yu et al.,
2010).  Still,  how  the  chromatin  landscape  evolves  during  PC  progression  and  drives
aberrant  transcriptome  (Cancer  Genome  Atlas  Research  Network,  2015) and  proteome
(Latonen et al., 2018; Sinha et al., 2019), is unclear.

Genomic  aberrations  and  epigenetic  regulation  alter  chromatin  structure  in  cancer  cells
(Flavahan et al.,  2017; Losada, 2014). Different chromatin accessibility  analysis methods
have been used to identify the chromatin landscape across cell lines (Thurman et al., 2012),
tissues (Roadmap Epigenomics Consortium et al., 2015), and, most recently, tumor tissues
(Corces et al., 2018). In PC, the study by  Corces et al. uncovered chromatin accessibility
changes  at  single-nucleotide  polymorphism  that  are  associated  with  increased  PC
susceptibility and illustrated androgen receptor (AR) binding site enrichment in regulatory
regions  specific  to  primary  PC  (Corces  et  al.,  2018).  A  recent  epigenetic  study  further
demonstrated an association between prostate lineage-specific regulatory elements and PC
risk loci and somatic mutation density in different stages of PC  (Pomerantz et al., 2020).
Binding of AR prominently occurs at distal regulatory elements (Massie et al., 2011; Yu et
al., 2010), and AR-driven regulatory programs are context-dependent (Sharma et al., 2013;
Wang et al., 2009)(Pomerantz et al., 2020)(Sharma et al., 2013; Wang et al., 2009). In PC
cells, AR (Urbanucci et al., 2012; Yu et al., 2010), FOXA1 (Adams et al., 2019; Parolia et al.,
2019; Sahu et al., 2011), HOXB13 (Chen et al., 2018; Pomerantz et al., 2015), ERG, and
CHD1 (Augello et al., 2019) have emerged as epigenetic drivers of disease (Stelloo et al.,
2018). More specificly, ERG fusion-positive tumors have a cis-regulatory landscape that is
distinct from other tumors (Kron et al., 2017), and aberrant ERG expression has been shown
to  alter  chromatin  conformation  and  regulation  in  prostate  cells  (Rickman  et  al.,  2012;
Sandoval et al., 2018; Yu et al., 2010).

To gain insight into the role of the chromatin dynamics in determining phenotypes in PC
progression, we analyzed chromatin accessibility in a cohort of clinical patient samples of
human PC from benign prostatic hyperplasia (BPH), untreated primary prostate cancer (PC),
and locally recurrent castration-resistant prostate cancer (CRPC). By integrating DNA, RNA,
protein, and DNA methylation data (Annala et al., 2015; Latonen et al., 2018; Ylipää et al.,
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2015) from the same samples, we provide a comprehensive catalogue of  chromatin-related
alterations in PC development and progression. Our results highlight high heterogeneity of
regulatory  elements  utilization,  complementarity  of  chromatin  accessibility  with  DNA
methylation, and extensive chromatin-driven reprogramming of the AR activity. In this study,
we uncover putative regulatory elements for 65% and 85% of progression-related genes and
proteins, respectively. 

Results

ATAC-seq data from human prostate tissues

To  study  the  chromatin  landscape’s  role  in  PC  development  and  progression,  we  first
optimized the assay for transposase-accessible chromatin using a sequencing (ATAC-seq)
protocol  (Buenrostro  et  al.,  2013) for  frozen tissue samples.  We characterize  chromatin
accessibility  in  11 BPH,  16 PC,  and 11 CRPC  prostate tissue samples (see  Methods,
Supplementary Table 1). In earlier studies, we have analyzed these same samples using
DNA,  RNA,  and DNA methylation  sequencing  and SWATH proteomics  (Supplementary
Table 1) (Latonen et al., 2018; Ylipää et al., 2015). Here, these data types were integrated
with the ATAC-seq data (Figure 1A). ATAC-seq data depth varied from 69 to 204 million
reads  per  sample.  Quality  control  illustrated  that  there  was  no  significant  association
between the sequencing depth and key quality parameters such as transcription start site
(TSS) enrichment or  number of detected peaks (Supplementary Figure 1A-C).  On the
contrary,  we  observed  a  good  correlation  between  high  quality  autosomal  alignments
(HQAA) and TSS enrichment, indicating a good signal to noise ratio. 

Chromatin accessibility at distal sites is heterogeneous in prostate cancer

To  identify  accessible  and  progression-related  chromatin  features,  we  used  two
complementary  approaches.  In  the  first  approach,  accessible  chromatin  regions in  each
sample were identified by peak calling using MACS2 peak calling algorithm (Zhang et al.,
2008). We identified 23,840 to 138,942 raw peaks per sample (Supplementary Table 1).
The  number  of  detected  peaks  was  not  characteristic  to  a  specific  sample  group,  but
samples with high and low peak count  were observed throughout  BPH,  PC, and CRPC
groups (Figure 1B). To obtain a robust set of reproducible peaks across samples, we used a
previously proposed approach to unify raw peak calls (see Methods)(Corces et al., 2018).
This  approach  resulted  in  the  compilation  of  178,206  peaks  across  the  sample  set
(Supplementary Table 1).  This  is  consistent  with previous  estimates for  the  number  of
cancer  type-specific  peaks  in  chromatin  accessibility  data  (Corces  et  al.,  2018).  In  the
second approach, we performed genome-wide analysis to identify differentially accessible
regions  (DARs)  by  comparing  samples  in  BPH  to  PC  and  PC  to  CRPC  groups  (see
Methods). As a result, we identified 1,727 and 3,498 differentially accessible regions (DARs)
for BPH to PC and PC to CRPC, respectively, with  false discovery rate (FDR) below 10%
(Supplementary Table 2). For peaks and DARs, a clear chromatin accessibility signal is
detected (Figure 1C, Supplementary Figure 2A) and DNA methylation is depleted (Figure
1C, Supplementary Figure 2A) consistent with previous studies reporting decreased DNA
methylation at accessible chromatin loci (Corces et al., 2018; Urbanucci et al., 2017). 

Of the 180,442 identified chromatin features, 72% overlapped with regulatory regions found
in normal tissues  (Corces et al., 2018; Roadmap Epigenomics Consortium et al., 2015) or
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TCGA data  (Corces et al., 2018; Roadmap Epigenomics Consortium et al., 2015) (Figure
1D). The overlap was consistent for both peaks and DARs (Supplementary Figure 2B).
TCGA data included 20 primary PC samples and within these samples 65.8% of their peaks
overlap  with  our  peak  set.  Taken  together,  our  data  showed  consistency  with  earlier
chromatin accessibility studies and we were able to expand the known regulatory landscape
by discovering 38,157 new prostate cancer related chromatin features. 

Of  all  identified  chromatin  features  7.4%  were  in  promoters,  6.6%  were  in  exons  and
untranslated  regions,  39.3%  were  in  introns  (51.8%  overlapping  previously  marked
enhancers), and 46.7% were intergenic (32.5% overlapping previously marked enhancers)
(Fishilevich et al., 2017) (Figure 1D). Peaks and DARs were distributed similarly, except for
the promoter region in which 7.4% of the peaks but only 1.9% to 2.4% of the DARs were
located  (Supplementary  Figure  2B).  Furthermore,  the  peaks  located  at  promoters  had
higher  signal  intensity  than  peaks  in  other  genomic  annotation  groups  (Supplementary
Figure 2C-D).  In addition,  60% of the peaks common to all  the samples are located on
promoters (Figure 1E, Supplementary Figure 2E). When assigning the peaks to a sample
group or groups based on if they are present in a specific sample (Figure 1F), we observed
that most peaks are not group-specific. For the peaks assigned to each sample group, the
annotation  distribution  is  similar  (Supplementary  Figure  2F).  Importantly,  we  did  not
observe any peaks that would be group-specific and present in all the samples of that group
(Supplementary  Figure  2G).  These  data  show that  while  promoters  are  robustly  open
across samples, accessibility at other genomic regions is highly variable between samples
and  sample  groups.  This  indicates  that,  while  accessibility  remains  robust  during  PC
progression, most of the chromatin alterations occur at intronic and intergenic regions.
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Figure 1: Chromatin accessibility in promoters is robust during prostate cancer 
progression
A. Cartoon illustration of ATAC-seq data analysis. After (1) generating ATAC-seq data from
human prostate tissues, we (2) identified peaks and differentially accessible regions (DARs)
between BPH,  PC and CRPC groups.  We (3)  compared chromatin accessibility  to  DNA
methylation  and  (4)  gene  and  protein  expression.  Next,  we  associated  (5)  accessible
chromatin regions with correlating target genes within the same topologically  associating
domains  (TADs).  Finally,  (6)  transcription  factor  binding  at  accessible  chromatin  was
analyzed  using TF footprinting,  integration  with ChIP-seq data,  and using deep learning
models to uncover binding context. B. Boxplots of the number of raw peaks in each sample
(grey dots)  in  BPH,  PC,  and CRPC groups are shown.  Peak counts in  each group are
comparable.  C. Background-corrected coverages from ATAC-seq data  at  peak locations
show a strong signal. Background-corrected DNA methylation data in the same locations is
slightly depleted. Distances are relative to peak center. Median signals from BPH, PC, and
CRPC samples are shown.  D. Chromatin features are ordered in the donut plot based on
their annotation to genomic location categories: intergenic, intron, promoter, and exon and
untranslated  regions  (5’-UTR,  3’-UTR,  transcription  termination  sites,  non-coding  RNA).
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Majority of the features are located in intergenic and intronic regions. For each category, the
proportion  of  previously  identified  areas of  accessible  chromatin  (Roadmap and TCGA),
known enhancer regions (GeneHancer), and detected TF binding sites from ChIP-seq data
(GTRD) are shown. Fraction of chromatin features belonging to each region is shown in the
donut plot with percentages given in labels. E. The proportion of peaks located in genomic
location categories is shown for peaks present  in the different number of samples. Most
consistently observed ATAC peaks are located at promoters, and peaks in the distal regions
are more heterogeneous across the samples.  F. Percentage of peaks in different sample
group combinations. Although the majority of peaks are present in samples from all three
sample groups, a subset of peaks are sample group-specific. 

Progression-related chromatin alterations are consistent 

Having  characterized  chromatin  features,  we  looked  into  its  alterations  over  disease
progression.  Comparing  DARs in  BPH to  PC and  PC to  CRPC we  found  little  overlap
(Figure 2A) suggesting that differential accessibility-related chromatin changes are specific
to PC initiation and to progression of CRPC (Figure 2B, Supplementary Figure 3A). DARs
in  PC  to  CRPC  comparison  show  a  clear  increase  in  untranslated  and  exon  regions
(Supplementary  Figure  2B,  Supplementary  Figure  3B).  These  loci  are  not  usually
reported to harbor gene regulatory elements, but this combined with the finding that CRPC
samples  show  more  opening  DARs  than  the  other  group  (Figure  2A, Supplementary
Figure 2B) may reflect overall chromatin relaxation (Urbanucci et al., 2017) or events related
to chromatin reorganization.

Using  methylated  DNA immunoprecipitation  sequencing  (MeDIP-seq)  data  on  the  same
clinical samples, we also called progression-related differentially methylated regions (DMRs)
(see Methods). Comparing BPH to PC and PC to CRPC, we found 2,061 and 2,723 DMRs
(Supplementary Table 2, Figure 2C). Comparing DARs and DMRs, we detected only 13
(0.6%) and 23 (0.8%) overlapping features  in each comparison(Figure 2C, Supplementary
Figure 2B, Supplementary Figure 3C, Supplementary Table 2). Little overlap between
DARs and DMRs suggests that regulation of chromatin accessibility and DNA methylation
might  work  as  distinct  epigenetic  regulatory  mechanisms  in  PC,  affecting  different
transcriptional outputs.  

Heterogeneity  in  chromatin  accessibility  is  associated  with  disease-relevant
regulators

As most of the observed chromatin alterations occur at intronic and intergenic regions, to
understand  how the  heterogeneity  of  chromatin  relates  to  disease  progression,  we  first
focused on the cancer-specific peaks (Figure 1F) with highest variance in signal across the
samples. This includes mostly peaks distal from TSS, whilst promoter peaks are depleted in
this set (Supplementary Figure 3D). Unsupervised analysis of these peaks (see Methods)
separated the samples in three clusters containing 273 to 1655 peaks, but failed to separate
PC and CRPC samples in a data-driven manner (Figure 2D, Supplementary Figure 3E).
The three clusters did not correlate with tumor class/state, Gleason score, or ERG fusion
status.  However,  the  peaks separated in  seven clusters based  on consensus clustering
(Supplementary Figure 3F). Enrichment analysis using TF binding site predictions in each
of the seven peak clusters was used to evaluate whether these contained regulatory regions
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for specific TFs (Supplementary Figure 3E, Supplementary Table 1). Interestingly, each
peak cluster is associated with DNA binding of different PC-related TFs. ERG-enriched and
AR-  and  FOXA1-enriched  clusters  showed  a  similar  activity  pattern  across  samples.
Likewise epithelial to mesenchymal transition (EMT) associated Wnt/β-Catenin signaling and
TEAD1 and SNAI1 clusters behave similarly (Odero-Marah et al., 2018; Zhou et al., 2016).
AR pioneering factors GATA2 and HOXB13 (Hankey et al., 2020; Pomerantz et al., 2015)
were enriched into the same cluster, which showed the highest accessibility in the CRPC-
rich sample group. Other clusters represent sample specific signals, for example, immune
response related TFs were highly accessible only in one CRPC sample, possibly due to the
patient’s immune response. 

To further study the effect of chromatin accessibility variation on TF activity, we performed
TF footprint analysis in each sample for expressed TFs with available binding motif (see
Methods,  Figure 2E, Supplementary Table 3). Quantification of TF footprint by “flanking
accessibility” (FA) and “footprint depth” (FD) allows the study of TF activities in a genome-
wide manner (Baek et al., 2017). For the majority of TFs, FA and FD correlate. Notably, we
do not detect any TF e.g. with low FA and high FD. Several disease relevant TFs, including
AR and FOXA1, are among the ones with largest change in FA and FD during progression
(Figure 2E). AR, and related co-factors FOXA1, and HOXB13 have similar Tn5 insertion
patterns with the highest accessibility in PC (Figure 2F) while ERG accessibility is similar in
all sample groups. During progression to CRPC, CTCF displays a large change in FA which
might reflect relaxation or other alterations of chromatin structure. 

Taken together, these results highlight a highly heterogeneous chromatin landscape across
samples, and demonstrate that the observed regulatory patterns are associated with known
disease-relevant processes and regulators. Furthermore, changes in disease relevant TF
activities are consistent over progression.

Similar TF binding syntaxes are conserved  across tumor samples

To  understand  if  the  heterogeneity  in  chromatin  accessibility  leads  to  variability  in   TF
binding  syntax,  we  utilized  the  recently  developed  BPNET  model  (Avsec  et  al.)(see
Methods).  BPNET  builds  predictive  models  of  chromatin  accessibility,  and  recursively
decomposes the output to assign base-pair contribution scores to every input sequence that
can be combined to obtain binding syntax motifs. We tested the model with cell line data and
were able to discover highly  detailed binding patterns,  e.g.  different  forms of  known AR
binding  configuration,  demonstrating  the  feasibility  of  the  approach  with  ATAC-seq  data
(Supplementary Figure 4). With application to data from patient samples we observed that
model  performance  is  dependent  on  both  the  signal-to-noise  ratio  and  the  number  of
available training peaks (Figure 2G).  When we trained the model  on individual  samples
using the whole  reproducible  peak set,  we were able  to recover  motifs  that  match with
known  TFs,  including  AR,  FOXA1,  CTCF,  GRHL2  and  SP  family  (Figure  2H,
Supplementary Table 3). Despite high heterogeneity in peaks across samples, detected
binding syntaxes are consistent. When performing model training using only peaks with a
known DNA binding site (see Methods) for key TFs AR, FOXA1, or HOXB13, we observed
a consensus binding motif for all tested TFs across high quality samples (Supplementary
Table 3, Supplementary Figure 5-8). This observation further supports the idea that TFs
binding  properties  do  not  change  despite  heterogeneity  in  chromatin  accessibility.  In
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addition, we were able to identify disease state-related factors co-occurring with selected
driver TFs (Supplementary Table 3, Supplementary Figure 5-8).

Figure 2: Differential accessibility is concentrated on regulatory regions
A.  Venn diagram showing  the  numbers  BPH to  PC and  PC to  CRPC DARs and  their
overlap. Only a small portion of DARs are shared between comparisons.  B.  Clustering of
samples using ATAC-seq signal of DARs separates them into BPH, PC, and CRPC groups,
and identifies progression-related chromatin accessibility patterns. Scale bar shows log2 of
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normalized ATAC-seq signal.  Pearson correlation  was used as the distance metric,  and
linkage  was  calculated  using  the  Weighted  Pair  Group  Method  with  Arithmetic  Mean
(WPGMA) algorithm. C. Donut plots show genomic location categories for DMRs from BPH
to PC and PC to CRPC comparison groups. Rings show whether DMR is hypermethylated
or  hypomethylated and whether  it  is  located in  a known CpG-island (within  +/2kb).  The
outermost wedges show overlap with opening and closing DARs. In labels, percentages are
given for BPH to PC and PC to CRPC DMRs, respectively. Differential accessibility and DNA
methylation during progression occur at distinct loci. D.  Unsupervised clustering of cancer-
specific peaks shows clear clusters but fails to separate PC samples from CRPC samples.
E. TF footprinting based on Tn5 transposase insertion sites was done for all expressed TFs
with HOCOMOCO motif to quantify flanking accessibility and footprint depth. Averages from
BPH, PC, and CRPC samples are shown and transitions in footprinting space (BPH to PC in
green, PC to CRPC in red) are illustrated for PC-related TFs and those with the largest
change between groups. Mean change is shown in the inset.  F. Detailed TF footprints for
key TFs AR, FOXA1, HOXB13, and ERG to illustrate the change in chromatin accessibility
during progression. Quantification of footprint depth and flanking accessibility are shown in
the  insets.  G.  Motif  discovery  with  BPNET  correlates  with  the  signal  to  noise  (TSS
enrichment) and the number of peaks used in training. H. Example of discovered motifs with
BPNET on high quality sample PC_9324.

Distal regulatory elements accessibility correlate with expression of disease relevant
genes 

To gain insight into the functional role of accessible chromatin, we integrated ATAC-seq data
with  RNA  and  protein  expression  data  from  the  same  samples  (see  Methods).  While
promoter accessibility was consistent across samples, correlation between gene expression
and transcription start sites (TSS) accessibility is very moderate (Spearman correlation ρ =
0.11 and ρ = 0.04 for RNA and protein data, respectively; Figure 3A, Supplementary Table
4).  Analysis  of  gene  groups  with  different  expression  levels  (high,  moderate,  low,  and
housekeeping  genes)  suggests  that  this  is  due  to  promoters  of  expressed genes  being
mostly open in basal state (Figure 3B). However, differential chromatin accessibility at TSS
and differential expression between groups are still co-occurring. For differentially expressed
(D.E.)  genes in  the BPH to PC comparison,  we observed an enrichment  of  genes with
association between accessibility and expression (Fisher’s exact test p < 10 -16, Figure 3C).
These included several PC-related oncogenes such as AR, MYC, and BCL11A (Figure 3D).
In the PC to CRPC comparison, there was an enrichment of genes in which TSS closing was
associated with decreased expression (Fisher’s  exact  test  p = 9.19 *  10-16,  Figure 3C).
Overall, from the promoter-proximal regions (-1kbp/+100bp), we detected 418 peaks, one
BPH to PC DAR, and 9 PC to CRPC DARs with strong correlation (|correlation coefficient| >
0.5) to expression for the adjacent gene (Supplementary Table 4). For the PC to CRPC
comparison, eight out of nine DARs showed increased accessibility.  The remainder DAR
shows reduced accessibility in CRPC and is  located in the promoter of the MIR30A gene,
which codes for a tumor suppressor miRNA  (Jiang et al.,  2018) downregulated in CRPC
(log2 fold change  -1.2389, Spearman ρ = 0.7 p = 6.18*10-5). Thus, while global correlation is
moderate,  the  expression  of  several  disease-relevant  genes  is  strongly  correlated  with
promoter  accessibility,  suggesting  reconfiguration  of  the  promoter  state  during  disease
progression. 
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Next,  we focused on understanding how  distal accessible chromatin sites, that vary the
most across the sample set, associate with gene expression changes. Co-regulated genes
are  found  within  topologically  associating  domains  (TAD,  (Pombo  and  Dillon,  2015)).
Therefore, to limit the target gene associations to a biologically meaningful context, we used
previously  published annotations  of  TADs  (Pombo and Dillon,  2015) from PC cells  (see
Methods). Within these TADs boundaries, we identified all peak-gene and DAR-gene pairs
with  a  strong  correlation  (see  Methods,  Supplementary  Figure  9).  All  together  9.6%
(17,066) of all peaks and 25.4% (1300) of DARs were assigned to putative target genes
based on correlation (Supplementary Table 4),  including 8977 unique genes from 1871
TADs. We found that 29.6% of PC to CRPC DARs correlate with gene expression while only
16.4%  of  BPH  to  PC  DARs  correlate.  Ingenuity  Pathway  Analysis  (IPA)  performed
separately for genes associated with either DARs or peaks showed several PC-related and
cancer-related pathways enriched (Supplementary Table 4), demonstrating that chromatin-
related changes reflect disease-relevant target gene alterations.

When looking into associations with specific PC genes, we found 5 PC to CRPC DARs and
48 peaks with strong correlation to  AR expression (Figure 3E,  Supplementary Table 4).
DARs correlated with AR expression are located within 2 Mbp region around the AR locus,
indicating regulatory potential throughout the TAD area. These DARs harbor binding sites for
key TFs including AR, FOXA1,  HOXB13, and ERG (Figure 3E). Peaks correlating with AR
expression are mainly upstream of TSSs (41/48) (Figure 3E). Identified peaks include an
enhancer known to be amplified in advanced PC ((Takeda et al., 2018; Viswanathan et al.,
2018)).  The expression of  42 known oncogenes (e.g.  EGFR, ERBB2,  JUN, FGFR1 and
FGFR2), 27 tumor suppressor genes (e.g.  NOTCH1, BRCA1, BRCA2, IL2) and 22 genes
related to chromatin regulation (e.g.  HDAC1, HDAC2, HDAC5, HDAC6, HDAC9, HDAC10,
and  SMARCD1)  correlated  with  the  chromatin  accessibility  of  at  least  one  peak
(Supplementary  Table  4).  In  addition,  the  expression  of  4  oncogenes  (JUN,  PIM1,
CARD11, and TFG), 5 tumor suppressor genes (PTEN, NOTCH1, CDK6, FH, and WT1) and
2 factors involved in chromatin regulation (HDAC7 and CHRAC1) were strongly associated
with DARs  irrespective of the comparison group (Supplementary Table 4).

Analyses of distal and promoter areas identified 418 associations from TSS signal to gene
expression as well as 27,353 peak–gene and 3,513 DAR-gene pairs. Expression-associated
areas of chromatin accessibility are mostly located close to TSSs (median distance 4.7 kbp
upstream of TSS) (Figure 3F). Also, 45.8% (4,124) of genes with expression correlating with
chromatin accessibility are linked to exactly one regulatory element, while 97 genes (1.07%)
can be associated to 30 or  more regulatory  elements  (mean= 3.4,  Figure 3F,  middle).
Likewise, 72.4% (13,359) of peaks or DARs correlating with gene expression are associated
with a single gene and 35 are linked to 30 or more unique genes, indicating that those might
be regulatory hubs (mean=1.7,  Figure 3F, right). Taken together, we could associate at
least  one  peak  or  DAR  to  45.5%  of  genes  and  30.8%  of  proteins  (Figure  3G,
Supplementary Table 4). When focusing on the genes with differential expression patterns,
62.4% and 84.7% of genes and proteins were associated, respectively. As reported earlier,
correlations at  the transcript  and protein levels  are not  consistent  (Latonen et  al.,  2018;
Sinha  et  al.,  2019),  but  both  data  levels  support  the  conclusion  that  the  majority  of
differential  expression  in  progression-related  genes   can  be  correlated  with  chromatin
accessibility.
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Figure 3: Distal features detected by ATAC-seq are correlated with gene expression in
prostate cancer samples
A.  Correlation between TSS chromatin accessibility and gene expression is moderate at the
genome-wide scale.  Density  plot  of  Spearman correlation coefficient  between gene (top,
median=0.11)  or  protein  (bottom,  median=0.04)  expressions  and  normalized  ATAC-seq
signal at the TSS. B. ATAC-seq background-corrected coverage on TSS. TSSs are grouped
based on expression of the gene (high, middle, and low (see  Methods)) or annotation to
housekeeping genes. Chromatin of expressed genes is accessible at TSS. Low expression
genes  show  minimal  chromatin  accessibility.  C.  Differential  expression  and  chromatin
accessibility  have  positive  association.  Scatter  plots  visualize  the  association  between
differential RNA expression and TSS accessibility in BPH to PC (top panel) and PC to CRPC
(bottom panel) comparisons. Differentially expressed genes are shown in red. Gray and red
lines  show regression  lines  fitted  to  their  corresponding  data  points  to  demonstrate  the
association between data types. Selected oncogenes are labeled. Numbers in the corners of
each quadrant of the scatter plot report counts of differentially expressed and total  genes.
Differentially  expressed  genes  are  enriched  for  opening  chromatin  and  increased
expression,  and closing and decreased expression in  BPH to PC comparison.  In PC to
CRPC comparison, enrichment is seen only in closing and decreased expression quadrant.
D.  Correlation  between  chromatin  accessibility  and  gene  expression  for  the  selected
oncogenes  demonstrate  increasing  (AR,  MYC)  and  decreasing  (BCL11A)  accessibility
during progression. For AR, outlier chromatin accessibility is observed for samples with high-
level  amplification identified from DNA-seq data (CRPC_278,  CRPC_541).  E. Correlation
analysis between chromatin accessibility and gene expression identifies putative regulatory
elements. In total 48 peaks and 5 DARs are detected in a 2 Mbp TAD region around the AR
locus. Known associations from GeneHancer database are shown in red. Binding sites for
selected TFs from GTRD database within associated DARs are shown. Red arrow indicates
a peak detected at recently reported AR enhancer locus. F. Characterization of correlations
shows that  associations between regulatory elements and genes are specific.  Left  panel
shows the distance of correlating chromatin features from TTS. Middle panel indicates the
number of chromatin features mapped to each gene. Finally, the last panel gives the number
of genes mapped to each chromatin feature. Summary statistics are given in the insets.
Mean, median, and maximum upstream (max up) and downstream (max down) distances
are reported for the distance distribution. For the middle and right panels, mean, median,
upper  quartile  and  maximum  number  of  associations  are  reported.  G. Summary  of  all
correlation  analyses.  Fraction  of  genes and proteins  correlating  with  ATAC-seq features
across all analyses is reported. Data for all and differentially expressed gene subsets are
shown.

Chromatin accessibility alterations during disease progression are associated with
different transcription factors regulatory modules

To gain understanding on how the chromatin accessible sites direct transcriptional programs
during PC progression, we generated TF–gene expression regulatory network. TFs were
connected to their target genes through known binding sites in accessible chromatin regions
(see  Methods).  We focused this  analysis  specifically  on DARs that  correlate  with  gene
expression  (Figure  4A).  From  the  TF-gene  network  that  we  generated,  we  identified
regulatory modules, defined as a set of TFs that share a set of target genes (see Methods).
Two clear modules with 1082 and 799 target genes emerged from the analysis. The module
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with the largest  number of  target  genes represents the well-characterized AR regulatory
program, including AR, FOXA1, and ERG (Figure 4B, Supplementary Figure 10A). The
second module contains a number of TFs with known function in driving aggressive prostate
cancer e.g. glucocorticoid receptor (NR3C1) as well as TF coding genes MYC, HOXB13,
GATA2, NKX3-1, and PGR (Chen et al., 2018; Grindstad et al., 2018; Isikbay et al., 2014;
Koh et al., 2010; Rodriguez-Bravo et al., 2017). Surprisingly, genes targeted by this second
module are a subset of AR module target genes (Figure 4C). We validated this by repeating
the analysis using peaks instead of DARs (Figure 4D, Supplementary Figure 10B-D). IPA
analysis  of  target  genes  confirmed  AR  as  an  upstream  regulator  for  both  modules
(Supplementary Table 4), but in the second module, AR activity is predicted to be inhibited.
This suggests that this second TF module could compensate for reduced AR activity e.g.
due to androgen deprivation treatment. This was clearly shown for glucocorticoid receptor
which is upregulated in CRPC especially resistant to enzalutamide treatment  (Arora et al.,
2013).

To elucidate the interplay of TFs in more detail, we performed a comparative analysis of TF
binding sites, identified from prostate cancer cells,  in opening and closing DARs (Figure
4A). In DARs from BPH to PC comparison AR, FOXA1 and HOXB13 binding sites are the
most abundant  and are co-occurring within 53.1% and 2.1% of  opening and closing AR
sites,  respectively  (Figure 4E,  Supplementary Figure 10E).  In PC to CRPC DARs,  we
observed  the  opposite  pattern  with  1.6% and  36.1% of  opening  and  closing  AR  sites,
respectively  (Figure  4F,  Supplementary  Figure  10E).  Again,  we  observed  consistent
correlations  when repeating  the analysis  using peaks instead of  DARs (Supplementary
Figure 5F). These results suggest that chromatin opening in PC remains mostly accessible
also in CRPC and harbour AR binding sites. Moreover, in CRPC new chromatin opening
events enable additional TFs to bind the regulatory regions (Supplementary Figure 10G-H).
Concomitantly, in CRPC several AR binding sites are closing, consistent with reduced AR
activity in CRPC samples (p=0.02, Supplementary Figure 10I).

To test whether the chromatin in CRPC is selectively closed in AR binding sites related to
canonical AR regulation, we used publicly available cell line data (Massie et al. 2011). To
study  the  interplay  between  AR chromatin  binding,  androgen  stimulation  and  chromatin
accessibility we evaluated the overlap between androgen-induced AR binding sites in cell
lines and DARs (Figure 4G, Supplementary Figure 11A). The majority of DARs are open
in BPH to PC and closed in PC to CRPC comparison, which confirms our hypothesis that the
canonical AR regulation is suppressed during progression to CRPC. In agreement with this
observation, more PC-specific ATAC-seq peaks overlap these AR binding sites than CRPC-
or BPH-specific peaks (Supplementary Figure 11B). We also note that the AR binding site
locations  from the cell  line have most  accessible  chromatin in  PC samples (Figure 4H,
Supplementary Figure 11C-F).
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Figure 4: Disease progression alters prostate cancer-specific transcription factor 
binding site accessibility and regulatory programs
A. Donut plots showing numbers of gene expression correlating DARs in BPH to PC (left)
and PC to CRPC (right) comparisons. Shown are also percentages of opening and closing
sites and whether they harbour TF binding sites as characterized in the GTRD database. B.
Hierarchical clustering of TF  gene expression network uncovers two groups of TFs: a core
cluster  composed of AR, ERG, FOXA1 and ESR1, and a second cluster  sharing a high
number of target genes with the AR core cluster. Complete linkage and euclidean distance
were used in clustering. Scale bar encodes the number of shared genes. C. Venn diagram
shows that the two TF clusters indicated in B share a substantial amount of target genes. D.
Repeating the intersection analysis with genes linked to peaks, a similar pattern as in C is
observed.  E. Oncoprints illustrate 15 TFs with the highest number of binding sites (taken
from GTRD prostate cancer subset) overlapping with gene expression correlating DARs.
Panels  represent  sites  from BPH to  PC opening  (top)  and  closing  (bottom)  DARs.  AR
binding sites are present in almost all  (92%) opening sites in this comparison.  F.  Similar
oncoprints as in E but for PC to CRPC opening (top) and closing (bottom) DARs. In this
comparison, most of the closing sites (92%) include AR binding sites G. Androgen-induced
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AR binding sites taken from Massie et al. 2011 within DARs are present in opening regions
in  BPH  to  PC  comparison  and  in  closing  regions  in  PC  to  CRPC  comparison. H.
Background-corrected ATAC-seq coverage of AR binding sites from androgen-treated (DHT)
cells (Massie et al. 2011) is stronger in PC samples than other sample groups.

Discussion

In this study we integrated for the first time data on chromatin accessibility, DNA methylation,
transcriptome,  and  proteome in  clinical  BPH,  PC,  and CRPC tissue samples.  We used
ATAC-seq to define a catalogue of accessible genomic regions and to characterize changes
in chromatin accessibility during PC progression. The identified open chromatin regions are
consistent with previous chromatin accessibility studies (Roadmap Epigenomics Consortium
et al., 2015); (Corces et al., 2018). Furthermore, the number of detected peaks is consistent
with earlier  predictions of  cancer type-specific  peaks  (Corces et  al.,  2018). Our analysis
extended  the  known  chromatin  landscape  by  38,157  reproducible  previously  uncovered
accessible  chromatin  sites  specific  for  PC.  The  majority  of  these  sites  have  previously
reported TF binding activity.  

The chromatin accessibility  of  PC shows inter-sample heterogeneity.  While  we observed
consistent accessibility at promoter regions during disease progression, accessibility does
not correlate well with gene expression at the genome-wide level. As gene expression is
regulated by the repressive or activating functions of the TFs binding to the promoters and
distal regulatory elements, it is clear that promoter accessibility signal alone cannot be highly
predictive  of  expression,  as  reported  also  by  several  earlier  ATAC-seq  studies  across
different systems (Rajbhandari et al., 2018; Scharer et al., 2018; Toenhake et al., 2018; Wu
et al.,  2018). This  also highlights the important  role of enhancers and their  regulation in
driving  tumor  development  and  progression.  We  did  observe  strong  correlation  with
promoter or putative enhancer accessibility to gene expression for a subset of PC-related
genes. At least one putative accessible regulatory element was found for 62.4% of protein
coding genes and 84.7% of proteins with a differential  expression. The majority of these
regulatory elements are from the peaks and DARs that correlate with genes within the same
TAD,  providing  a  rich  resource  of  candidate  genes  and  regulatory  elements  for  future
investigation. 

Still, a large fraction of putative regulatory regions could not be associated with genes. This
might be explained by our utilization of stringent criteria for detecting target genes because
of the limited cohort size. In addition, we used predefined TAD structure in the analysis and
thus,  our  analysis  could  not  detect  associations  resulting  from  altered  TAD boundaries
(Taberlay  et  al.,  2016).  Furthermore,  many  of  the  identified  regions  might  contribute  to
functions  other  than direct  regulation  of  gene expression.  For  example,  it  is  known that
higher order chromatin structure alterations may occur in PC tumorigenesis  (Gerhauser et
al., 2018), such as chromatin compartment formation and looping  (Gerhauser et al., 2018;
Rowley et al., 2018; Weischenfeldt et al., 2017). We did observe a large number of CTCF
binding sites in peaks and DARs that may partially reflect these phenomena. Moreover, the
majority  of  DARs  in  BPH  to  PC  and  PC  to  CRPC  were  opening  (84.3%  and  63.2%,
respectively), supporting the idea that chromatin in PC initiation and progression undergoes
a process of continued relaxation (Urbanucci et al., 2017)(Braadland and Urbanucci, 2019). 
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Chromatin accessibility and DNA methylation had the expected inverse relationship at the
genome-wide level. The increase in the number of DMRs in the PC to CRPC comparison
was not as significant as the two-fold increase in the number of DARs. This indicates that
methylation-independent changes in chromatin accessibility are more prevalent during the
progression to CRPC. Furthermore,  DMRs and DARs overlapped in only a few regions,
suggesting  that  these  two  epigenetic  mechanisms  are  driving  different  transcriptional
regulatory programs. Earlier work has shown the interplay between chromatin modifications
and DNA methylation through interaction of EZH2 with DNA methyltransferases (DNMTs)
(Viré  et  al.,  2006).  Further  studies  are  needed  to  better  understand  how  differential
regulation of DNA methylation and chromatin accessibility are targeted.  

Integration of TF binding data and predictions with accessible chromatin areas allowed us to
analyze the regulatory programs that are associated with the identified peaks and DARs.
Analysis  of  TF  binding  patterns  demonstrated  that  despite  high  variability  in  chromatin
accessibility, the observed motifs and TF enrichments are consistent during PC evolution.
This suggests that there are a number of different chromatin configurations that can lead to
similar phenotypes. For instance, AR was identified among the top candidate regulators but
at  the  same  time,  the  AR  gene  was  one  of  the  most  targeted  genes  by  chromatin
remodelling during PC progression. A number of  sites with accessibility were present in the
genomic neighborhood of AR, including a previously reported AR-enhancer site, which was
shown  to  be  activated  by  structural  rearrangement  (Takeda  et  al.,  2018).  The  analysis
revealed that the interplay between AR, FOXA1, and HOXB13 TFs (Pomerantz et al., 2015)
was the most prominent PC initiation-associated transcriptional regulatory module. FOXA1 is
known to pioneer TFs binding to chromatin, including AR (Lupien et al., 2008) (Jozwik and
Carroll, 2012). HOXB13 is a prostate lineage-specific TF and germline alterations have been
shown to increase PC risk (Ewing et al., 2012). Previous studies with PC cell-lines identified
alternative AR programs in CRPC (Sharma et al., 2013; Wang et al., 2009). Here we were
able to show that this AR, FOXA1, HOXB13 program is initially activated in PC then depleted
during progression to CRPC, when it is substituted by  the activation of alternative regulatory
modules composed of  several TFs previously  reported to be important in progression to
CRPC. These  TFs  include  glucocorticoid  receptor,  known  to  have  a  role  in  developing
resistance to antiandrogens  (Arora et al., 2013), and progesterone receptor that has been
associated with disease progression (Grindstad et al., 2015, 2018). Overall, these analyses
demonstrate that epigenetic  chromatin reprogramming during CRPC progression enables
binding sites for disease driving TFs, in addition to AR. 

In summary, we demonstrated how transcriptional regulatory programs are altered in PC
progression by characterizing the chromatin accessibility  landscape and its alterations in
human PC tissue.  We reveal  regulatory  elements  that  are  activated  in  PC and  identify
putative regulators for known oncogenic and tumor suppressive genes. 

Methods

Sample collection

Fresh frozen tissue specimens were acquired from Tampere University Hospital (Tampere,
Finland). 11 BPH, 16 untreated PC, and 11 CRPC samples were used for ATAC-seq library
generation. BPH samples included were collected either by transurethral resection of the
prostate (TURP; n=4) or  radical prostatectomy (RP; n=7) (Supplementary Table 1).  PC
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samples were obtained by radical  prostatectomy. Locally  recurrent  CRPC samples were
obtained by transurethral resection of the prostate. Samples were snap-frozen and stored in
liquid nitrogen. Histological evaluation and Gleason grading was performed by a pathologist
based  on  hematoxylin/eosin-stained  slides.  All  samples  contained  a  minimum  of  70%
cancerous or hyperplastic cells.  The use of clinical  material was approved by the ethical
committee of the Tampere University Hospital. Written informed consent was obtained from
the donors.

Tissue sample processing 

Samples were cut from the frozen blocks as 2x50 µm sections. Nuclei were isolated from
these sections. All the steps were performed on ice. First 6 ml of ice cold lysis buffer (10 mM
Tris·Cl, pH 7.4, 10 mM NaCl, 3 mMMgCl2, 0.1% (v/v) Igepal CA-630, 1× protease inhibitors
(Roche, cOmplete)) was added to pre-cooled petri dish and sections were moved from tube
to petri dish with 1 ml of lysis buffer. Sections were cut into smaller pieces with a scalpel.
Buffer and sections pieces were moved to a 15 ml Falcon tube. Each sample was pulled
through a 16 G needle 15 times. Larger pieces were let to sink to the bottom. Supernatant
was moved into a new tube and centrifuged at 700 g for 10 min at 4 °C. Supernatant was
removed and the pellet  was dissolved in a PBS buffer. Nuclei  were counted and 50,000
nuclei were transferred to a new tube. Nuclei were pelleted by centrifugation at 700 g for 10
min at 4 °C. Supernatant was removed. 

Processing of cell lines

VCaP cells  were cultured in  culbecco’s  modified  eagle’s  medium with  10% fetal  bovine
serum  and  1% L-glutamine.  Cells  were  harvested  using  trypsin  and  counted.  We  took
50,000 cells and centrifuged them at 500 x g for 5 min, 4°C. Cells were washed once with 50
µl  cold  1xPBS  buffer  and  centrifuged  again  with  the  same  settings.  Supernatant  was
removed and cells resuspended to 50 µl of cold lysis buffer followed by centrifugation with
the same settings. Supernatant was removed.  

ATAC-seq library generation and sequencing

ATAC-seq libraries were generated as presented earlier  (Buenrostro et al., 2013). Briefly,
transposition mix (25 μl 2× TD buffer, 2.5 μl transposase (Tn5, 100 nM final), 22.5 μl water)
was  added  to  the nuclear  pellet.  Reaction  was incubated  at  37 °C for  45 minutes  and
amplified using PCR. Samples were purified using Qiagen MinElute PCR Purification Kit and
again  using  Agencourt  AMPure  XP  magnetic  beads.  For  primer  sequences,  see
Supplementary Table 1. 

Samples  were  sequenced  using  Illumina  NextSeq  high  output  2x75  bp  settings.  Seven
samples were sequenced per run.  Number  of  obtained sequencing reads is  provided in
Supplementary Table 1. 

ATAC-seq data quality control, alignment, and peak detection

Raw  sequencing  reads  were  inspected  using  fastqc  version  0.11.7
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and subsequently trimmed with
Trim Galore version 0.5.0 (https://github.com/FelixKrueger/TrimGalore) using parameters --
fastqc --paired --length 20 -q 20. Sequence alignment was performed using Bowtie2 version
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2.3.4.1  (Langmead  and  Salzberg,  2012) against  GRCh38  reference  genome.  During
alignment, parameters --sensitive-local and -X 2000 were used. Additional filtering (-q 20),
sorting and indexing was done with Samtools version 1.8 (Li et al., 2009). Finally duplicates
were  marked  using  Picard  Markduplicates  tool  version  2.9.2
(http://broadinstitute.github.io/picard/),  with  parameters
VALIDATION_STRINGENCY=LENIENT and REMOVE_DUPLICATES=FALSE. For filtered
alignments, peak calling was done with MACS2 v2.1.0 (Zhang et al., 2008) using parameters
-g hs --llocal 160000 --slocal 147 -q 0.05 -f BAMPE --nomodel --broad --bgd --call-summits.
Final quality control was performed for aligned samples after peak calling using ataqv toolkit
(version 1.0.0, https://github.com/ParkerLab/ataqv).

Identification of artefact regions

As significant number of ATAC-seq reads originate from mitochondria, this can bias analysis
at loci which have homology to autosomal or sex chromosome sequences. To exclude these
regions  from the  analysis,  we  generated  100  copies  of  all  the  30-mer  sequences  from
mitochondrial  DNA  and  aligned  them  to  CRGh38  genome  reference  from  which
mitochondrial DNA had been excluded. Bowtie2 with --very-sensitive parameter was used.
Alignments were converted to bed ranges using bedtools version 2.27.1 genomecov and
merge tools (Quinlan and Hall, 2010).

ATAC-seq signal quantification

We binned the genome into overlapping windows of size 500 bp and steps of 250 bp. To
obtain  read  counts  in  each  window,  we  used  bedtools  coverage  -counts.  For  robust
quantification of the signal in loci of interest, background correction, normalization and bias
correction steps were performed. To obtain background corrected read count  c for a given
window at position x, we used the following formula:

c (x )=max(0 ,(R(x )−max (Q1(P10 kbp(x)),Q1(P100 kbp(x)) ,Q1(Pc h r(x ))))) 

where R is the read count for the window at position x, P10kbp(), P100kbp(), and Pchr()  are lists of
read counts for all windows within the range of +/-5kbp, +/-50kbp, and chromosome arm,
respectively,  from  position  x,  excluding  the  window  at  position  x.  Q1 is  the  value
corresponding to the first  quartile.  This  correction compensates for  the variation in  local
background  between  samples  and  also  enables  detection  of  DARs  from  copy  number
aberrated genome areas (Supplementary Figure 12A).  After  background correction,  we
applied  the  median  of  ratio  normalization  (Anders  and  Huber,  2010),  where  sites  with
geometric  mean  below  1  were  excluded  from  the  calculation  of  the  ratios,  to  obtain
normalized read counts.

To compensate for potential bias due to sample collection procedure (RP and TURP), we
divided the samples in the two groups. In the TURP group, we randomly assigned 4 BPH
and 4 CRPC samples and in the RP group 4 BPH and 4 PC samples to keep the group sizes
fixed.  For  each  window,  we  applied  the  two-sided  Wilcoxon  rank-sum  test.  Random
assignment of samples and significance testing was repeated 100 times. If 5th percentile of
p-value distribution for a given window was less than p=0.01, we calculated the difference
between medians of all the TURP and RP samples normalized read counts and subtracted
this  difference  from all  the  TURP  samples  normalized  read  counts  (717930  sites  were
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corrected i.e.  6.5% of  all  sites).  Application  of  this  correction to normalized read counts
resulted in quantified ATAC-seq signal.  

Identification of the differentially accessible regions (DARs)

To identify DARs, we compared the samples from two different groups (BPH to PC or PC to
CRPC).  We  calculated  the  log2-ratio  of  the  median  value  of  each  group  (eg.
log2(median(PC) / median(BPH))),  absolute median difference between two groups (e.g |
median(PC) - median(BPH)|), and used the two-sided Wilcoxon rank-sum test of two groups.
For each window, we checked whether all the following 3 criteria were satisfied: |log2-ratio| >
2; p-value < 0.01; absolute-median-difference > 14. These thresholds were derived based on
false discovery rate (FDR) analysis and correspond to FDR 9.7% and 9.14% in BPH to PC
and PC to CRPC comparisons, respectively.  If  the log2-ratio of a DAR was positive,  we
called it an opening DAR and if the log2-ratio of a DAR was negative, we called it a closing
DAR.   

Copy number aberration analysis

Raw sequencing reads from the whole  genome sequencing experiment (DNA-seq) were
aligned to the GRCh38 reference genome using Burrows-Wheeler Aligner (BWA) version
0.7.17  (Li and Durbin, 2009). Duplicate reads were marked using SAMBLASTER version
0.1.22 (Faust and Hall, 2014). Alignments were converted to BAM format and sorted using
Samtools. We used Segmentum (Afyounian et al., 2017) to perform copy number analysis
for the samples for which we had whole genome sequencing data (i.e. 4 BPH, 15 PC, 7
CRPC samples). Copy numbers were called using pooled BPH samples as reference with
the  following  parameters:  read  depth  were  extracted  for  windows  of  width  500  bp,
window_size=15, clogr_threshold=0.8, min_read=35, logr_merge=0.2. We used the reported
log2-ratios for each genomic segment from Segmentum’s result to infer the copy number of
that  segment.  This  data  was  used  to  confirm  that  quantified  ATAC-signal  was  not
confounded by copy number alterations (Supplementary Figure 12A).  

Identification of the differentially methylated regions (DMRs)

Methylated DNA immunoprecipitation  (meDIP)  sequencing  data was aligned  to GRCh38
using Bowtie2 (settings: --score-min L,0,-0.15.), alignments were converted to BAM format
and  sorted  using  Samtools.  Duplicated  reads  were  marked  with  Picard  Markduplicates.
Samtools was used to filter out the duplicate reads. Differentially methylated regions were
identified as described above for DARs using meDIP samples for which we had ATAC-seq
data available. In the median of ratio normalization step, sites with geometric mean below 2
were excluded from calculating the ratios. DMRs were called with criteria  |log2-ratio| > 2; p-
value < 0.01; absolute-median-difference > 10, corresponding to FDR 4.61% and 7.90% for
BPH to PC and PC to CRPC comparisons, respectively.  If  the log2-ratio of a DMR was
positive, we called it a hypermethylated DMR and if the log2-ratio of a DMR was negative,
we called it a hypomethylated DMR.

Compilation and quantification of the peak set

In order to compile a consensus set of peaks across all samples, we adapted the approach
from  (Corces et al.,  2018). For each individual sample, we used the summits position of
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peaks called by MACS2 (Zhang et al., 2008) and extended them by +/- 250 bp to acquire the
raw peak set for that sample. Preliminary signal for each raw peak was obtained using the
above presented ATAC-seq signal  quantification.  If  a  raw peak was overlapping several
adjacent windows, the weighted average based on the amount of overlap between the peak
and overlapping windows, was used. For each sample, if there were overlapping raw peaks,
the raw peak with the highest  preliminary  signal  was selected.  To standardize the peak
signals across samples, these were further scaled in each sample by the sum of the signals

of all the peaks divided by 106 (i.e.  (∑
i=1

n

❑it h peak signal)/10
6where n is the number of raw

peaks in a given sample). Next, we pooled the peaks across all samples and removed their
overlaps  with the above approach using scaled signal  values.  Further,  we removed raw
peaks from the set if  they were only present in one sample. This resulted in a peak set
without overlaps. 

To quantify the peaks signal, we used the approach above at the peak coordinates. A peak
was removed from the peaks set,  if  all  samples had standardized signals below a data-
driven  threshold  (t=5)  for  that  peak  (Supplementary  Figure  12B).  Using  this  filtering
criterion, we removed 4,935 loci. Finally, 127 peaks overlapping the artefact regions were
removed. This resulted in a final 178,206 peak set for analysis.  

Quantification of chromatin accessibility at Transcription Start Sites (TSSs)

We extracted TSS coordinates  for  18,537 protein  coding genes and 1,471 miRNA (see
quantification of gene and smallRNA expression below) from Ensembl version 90. For each
gene and miRNA, we quantified chromatin accessibility within +/-500bp window from TSS
using  the  same  signal  quantification  approach  as  with  the  above  peak  set.  The  larger
window size  was  used  to  account  for  the  shape  of  the  ATAC  signal  at  the  TSS sites
(Supplementary Figure 1A).

Visualization of the coverage at peaks, DARs and DMRs

All boxplots show the quantified ATAC-seq signal at peak or DAR locations. In all boxplots,
the median is  shown with a green line  and mean with a red triangle.  Lower  and upper
whiskers have been set to first quartile (Q1) - 1.5*IQR (interquartile range) and third quartile
(Q3) + 1.5*IQR, respectively.

In coverage plots, we extended midpoints of loci of interest by +/-1.5 kbp. For the resulting
regions in each sample, we extracted the read counts in bins of size 10bp using  bedtools
coverage. Next, we subtracted an estimated global background from the read count of each
bin to acquire the background corrected read counts. To estimate the global background, we
randomly selected 50,000 loci of size 500 bp excluding those that overlap with the loci of
interest using bedtools random. We extended, binned and quantified each of these loci as
above. The global background was calculated by the arithmetic mean across all the binned
read counts from random loci.  In case of meDIP data, if a bin had a background corrected read
count above 50 across all samples, it was considered as an artefact region and the read counts
for that locus were set to zero. To generate sample-specific profiles, we calculated the arithmetic
mean  of  background  corrected  values  across  the  corresponding  bins  for  all  loci  of  interest.
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Finally, we calculated the median across the corresponding bins of sample-specific profiles
for each group (i.e. either BPH, PC, or CRPC).

Annotation of peaks and DARs and DMRs

We  annotated  the  loci  of  interest  using  annotatePeaks.pl  routine  from  Hypergeometric
Optimization of Motif EnRichment tool (HOMER; (Heinz et al., 2010)). We grouped regions
annotated  as  3'  UTR,  TTS,  non-coding,  5'  UTR,  and  exon  under  the  term  “Exon  +
untranslated”. We further annotated the loci of interest using  bedtools intersect  or  closest
with the following data sets. GeneHancer version 4.7 (Fishilevich et al., 2017) was used to
annotate known regulatory elements (enhancers and promoters) and predicted regulatory
region target gene associations. Pan-cancer peak set and PRAD peak calls from ATAC-seq
data  generated  from TCGA samples  (Corces  et  al.,  2018),  and  Roadmap Epigenomics
project  DNase-seq data  (Roadmap Epigenomics  Consortium et  al.,  2015) were used to
annotate previously identified accessible chromatin areas. Roadmap Epigenomics data was
downloaded  from  reg2map
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger_release/)  and  data
from  3  distinct  sets  of  regions  (i.e.  promoters,  enhancers  and  dyadic  regions)  were
combined. Duplicates were removed and LiftOver (Hinrichs et al., 2006) was used to convert
the GRCh37 coordinates to GRCh38 (only 0.03% of the sites were lost due to LiftOver). To
annotate  ATAC  features  with  experimentally  validated  transcription  factor  binding  sites
(TFBS), we downloaded the data from the Gene Transcription Regulation Database version
18.06 (Yevshin et al., 2019) which collects 5,068 ChIP-seq experiments and data from 846
unique TF. From the entire database,  we subset  GTRD ChIP-seq data for  binding sites
detected in  prostate cancer cell  lines  and use it  as a prostate-specific  set,  including 40
unique  TFs  from  1818  experiments.  We  assigned  TFBS  to  ATAC  features  using  R
findOverlaps function.

We checked the overlap between DMRs and the CpG islands using the information obtained
from  UCSC  genome  browser
(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz)  by  using
bedtools closest. If the distance of a locus and its closest CpG island was below 2 kbp, we
marked that locus as a CpG island.

We retrieved a list  of  3,804 human housekeeping genes from  (Eisenberg and Levanon,
2013). We mapped gene names to Ensembl gene id version 90 using the R merge function.
The resulting list included 3,662 genes. 

Quantification of gene expression 

Previously  published  transcriptome  sequencing  data,  including  12  BPH,  30  PC  and  13
CRPC samples (Ylipää et al., 2015) was aligned to GRCh38 and quantified by STAR version
2.5.3a using Ensembl version 90 annotations. We obtained quantification of 58243 genes.
Samples  with high quality  data were matched with  ATAC-seq samples  (Supplementary
Table 1). Lower quartile value of expression distribution across all the samples was used as
a  threshold  to  remove  low  expressed  genes,  resulting  in  18537  protein  coding  genes
(mitochondrial excluded) available for the analysis. The DESeq2 version 1.20 Bioconductor
package was used to model the data and extract differentially expressed genes. We fit the
model taking into account both RNA isolation methods (Qiagen™ Trizol™ and Qiagen™ All
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Prep™) and stages of prostate cancer progression (BPH, PC, CRPC). To address the bias
introduced by different extraction protocol, we used coefficients estimated from the model
(Ylipää et al., 2015): we extracted coefficients for the RNA isolation method covariate using
DESeq2 coef function and subtracted these values from library size corrected read counts of
Trizol-treated samples in log2 scale. We detected differential expression in two comparisons,
BPH to PC and PC to CRPC. A gene was considered differentially expressed (D.E.) if the
absolute median difference of normalized read counts between the groups was greater than
180, the log2 fold change was greater than 1 and the FDR corrected p-value lower than
0.05. In the BPH to PC comparison and PC to CRPC comparisons 933 and 533 D.E. genes
were detected. If the log2-ratio of a D.E. was positive, we called it an overexpressed D.E.
gene. If the log2-ratio of a D.E. was negative, we called it an underexpressed D.E. gene.

Quantification of small RNA expression

Previously published small RNA sequencing data  (Ylipää et al., 2015) was re-analysed by
mapping  sequence  tags  to  human  sequences  from  mirBase  version  22.  We  mapped
sequencing tags allowing for single base deletion at the 3' or insertion at either 3’ or 5’.
Modified  sequences  mapping  to  the  same  mirBase  identifier  were  collapsed  and  their
abundance summed. This process yielded data for 1471 annotated miRNA sequences. The
resulting  data  matrix  was  normalized  using  median  of  ratios  normalization,  genes  with
geometric  mean  lower  than  15  were  discarded.  Differentially  expressed  miRNA  were
detected  in  BPH  to  PC  and  PC  to  CRPC  comparisons.  A  miRNA  was  considered
differentially expressed if showing a log2 fold change greater than 1 and a FDR adjusted t-
test p-value lower than 0.05. This analysis yielded 26 and 51 differentially expressed miRNA
for BPH to PC and PC to CRPC comparisons, respectively.

Protein expression data

We used our  previously  published  sequential  window acquisition  of  all  theoretical  mass
spectra (SWATH-MS) data and defined differentially expressed proteins as described earlier
(Latonen et al., 2018).

Quantification of AR activity score

AR  activity  score  was  determined  using  a  publicly  available  gene  expression  signature
composed of 27 genes (Hieronymus et al., 2006). Of these,  21 genes are upregulated in the
first 24 hours after androgenic treatment: PSA, TMPRSS2, NKX3-1, KLK2, GNMT, TMEPAI,
MPHOS9,  ZBTB10,  EAF2,  BM039,  SARG,  ACSL3,  PTGER4,  ABCC4,  NNMT,  ADAM7,
FKBP5, ELL2, MED28, HERC3, MAF. 
Normalized gene expression values in log2 scale were converted to z-scores: 

z i=
g i−μi
σ i

where i represents a gene from the list above, g the gene expression, μ the arithmetic mean
of expression values and  σ the standard deviation of the gene. Both mean and standard
deviation  were  computed  using  all  samples.  For  each  sample,  AR  activity  score  was
computed by summing genes scores:

s j=∑
i

❑

❑z ij
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Scores were split according to sample groups: BPH, PC and CRPC. Score distributions were
visualized as violin plots. Both upper and lower quartiles and the mean activity score value
were overlaid on the figures. P-values were computed with two tails Mann-Whitney U-test to
assess the statistical significance between BPH and PC or PC and CRPC scores under the
null hypothesis of no difference between groups. 

Association of chromatin accessibility with target genes

To  link  chromatin  features  (peaks  and  DARs)  to  putative  target  genes,  we  performed
correlation analysis across all samples with RNA-seq, smallRNA-seq, or SWATH-MS protein
data.  We calculated Pearson and Spearman correlations between ATAC-seq signal  and
gene or  protein expression in  four  different  contexts:  1)  at  transcription start  site (TSS),
defined as +/-500bp from TSS annotation, we computed correlation between TSS ATAC-seq
signal and corresponding gene expression; 2) we defined a region of 1 kbp upstream and
100 bp downstream of TSS as a promoter, we searched for ATAC features overlapping this
region  and computed correlation between their signal and corresponding gene or protein
expression, if available; 3) for each ATAC feature we searched for the closest gene using
annotations from the HOMER tool and computed correlation between their signal and gene
or protein expression, if available; 4) we used all  ATAC features and genes falling within
same TAD to compute correlation between all pairs. To define TAD boundaries, we used
annotations  from  ENCODE  consortium based  on  data  from  LNCaP  cell  line  (ENCODE
Project  Consortium,  2012),  GEO  accession:  GSE105557,  downloaded  from
http://promoter.bx.psu.edu/hi-c/  (Wang et  al.,  2018)).  We extended this  list  with genomic
intervals included between each pair of TAD using  bedtools complement and merged the
resulting list with the initial one.

To  derive  a  threshold  for  significant  associations,  in  each  context,  we  computed  null
distributions  by  randomizing  sample  order  prior  to  correlation  coefficient  computation
(Supplementary Figure 9A). To enable false positive rate estimation, randomization was
repeated 10 times for each pair of comparisons in each context. Based on evaluation of the
distributions, we chose to set thresholds to |correlation coefficient|  > 0.5 for genes and |
correlation coefficient| > 0.6 for proteins resulting in false positive rate from 5.4 * 10-3 to 1.3 *
10-3,  respectively  (Supplementary  Figure  9A).  Associations  with  either  Pearson  or
Spearman correlation above threshold were kept for the downstream analysis. The above
analysis  was implemented by custom script  using standard Unix tools,  Python 3.6.8,   R
version  3.5.2  and  packages  from  the  Bioconductor  framework  managed  via  the
BiocManager package version 3.8, HOMER tool and bedtools. 

TF gene expression network

Each  gene  was  assigned  to  one  or  more  ATAC-seq  features  from previous  correlation
analysis. Transcription factor binding sites in ATAC-seq features were detected during the
annotation step. A gene was defined as the target of a transcription factor if its expression
showed correlation with accessibility of an ATAC-seq feature carrying a binding site for the
TF. For each pair of TFs, the number of co-regulated genes was calculated resulting in a
contingency matrix of 845x845 TFs. This matrix was filtered to retain TFs sharing at least
100 genes, leaving a 192x192 contingency matrix. Hierarchical clustering was applied and
two clusters were detected. Manhattan distance was used as distance metric and UPGMA
as clustering algorithm (Supplementary Figure 10A). The smallest cluster, containing the
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majority of detected connections, was extracted. Another filter was implemented similarly to
the one described above: TFs sharing at least 300 genes with at least one other factor were
retained. This filtering procedure resulted in a 41x41 contingency matrix. For visualization
hierarchical  clustering  was  calculated  using  Euclidean  distance  as  distance  metric  and
complete linkage as  clustering algorithm. The analysis was implemented in R 3.5.2 using
the pheatmap package for visualization and basic clustering functions.

TF binding site enrichment analysis

We determined the number of clusters for k-means clustering using consensus clustering
with  elbow method.  For  clustering,  we  used  top  20% peaks  with  highest  variance.  For
relative  TF  enrichment  analysis,  each  cluster  was  compared  against  all  the  others.
Enrichment analysis was performed using HOMER findMotifs.pl version 4.10. We used the
full HOCOMOCO version 11 human TF (p 0.001) (Kulakovskiy et al., 2018) database as a
known input TF list. Plotting  was done using the R 3.5.2 and ggplot package.

TF footprinting and accessibility

For TF footprint depth and flanking accessibility analysis Tn5 cut sites were counted using
custom R scripts. Pooled samples for BPH, PC and CRPC groups were generated using
Picard MergeSamFiles and used for group level analysis. In other analysis, individual BAM
files were used directly. Possible TF binding locations were predicted using FIMO version
5.0.2  (Grant et al., 2011) with HOCOMOCO v11 database and  --thresh 0.001 parameter.
Predicted sites were intersected with peaks and DARs from BPH to PC and PC to CRPC
comparison  groups.  We  filtered  the  TF  list  by  gene  expression  across  samples.  TF
belonging to the lower quartile of this distribution were discarded. We quantified footprint
base  as  mean  count  of  insertions  at  the  motif  positions,  while  for  flanking  height,  we
considered 25 bases around each detected motif. To quantify each motif background, we
used a set of 25 bp windows 200 bp upstream and downstream of the motif center. We
computed flanking accessibility as log2(flanking height/background) and footprint depth as
log2(footprint  base/flanking  height).  For  expression  association,  Pearson  correlation
between  these  footprint  parameters  and  TF  expression  was  calculated.  In  footprint
visualization,  the  number  of  cutting  sites  were  scaled  according  to  read  numbers  in
respective phenotypes.

Motifs discovery from accessible chromatin sites

We used the BPNET Python package version 0.0.21 (Avsec et al.) to train and interpret
sequence-to-profile convolutional neural networks from sample-specific ATAC-seq data. In
BPNET recurring patterns with high contribution scores are clustered based on sequence
identity to build contribution weight matrices (CWMs). We first tested the applicability of the
BPNET model  with  data  from VCaP cell  lines.  We compared the CWMs obtained  from
models  trained  with  publicly  available  AR Chip-seq data  (Massie  et  al.,  2011) and with
ATAC-seq  data  generated  in-house.  These  data  were  aligned  and  peaks  detected  as
presented  above.  To  consider  the  TF-specific  binding  context  in  ATAC-seq  data,  we
extended the ATAC-seq peaks summits by 50 bp in both directions, and intersected the 100
bp  regions  with  the  direct  AR-DNA  interaction  map  defined  in  the  UniBind  database
(Gheorghe et al., 2019). We kept the regions having an intersection of at least 1 bp, and
selected these peaks as model training sequences. We tested the similarity between the
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resulting  CWMs  and  all  the  known  Position  Weight  Matrices  (PWMs)  collected  in  the
HOCOMOCO v11 database (Kulakovskiy et al., 2018) using the Tomtom motif comparison
tool  (Gupta et al., 2007). Tomtom results were used to identify the TF or TF family to be
associated with each CWM. We observed that the motifs discovered by the model trained
with  Chip-seq  data  were  also  discovered  by  the  model  trained  with  ATAC-seq  data
(Supplementary Figure 4). We trained BPNET models for each of the 38 clinical samples
using the above presented peaks set  summits to define the training sequences and the
ATAC-seq data. We then applied the procedure we tested on cell lines to build and interpret
TF-specific models for 4 TFs - namely AR, FOXA1, HOXB13, and ERG - on the highest
quality samples (6 BPH, 4 CRPC, 8 PC) having TSS enrichment > 3.5. ATAC-seq BPNET
models  were  trained  on  canonical  chromosomes  with  default  hyper-parameters,  and
chromosomes  2,  3,  and  4  as  validation  chromosomes.  Chip-seq  BPNET  models  were
trained  using  the  same  configuration,  except  an  increased  kernel  size  of  50  for  the
transposed convolution layer.  The models trained in cell  lines and the models trained in
clinical samples using the above presented peaks set summits were trained with a patience
of 5 epochs. The TF-specific models trained in clinical samples were trained with a patience
of 20 epochs. We represented the information content of the discovered motifs as sequence
logos using the built-in BPNET function;  when more than one meta cluster was reported by
BPNET, we omitted the meta clusters with no matching TFs if at least one pattern in another
meta cluster had a TF or a TF family assigned to it (Supplementary Figures S5-S8). 

Data and code availability

Sequencing  data  has  been  deposited  in  European  Genome-phenome  Archive  under
accession  number  EGAS00001000526.  Code  used  for  the  analysis  is  available  at
https://github.com/nykterlab/Tampere_PC/
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Supplementary Figures

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287268
http://creativecommons.org/licenses/by/4.0/


Figure S1

A. ATAC-seq enrichments at TSS for all  samples. Sample groups have comparable
quality and variability.  B.  Fragment length patterns in all samples show the first peak
around 160 bp, matching single nucleosome size. A second peak is observed for the
second nucleosome. C. Correlations between TSS enrichment and several key quality
control values. The “high-quality autosomal alignments percentage overlapping peaks”
value correlates with TSS enrichments,  as expected.  These show that  no bias was
introduced by the sequencing step. 
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Figure S2

A.  Background-corrected  ATAC-seq  and  MeDIP  coverage  for  loci  corresponding  to
opening (left column) and closing (right column) DARs for BPH to PC (top row) and PC
to CRPC (bottom row) comparisons. Each curve’s baseline has been shifted to zero for
presentation  clarity.  The  curves  have  been  smoothed  with  a  Gaussian  filter  with  a
standard deviation set to 7. B. Donut plots for locations of peaks and DARs from both
comparisons. Majority of peaks and DARs are located in intergenic and intronic regions
but there is a clear difference in promoter regions where ~7.5% of peaks are located
compared to ~2% in both DAR comparisons. Overlaps with DMR regions are shown in
the  DAR  donut  plots.  C. Peaks  ATAC-signal  in  different  annotation  categories.
Strongest  ATAC-seq signal  is  detected at  the promoters.  D.  Comparable ATAC-seq
signal  across  different  genome  annotation  areas.  For  each  sample  group,  the  left
boxplot shows the signal in closing and right boxplot in opening DARs from respective
comparisons. Data from the group of samples that were not part of the comparison
(CRPC in top panels, BPH in lower panels) are shown from the same loci for reference.
E. Normalized  peak  counts  present  in  different  numbers  of  samples.  F.  Genomic
locations of peaks belonging to each sample group or combination of sample groups.
Peaks belonging to the set with all sample groups have over 10% of peaks annotated to
promoters, whereas in other groups the promoter fraction is 1.2-2.6%. G.  Number of
samples reporting peaks by group or combination of groups membership. The number
of samples in which a peak is present is shown on the X-axis. Labels for sample groups
and sample group combinations are reported. In addition, points where the number of
peaks in groups or group combinations go to zero are also shown. The proportion of
peaks in each group is shown on the Y-axis.
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Figure S3

A. Two-dimensional t-SNE dimension reduction using normalized ATAC-seq signal from
all DARs separates samples to their respective groups. Python’s Scikit-Learn package t-
SNE  algorithm  implementation  was  used  with  default  parameter  values  except
perplexity=15,  metric  =  Pearson  correlation,  and  method  =  exact.  B.  Annotation  of
different  genomic  locations  for  DARs  detected  in  BPH  to  PC  and  PC  to  CRPC
comparisons. A higher fraction of DARs are located in the gene body and near the gene
body in PC to CRPC compared to BPH to PC. C. Number of overlaps between DARs
and DMRs in BPH to PC and PC to CRPC comparisons show only minimal overlap. D.
Donut  plot  showing genomic  annotations  of  cancer-specific  peaks and  overlap  with
previously  reported  features.  E.  K-means consensus clustering of  the  20% topmost
peaks with the highest variance identifies 7 clusters. Scale bar indicates quantification
value. Examples of disease-relevant TFs from TF binding site enrichment analysis are
shown for each cluster.  F. Selection criteria for K=7 clusters in the cluster analysis.
Consensus matrix (K=7, left),  cumulative distribution function (CDF) plots for K=2-10
(middle), and relative change in CDF (right) are shown. K=7 illustrates stable cluster
structure with relative CDF change at elbow point of the curve. 
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Figure S4

A. Binding motifs discovered with BPNET from AR ChIP-seq data generated from VCaP
cell line. B. Discovered binding sites using ATAC-seq data from VCaP cells with binding
sites for AR, FOXA1, HOXB13, and ERG.
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Figure S5

Binding motifs discovered with BPNET from clinical ATAC-seq samples using AR 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S6

Binding motifs discovered with BPNET from clinical ATAC-seq samples using FOXA1 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S7

Binding motifs discovered with BPNET from clinical ATAC-seq samples using HOXB13 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S8

Binding motifs discovered with BPNET from clinical ATAC-seq samples using ERG 
binding sites overlapping with peaks from ATAC-seq data. For each pattern, the number
of BPNET seqlets contributing to that pattern is reported in parenthesis (see Methods).
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Figure S9

A.  Pearson  and  Spearman  correlation  coefficients  for  all  associations  between
chromatin accessibility and gene or protein expression. Data are shown for both gene
(RNA-seq  and  smallRNA-seq)  and  protein  expressions  (SWATH-MS).  Number  of
correlation coefficients used for null distribution, false positives and false positive ratio
are reported in the inset.  B. Histograms of distances between ATAC-seq features and
TSS of the associated gene are shown across all comparisons. In addition, numbers of
peaks/DARs associated to a given gene and also the number of genes associated to a
given peak/DAR are shown as histograms (truncated at 30). Mean of these histograms
is given in the figure. In addition, 95th percentile and fraction of peaks/DARs linked to a
single  gene  are  given  in  respective  comparisons.  Mean,  median  and  maximum
upstream (max up) and downstream (max down) distances are reported for the distance
distribution.  The  percentage  of  ATAC-features  linked  to  exactly  one  gene  is  also
reported for the right panel. 
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Figure S10

A. The heatmap represents a gene expression regulatory network created by using
DARs and  genes  that  have  correlation:  rows  and  columns are  transcription  factors
(nodes), each cell in the matrix represents an edge, the weight of the edge is given by
the number of shared genes which is encoded in the color.  Rows and columns are
filtered to have at least one cell with a value greater than 100. B. Same as panel A but
using peaks.  C. Subset of TFs with the highest number of genes (from data shown in
panel B). The highest number of genes can be seen in the top right corner where there
are the same four TFs as in  Figure 4B.  D.  AR cluster-regulated genes from C are a
superset of the genes regulated by the other cluster of TFs. The Venn diagram reports
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the agreement between the sets of genes regulated by the two clusters. E. Number of
TFs that have binding site in DARs with associated target genes. Data are shown using
all  the data from GTRD (top panels) and using only prostate cancer-specific subset
(GTRD prostate; bottom panels). Shown are both BPH to PC (left panels) and PC to
CRPC (right panels) comparisons. F.  Number of TFs that have binding site in peaks
with  associated  target  genes.  Data  are  shown  using  all  the  data  from GTRD (top
panels) and using only prostate cancer-specific subset (GTRD prostate; bottom panels).
In the GTRD prostate, we see that several key TFs like AR, FOXA1, ERG and HOXB13
are  among  the  most  common  ones.  G.  Oncoprints  representing  TF  binding  sites
overlapping DARs correlated with gene expression in BPH to PC comparison using the
complete GTRD dataset. Number of binding sites for each TF is shown. In parentheses,
the percentage of DARs reporting that binding site is also shown. H. Same as panel G
but for PC to CRPC comparison.  I.  Violin plots of AR activity scores for each sample
group. Individual samples are shown as grey dots.
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Figure S11

A. Number of sites and their overlap from DHT- and vehicle-treated VCaP cells. Sites
that are present in DHT-stimulated cells are compared to DARs. In BPH to PC, most of
the  sites  overlap  with  opening  DARs  and  in  PC  to  CRPC  with  closing  DARs.  B.
Comparison of BPH, PC, and CRPC group-specific peaks to AR-stimulated peaks from
LNCaP and VCaP cell lines (Massie et al., 2011) shows the highest overlap with the PC
group. C. Background-corrected ATAC-seq coverage of AR binding sites from all GTRD
AR binding sites.  D.  Background-corrected ATAC-seq coverage of  AR binding sites
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from vehicle-treated  cells  (Massie  et  al.  2011).  E.  Background-corrected  ATAC-seq
coverage at AR binding sites from vehicle-treated VCaP cells. F. Same as panel E but
with DHT stimulation. Signal is stronger in PC samples than other sample groups.
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Figure S12

A.  Effect of the background correction and normalization (Signal, red dots) in relation to
raw  ATAC  data  (black  dots)  and  DNA  copy  number.  Background  correction  and
normalization successfully removes the linear relationship between copy number and
ATAC  coverage.  B.  Distribution  of  peak  quantifications  across  samples.  Different
percentiles and the utilized threshold 5 are shown (top). The number of sites that would
be removed with a given threshold (bottom).
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Supplementary Table legends

Supplementary Table 1: Quality control metrics and peak detection results

Table contains information about samples, and relevant information from sequencing
such as quality control  metrics and primers used. In addition, it  contains information
about peaks and their clustering.

Supplementary  Table  2:  Differentially  accessible  and  differentially  methylated
regions

Table contains information about differentially accessible and differentially methylated
regions in different comparison groups. 

Supplementary Table 3: TF binding analysis

Table  contains  information  about  transcription  factor  footprint  analysis,  correlation
between  footprint  depth,  flanking  accessibility  and  gene  expression  as  well  as
information about motifs discovered using BPNET.

Supplementary Table 4: Correlations of accessible chromatin regions and gene
expression

Table contains information about peaks and DARs correlation coefficients computed
against gene and protein expression in different biological contexts. Table also reports
gene names of transcription factors with binding site overlapping peaks and DARs and
basic annotations of correlated genes.
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