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Short abstract: Eukaryotic plankton are a core component of marine ecosystems with 13	
exceptional taxonomic and ecological diversity. Yet how their ecology interacts with the 14	
environment to drive global distribution patterns is poorly understood. Here, we use Tara 15	
Oceans metabarcoding data covering all the major ocean basins combined with a probabilistic 16	
model of taxon co-occurrence to compare the biogeography of 70 major groups of eukaryotic 17	
plankton. We uncover two main axes of biogeographic variation. First, more diverse groups 18	
display stronger biogeographic structure. Second, large-bodied consumers are structured by 19	
oceanic basins, mostly via the main currents, while small-bodied phototrophs are structured 20	
by latitude, with a comparatively stronger influence of biotic conditions. Our study highlights 21	
striking differences in biogeographies across plankton groups and disentangles their 22	
determinants at the global scale. 23	
 24	
One-sentence summary: Eukaryotic plankton biogeography and its determinants at global 25	
scale reflect differences in ecology and body size. 26	
  27	
Main text: Marine plankton communities play key ecological roles at the base of oceanic 28	
food chains, and in driving global biogeochemical fluxes (Field, Behrenfeld, Randerson, & 29	
Falkowski, 1998; Worden et al., 2015). Understanding their spatial patterns of distribution is a 30	
long-standing challenge in marine ecology that has lately become a key part of the effort to 31	
model the response of oceans to environmental changes (Beaugrand & Kirby, 2018; Raes et 32	
al., 2018; Righetti, Vogt, Gruber, Psomas, & Zimmermann, 2019; Tittensor et al., 2010). Part 33	
of the difficulty lies in the constant mixing of water masses and hence plankton communities 34	
by ocean currents (Jönsson & Watson, 2016). Recent planetary-scale ocean sampling 35	
expeditions have revealed that eukaryotic plankton are taxonomically and ecologically 36	
extremely diverse, possibly even more so than prokaryotic plankton (de Vargas et al., 2015). 37	
Eukaryotic plankton range from pico-sized (0.2-2 mm) to meso-sized (0.2-20 mm) organisms 38	
and larger, thus covering an exceptional range of sizes. Eukaryotic plankton also cover a wide 39	
range of ecological roles, from phototrophs (e.g., Bacillariophyta, Haptophyta, 40	
Mamiellophyceae) to parasites (e.g., Marine Alveolates or MALVs), and from heterotrophic 41	
protists (e.g., Diplonemida, Ciliophora, Acantharea) to metazoans (e.g., Arthropoda and 42	
Chordata, respectively represented principally by Copepods and Tunicates). Understanding 43	
how these body size and ecological differences modulate the influence of oceanic currents and 44	
local environmental conditions on geographic distributions is needed if we want to predict 45	
how eukaryotic communities, and therefore the trophic interactions and global 46	
biogeochemical cycles they participate in, will change with changing environmental 47	
conditions.  48	

Previous studies suggested that all eukaryotes up to a size of approximately 1 mm are 49	
globally dispersed and primarily constrained by abiotic conditions (Finlay, 2002). While this 50	
view has been revised, the influence of body size on biogeography is manifest (Villarino et 51	
al., 2018, Richter et al. 2019). Interestingly, a recent study found that the turnover in 52	
community composition along currents slows down, rather than speeds up, with increasing 53	
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body size (Richter et al, 2019). This suggests that, rather than influencing biogeography 54	
through its effect on abundance and ultimately dispersal capacity (i.e., larger organisms are 55	
more dispersal-limited; Finlay, 2002; Villarino et al., 2018), body size influences 56	
biogeography through its relationship with ecology and ultimately the sensitivity of 57	
communities to environmental conditions as they drift along currents. Under this scenario, the 58	
distribution of large long-lived generalist predators such as Copepods (Arthropoda) is 59	
expected to be stretched to the scale of currents systems through large-scale transport and 60	
mixing by main currents (Hellweger, van Sebille, & Fredrick, 2014; Lévy, Jahn, Dutkiewicz, 61	
& Follows, 2014; Madoui et al., 2017; Richter et al., 2019), and to be patchy as a result of 62	
small-scale turbulent stirring  (Abraham, 1998). These contrasted views illustrate that little is 63	
known on how the interplay between body size, ecology, currents and the local environment 64	
shapes biogeography (Oziel et al., 2020).  65	

Here we study plankton biogeography across all major eukaryotic groups in the sunlit 66	
ocean using 18S rDNA metabarcoding data from the Tara Oceans global survey, including 67	
recently released data from the Arctic Ocean (Ibarbalz et al., 2019). The data encompass 68	
250,057 eukaryotic Operational Taxonomic Units (OTUs) sampled globally at the surface and 69	
at the Deep Chlorophyl Maximum (DCM) across 129 stations. We use a probabilistic model 70	
that allows identification of a number of ‘assemblages’, each of which represents a set of 71	
OTUs that tend to co-occur across samples (Sommeria‐Klein et al., 2019; Valle, Baiser, 72	
Woodall, & Chazdon, 2014; Methods). Each local planktonic community can then be seen as 73	
a sample drawn in various proportions from the assemblages. 74	

 75	

 76	
 77	
Figure 1: Global surface biogeography of eukaryotic plankton. The biogeography of all eukaryotic OTUs 78	
across Tara Oceans stations is characterized by 16 assemblages of co-occurring OTUs, each represented by a 79	
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distinct color (in A and the left panel in B) and identified by a number from 1 to 16 (in B). (A) Relative 80	
contribution of the 16 assemblages to surface plankton community in Tara Oceans stations, represented as pies 81	
on the world map and as stacked bars vertically ordered by latitude on the left-hand side of the map. (B) Left 82	
panel: dendrogram of assemblage dissimilarity with respect to their composition in OTUs (Simpson 83	
dissimilarity). The mean absolute latitude at which each assemblage is found is indicated. Three clusters can be 84	
distinguished: a high-latitude cluster — the most distinctive — in shades of blue, an intermediate-latidude cluster 85	
in shades from yellow to red, and a low-latitude cluster in shades of green. Right panel: barplot displaying the 86	
contribution of major eukaryotic groups (deep-branching monophyletic groups) to assemblages. The 19 groups 87	
shown in the barplot are those tallying more than 1,000 OTUs, grouped by phylogenetic relatedness.  88	

 89	
Across the Tara Oceans samples and considering all eukaryotic OTUs together, we 90	

identified 16 geographically structured assemblages, each composed of OTUs covering the 91	
full taxonomic range of eukaryotic plankton (Fig. 1, S1; Appendix 1). Local planktonic 92	
communities often cannot be assigned to a single assemblage, as would be typical for 93	
terrestrial macro-organisms on a fixed landscape (Ficetola, Mazel, & Thuiller, 2017; Wallace, 94	
1876), but are instead mixtures of assemblages (Fig. 1A). This is consistent with previous 95	
findings suggesting that neighbouring plankton communities are continuously mixed and 96	
dispersed by currents (Lévy et al., 2014; Richter et al., 2019). Nevertheless, three assemblages 97	
are particularly represented and most communities are dominated by one of them (Fig. 1A). 98	
The most prevalent assemblage represents a set of OTUs (about one fifth of the total) that are 99	
globally ubiquitous except in the Arctic Ocean (assemblage 1, in dark red). This assemblage 100	
typically accounts for about half the number of OTUs in non-Arctic communities, and is 101	
particularly rich in parasitic groups such as MALV (Fig. 1B). The two others dominate, 102	
respectively, in the Arctic Ocean (assemblage 13, in cyan) and in the Southern Ocean 103	
(assemblage 15, in marine blue), and are particularly rich in diatoms (Fig. 1B). Based on 104	
similarity in their OTU composition, the assemblages cluster into three main categories 105	
corresponding to low, intermediate and high latitudes (Fig. 1B). The transition between 106	
communities composed of high-latitude and lower-latitude assemblages is fairly abrupt, and 107	
occurs around 45° in the North Atlantic and -47° in the South Atlantic, namely at the latitude 108	
of the subtropical front, where the transition between cold and warm waters takes place (Fig. 109	
1A&B; Talley, 2011). 110	
 This global analysis hides a strong heterogeneity across the 70 most diversified deep-111	
branching groups of eukaryotic plankton (Table S1). Comparing the biogeography of these 112	
major groups using a normalized information-theoretic metric of dissimilarity (Meila, 2006; 113	
Methods), we found high pairwise dissimilarity values (ranging between 0.64 and 0.97; Fig. 114	
S2). This heterogeneity can be decomposed into two main interpretable axes of variation (Fig. 115	
2; Methods). The first axis reflects the amount of biogeographic structure: group position on 116	
this axis is positively correlated to short-distance spatial autocorrelation (Pearson’s correlation 117	
coefficient 𝜌 = 0.91 at the surface; Fig. S3A), which measures the tendency for close-by 118	
communities to be composed of the same assemblages (Methods). Groups scoring low on this 119	
axis are characterized by strong local variation, or “patchiness”. The second axis reflects the 120	
nature of the biogeographic structure: group position on this axis is positively correlated to 121	
the scale of biogeographic organization, which we measured as the characteristic distance at 122	
which spatial autocorrelation vanishes (𝜌 = 0.53, 𝑝 = 10!! at the surface; Fig. S3B) and 123	
which ranges from ~7,000 to ~14,400 km across groups. Group position on the second axis is 124	
also positively correlated to within-basin autocorrelation (𝜌 = 0.56, 𝑝 = 10!! at the surface; 125	
Fig. S3C), which measures the tendency for communities from the same oceanic basin (e.g., 126	
North Atlantic, South Atlantic, Mediterranean, Southern Ocean) to be composed of the same 127	
assemblages, and negatively correlated with latitudinal autocorrelation (𝜌 = −0.49, 𝑝 = 10!! 128	
at the surface; S3D), which measures the tendency for communities at the same latitude on 129	
both sides of the Equator to be composed of the same assemblages (Methods). Results are 130	
similar at the DCM, although less pronounced (Fig. S4). The 70 groups of eukaryotic 131	
plankton cover the full spectra of biogeographies (Fig. 2, Fig. S5, Table S1), from those with 132	
weak spatial organization, or high patchiness (i.e., scoring low on the first axis, such as 133	
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Collodaria or Basidiomycota), to those organized at large spatial scale by oceanic basin (i.e., 134	
scoring high on both axes, such as Chordata or Arthropoda), and those organized at smaller 135	
spatial scale and according to latitude (i.e., scoring high on the first and low on the second 136	
axis, such as Mamiellophyceae, Haptophyta or MAST 3,12). These striking differences across 137	
planktonic groups suggest that accounting for their specificities is crucial to understanding 138	
their biogeography.    139	

 140	
 141	
Figure 2: Biogeographic heterogeneity across major eukaryotic plankton groups. (A) Principal Coordinate 142	
Analysis (PCoA) of the biogeographic dissimilarity between 70 major groups of eukaryotic plankton. Each dot 143	
corresponds to the projection of a specific plankton group onto the first two axes of variation. Position along the 144	
first axis reflects the amount of biogeographic structure displayed by the group, from a patchy distribution with 145	
weak short-distance spatial autocorrelation on the left to a structured distribution with strong short-distance 146	
spatial autocorrelation on the right. Position along the second axis reflects the nature of biogeographic structure, 147	
from a biogeography structured by latitude at the bottom to a biogeography structured by oceanic basins at the 148	
top, as well as the scale of biogeographic organization, from small to large scale. Dot size is proportional to the 149	
log diversity of the corresponding group, and dot color represents its mean log body-size. (B-G) Surface 150	
biogeography of six major eukaryotic plankton groups. The relative contribution of the 5 to 7 most prevalent 151	
assemblages is shown in color, and that of the remaining assemblages is shown in gray; the color used for the 152	
most prevalent assemblage corresponds to the color used in Fig. 1B for the corresponding group.  153	
 154	
 We investigated how biogeographic differences among major groups relate to their 155	
diversity, body size, and ecology, coarsely defined as either phototroph, phagotroph, 156	
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metazoan or parasite (Methods). We found that the amount of biogeographic structure (group 157	
position on the first axis) is strongly correlated to diversity (𝜌 = 0.77, 𝑝 = 10!!" below 158	
2,000 OTUs; Fig. 3A). This suggests that geographic structure could play a role in generating 159	
and maintaining eukaryotic plankton diversity over ecological and possibly evolutionary 160	
scales, for example by promoting allopatric speciation and endemism. This relationship 161	
vanishes however for groups larger than about 2,000 OTUs, and two of the most diverse 162	
groups (Diplonemida, 38,769 OTUs and Collodaria, 17,417 OTUs) exhibit comparatively 163	
weak biogeographic structure. The amount of biogeographic structure is weakly anticorrelated 164	
to body size (𝜌 = −0.32, 𝑝 = 0.007; Fig. S6A), and after accounting for differences in 165	
diversity across groups, is lower for metazoans than for phototrophs (ANCOVA t-test: 166	
𝑝 = 0.035, Fig. S6B), in agreement with the expectation of a higher local patchiness in their 167	
distribution induced by turbulent stirring (Abraham, 1998; Bertrand et al., 2014). In contrast, 168	
the nature of biogeographic structure (group position on the second axis) is strongly correlated 169	
to body size (𝜌 = 0.61, 𝑝 = 10!!; Fig. 3B) and ecology (ANOVA F-test: 𝑝 = 10!!, Fig. 170	
3C), and only weakly to diversity (𝜌 = 0.25, 𝑝 = 0.033; Fig. S6C). Metazoan groups score 171	
high on the second axis of variation (with the notable exception of Porifera sponges, probably 172	
at the larval stage) and phototrophs score low, while phagotrophs occupy an intermediate 173	
position, spanning a comparatively wider range of biogeographies (Fig. 3C). Parasites are just 174	
below metazoans, which suggests that their biogeography is influenced by that of their hosts. 175	
While body size covaries with ecology (phagotrophs are larger than phototrophs on average, 176	
and metazoans significantly larger than other plankton types; Fig. S7), the positive 177	
relationship between group position on the second axis and body size still holds within each 178	
of the four ecological categories (ANCOVA F-test: 𝑝 = 0.004 ; Fig. S8). Diatoms 179	
(Bacillariophyta) are a striking example: of all phototrophs, they have the largest body size 180	
and also score highest on the second axis of variation. Conversely, ecology significantly 181	
influences group position on the second axis even after accounting for body size differences 182	
(ANCOVA F-test: 𝑝 = 0.035). Collodaria, which we did not assign to an ecological category, 183	
score lower than expected from their large body size, but close to the average for 184	
phagotrophic groups (Fig. 2, Table S1). These results suggest that biogeographic patterns are 185	
influenced by both body size and ecology. To summarize, diversity-rich groups are 186	
biogeographically structured, with large-bodied heterotrophs (metazoans such as Copepods 187	
and Tunicates) exhibiting biogeographic variations at the scale of oceanic basins or larger, 188	
and small-bodied phototrophs (such as Haptophyta) at smaller spatial scale and following 189	
latitude (Fig. 2).  190	
 191	

 192	
 193	
Figure 3: Relationship between biogeography and diversity, mean body size and ecology across major 194	
eukaryotic plankton groups. (A) The position of the 70 plankton groups along the first axis of biogeographic 195	
variation, indicative of the amount of biogeographic structure, increases sharply with log diversity (number of 196	
OTUs in the group) up to approximately 2,000 OTUs, but not beyond. (B) The position of the 70 plankton 197	
groups along the second axis, indicative of the nature and spatial scale of biogeographic structure, increases with 198	
log mean body size, indicating that large-bodied plankton is organized at larger spatial scale and according to 199	
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oceanic basins rather than latitude. (C) Positions along the second axis of plankton groups binned into four broad 200	
ecological categories. Pairwise differences are all significant except between Phagotrophs and Parasites. 201	
 202	

A global biogeography matching oceanic basins suggests that communities respond to 203	
environmental variations slowly enough to be homogenised by ocean circulation at the basin 204	
scale (i.e., gyres; Richter et al., 2019), but have little ability to disperse between basins, either 205	
due to the comparatively limited connectivity by currents or to environmental barriers, and 206	
therefore that their biogeography is primarily shaped by the main ocean currents (Hellweger 207	
et al., 2014). Conversely, a biogeography matching latitude, symmetric with respect to the 208	
Equator, suggests a faster response of communities to environmental variations within basins 209	
(which are structured by latitude and currents, e.g. the cross-latitudinal influence of the Gulf 210	
Stream), low cross-basin dispersal limitation, and therefore a comparatively more important 211	
role of local environmental filtering in shaping biogeography. We investigated the ability of 212	
transport by currents and local environmental conditions to explain the global biogeography 213	
of major taxonomic groups. We compared biogeographic maps to maps of connectivity by 214	
currents and environmental conditions. We transformed minimum transport times between 215	
pairs of stations, previously computed from a global ocean circulation model (Methods; 216	
Clayton et al., 2017; Richter et al., 2019), into a set of connectivity maps describing patterns 217	
of connectivity by currents at different temporal scales (Methods; Fig. S9, S10). These 218	
connectivity maps can be interpreted as the geographic patterns that would be expected for 219	
plankton transported by currents; more precisely, each map corresponds to a specific time 220	
scale, and can be interpreted as the geographic patterns that would be expected for plankton 221	
which temporal variation along currents match this scale. We estimated local abiotic 222	
conditions using yearly-averaged measurements of temperature, nutrient concentration and 223	
oxygen availability (World Ocean Atlas 2013; Boyer et al., 2013; cf. Methods). Because 224	
biotic interactions (predation, competition, parasitic and mutualistic symbiosis) are thought to 225	
be important determinants of plankton community structure (Lima-Mendez et al., 2015), we 226	
also quantified local biotic conditions using the relative read counts of major eukaryotic 227	
groups (excluding the focal group; cf. Methods). Biotic conditions, similarly to abiotic ones, 228	
have a latitudinal structure, and we refer here to them collectively as ‘environmental 229	
conditions’ (Fig. S11, S12). The resulting environmental maps can be interpreted as the 230	
geographic patterns that would be expected for organisms that are strongly responsive to local 231	
environmental conditions but whose dispersal by currents is not limiting. Hence, a 232	
biogeography matching connectivity maps better than environmental maps suggest that the 233	
constraints imposed by oceanic currents (the transport of the plankton across those regions, 234	
modulated by mixing, ecological drift and speciation, but also by responses to nutrient 235	
supplies and temperature variations) dominate over those imposed by local environmental 236	
conditions.  237	

We found that the total variance in surface community composition that can be 238	
explained by connectivity patterns and local environmental conditions (abiotic and biotic) 239	
averages 34% across groups (min. 8% and max. 65%) and is, as expected, tightly correlated to 240	
the amount of biogeographic structure (𝜌 = 0.91; Fig. 4A; Methods). The variance purely 241	
explained by connectivity patterns is for most groups larger than that purely explained by the 242	
local environment (40% versus 22% of explained variance on average at the surface; Fig. 4B-243	
D, S13A), and is primarily contributed by between-basin connectivity patterns (Fig. S10 & 244	
S14). This supports a prominent role of transport by the main current systems and of the 245	
processes occurring along those pathways in shaping eukaryotic plankton biogeography, both 246	
by extending the distribution of some taxa beyond their optimal range (Dutkiewicz et al., 247	
2019) and by constraining long-distance dispersal. We note that unmeasured environmental 248	
variations along currents likely contribute to this role of ocean circulation.  As expected from 249	
our previous results, the ratio of the fractions of variance purely explained by connectivity 250	
patterns and the local environment, which reflects their relative contributions to 251	
biogeography, increases with group position on the second axis of variation (𝜌 = 0.32, 252	
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𝑝 = 0.008; Fig. 4B). Accordingly, the relative contribution of connectivity by currents also 253	
increases with average group body size (𝜌 = 0.42, 𝑝 = 3. 10!!; Fig. 4C) and depends on 254	
ecology (ANOVA F-test: 𝑝 = 0.037; Fig. 4D). These results indicate that metazoans are 255	
closer to freely drifting tracers strongly influenced by currents, and constrained in particular 256	
by limited between-basin connectivity, while phototrophs are more strongly coupled with 257	
environmental factors and disperse more readily between basins. The difference in sensitivity 258	
to local environmental conditions can be explained by differences in ecological requirements 259	
and community dynamics. Why there is a difference in between-basins dispersal is less clear. 260	
All basins are connected by currents within a few years of transport time (Jönsson & Watson, 261	
2016), and small phototrophs may have a higher ability to disperse through environmental 262	
barriers by forming spores or dormant states (Finlay, 2002). Alternatively, the looser 263	
environmental coupling and slower dynamics of metazoan communities might make them 264	
more sensitive to the smaller between-basin compared to within-basin water flow. Finally, 265	
within the variance explained by the local environment, the contribution of pure biotic 266	
conditions largely dominates that of pure abiotic conditions for most groups (47% versus 16% 267	
on average at the surface; Fig. S13B), irrespective of their body size, ecology, diversity or 268	
biogeography (Fig. S15). Results are similar at the DCM, but are far less pronounced (Fig. 269	
S16, S17). Although we cannot exclude the possibility that local biotic conditions reflect the 270	
indirect effect of local abiotic factors that are not accounted for in our study, such as fluxes of 271	
nutrients, which are often more relevant to planktonic organisms than instantaneous nutrient 272	
concentrations (Dutkiewicz et al., 2019), these results indicate an additional role for 273	
interspecific interactions in shaping community composition (Lima-Mendez et al., 2015; 274	
Vincent & Bowler, 2020).  275	

 276	

 277	
 278	
Figure 4: Drivers of surface biogeography across major eukaryotic plankton groups. (A) The total variance 279	
in surface biogeography that can be explained by the combination of connectivity by currents and (abiotic and 280	
biotic) local environmental conditions increases with the position of plankton groups on the first axis of 281	
biogeographic variation. (B-D) Across major plankton groups, the log ratio of the variance explained purely by 282	
connectivity over the variance explained purely by (abiotic and biotic) local environmental conditions (B) 283	
increases with group position on the second axis of variation, (C) increases with mean body size, and (D) varies 284	
across broad ecological categories (only the pairwise difference between Phototrophs and Metazoans is 285	
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significant). The ratio is higher than 1 for most groups, reflecting an overall stronger influence of connectivity by 286	
currents compared to local environmental conditions on plankton biogeography at the surface.  287	

 288	
Our study clarifies the patterns and processes underlying the global biogeography of 289	

the main groups of eukaryotic plankton in the sunlit ocean. Consistent with the recently 290	
proposed concept of seascape (Kavanaugh et al., 2016), we find that community variation 291	
along currents is slow enough to allow currents to be the dominant driver of global-scale 292	
biogeography (Richter et al., 2019). The continuous movement of water masses generates 293	
biogeographic patterns that are better represented by overlapping taxa assemblages than by 294	
the well-delineated biomes characteristic of terrestrial systems. Our comparison of eukaryotic 295	
plankton groups reveals several additional results. First, the geographic structuring induced by 296	
currents may have favored the generation and maintenance of eukaryotic plankton diversity. 297	
Second, plankton ecology matters beyond body size differences, and reciprocally body size 298	
matters beyond ecological differences. Third, body size and ecology influence primarily the 299	
nature of biogeographic patterns, namely their spatial scale of organization and whether they 300	
are organized by oceanic basins or latitude, and only secondarily the amount of biogeographic 301	
structure, namely local patchiness. Fourth, biotic conditions appear to be a more important 302	
driver of biogeography than local abiotic conditions. Our results reconcile the views that 303	
larger-bodied organisms are more dispersal-limited (Finlay, 2002; Villarino et al., 2018) and 304	
yet display a slower compositional turnover along currents than smaller organisms (Richter et 305	
al., 2019): at the global scale, organisms of larger sizes are indeed more dispersal-limited; 306	
however at the regional scale, they have wider spatial distributions, presumably linked to their 307	
specific ecologies, longer lifespan and reduced sensitivity to local environmental variations. 308	
At the two extremes, metazoan heterotrophs are structured at the scale of oceanic basins 309	
following the main currents, while small phototrophs are structured latitudinally with a 310	
comparatively larger influence of local environmental conditions, predominantly biotic ones. 311	
Together, our results suggest that predictive modeling of plankton communities in a changing 312	
environment (Ibarbalz et al., 2019; Lotze et al., 2019) will critically depend on our ability to 313	
model the impact of changes in ocean currents and to develop niche models accounting for 314	
both species ecology and interspecific interactions.  315	
  316	
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Methods: 436	
 437	
DNA data processing 438	
Planktonic organisms were sampled in 129 stations of the open ocean (no lagoon or costal 439	
waters) covering the Arctic, Atlantic, Indian, East Pacific and Southern Oceans as well as the 440	
Mediterranean and Red Seas. Samples were collected from subsurface mixed-layer waters 441	
(henceforth referred to as ‘surface’, about 5 m deep). In about half of the stations, samples 442	
were additionally collected at the Deep Chlorophyll Maximum (‘DCM’, ranging from 20 m to 443	
190 m deep, most commonly around 40 m deep). At both depth levels, four different fractions 444	
of organisms’ body size were collected: 0.8-5 mm, 5-20 mm (or 3-20 mm in some stations, 445	
which we treated as equivalent), 20-180 mm, and 180-2000 mm. In Arctic stations, a small 446	
size fraction without upper size limit (0.8 mm – infinity) was collected in place of the 0.8-5 447	
mm size fraction. We treated both fractions as equivalent, since they were found to be of 448	
similar composition in stations where both were collected (indeed, small organisms greatly 449	
outnumber larger ones). 450	

Whole DNA was extracted from these samples, then the V9 region of the gene coding 451	
for the eukaryotic 18S rRNA was PCR-amplified and the resulting amplicons were sequenced 452	
by Illumina sequencing. Sequencing reads were trimmed for quality, length and fidelity of 453	
primer sequences, then clustered into Operational Taxonomic Units (henceforth ‘OTUs’) 454	
using the SWARM unsupervised algorithm (Mahé, Rognes, Quince, Vargas, & Dunthorn, 455	
2014). OTUs were given taxonomic assignations by matching their most abundant sequence 456	
to a custom database derived from the Protist Ribosomal Reference (PR2; Guillou et al., 457	
2013). OTUs with less than 80% similarity to the closest reference sequence were discarded, 458	
as well as OTUs matching non-eukaryotic reference sequences. This pipeline resulted in a list 459	
of OTUs and their associated read count for each sample. See de Vargas et al. (2015) for 460	
further detail on the sampling, wetlab and bioinformatics protocols. Taxonomic assignations 461	
of OTUs were then used to obtain ecological annotations based on literature, from which 462	
OTUs could be broadly classified into parasites, phototrophs, phagotrophs and metazoans 463	
(Ibarbalz et al., 2019). 464	

For every station and depth, we pooled the results obtained for the four size fractions 465	
into a single aggregated sample (henceforth simply referred to as a ‘sample’). We discarded 466	
the samples where one or more size fractions were missing so as not to bias the results. This 467	
treatment resulted in retaining 113 stations, broken down into 110 surface samples and 62 468	
DCM samples and encompassing 250,057 OTUs. 469	
 470	
Characterizing samples as mixtures of assemblages using Latent Dirichlet Allocation 471	
To capture the spatial patterns of OTU co-occurrence across samples, we used a model-based 472	
algorithm of dimensionality reduction, Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 473	
2003). We considered that an OTU occurs in a sample when it is represented by at least one 474	
sequence read, and we discarded read count information. The method consists in fitting a so-475	
called mixed membership model to the list of OTU occurrences in each sample (i.e., the 476	
community matrix). Even though the model formally assumes that OTUs can be observed 477	
several times in each sample (i.e., it assumes discrete abundance data rather than presence-478	
absence data), this does not impair model fitting and interpretation for presence-absence data 479	
(Sommeria‐Klein et al., 2019). The model assumes that OTU occurrences are sampled from a 480	
mixture of several (unobserved) assemblages. Each assemblage represents a set of OTUs that 481	
tend to co-occur across samples. The fitting process consists in inferring the K most likely 482	
assemblages from the data, where the number K of assemblages is fixed beforehand. 483	
Assemblages are defined by their OTU composition, both in terms of OTU identity and 484	
relative prevalence. The relative prevalence of an OTU in an assemblage is proportional to its 485	
number of occurrences across the samples where the assemblage is present. Assemblages may 486	
share OTUs, and samples may contain a mixture of coexisting assemblages. As a consequence 487	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.287524doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287524
http://creativecommons.org/licenses/by-nc-nd/4.0/


the model is able to capture spatial patterns despite the presence of many ubiquitous OTUs, a 488	
typical trait of microbial communities, and to accommodate gradual changes in taxonomic 489	
composition across space. The model is little influenced by OTUs of rare occurrence, since 490	
those OTUs contribute little co-occurrence information. Symmetric Dirichlet priors are put on 491	
the mixture of assemblages in samples and on the mixture of OTUs in assemblages, with 492	
respective control parameters a and d.  493	
 We fitted the model to all samples simultaneously, making no distinction between 494	
surface and DCM samples. We used the Gibbs sampling algorithm of Phan et al. (2008), 495	
wrapped in the R package ‘topicmodels’ (Grün & Hornik, 2011), with control parameters 496	
𝛼 = 0.1 and 𝛿 = 0.1. Values of a and d lower than 1 favor low spatial overlap and few shared 497	
OTUs between assemblages, respectively. Model output is chiefly influenced by d: values of 498	
d close to 1 or higher led to solutions where very few widely distributed assemblages shared 499	
the bulk of OTUs. These solutions were associated with lower predictive power on held-out 500	
data (as measured by perplexity; see next paragraph) and lower posterior probability 501	
compared to lower d values. We ran the MCMC (Markov Chain Monte Carlo) chains for 502	
3,000 iterations starting from random assemblages. After the first 2,000 iterations (burn-in), 503	
we recorded samples every 25 iterations for the last 1,000 iterations (i.e., 40 MCMC samples 504	
per chain). MCMC samples are sets of values for all the model’s latent variables, which 505	
follow the model’s posterior distribution given the data once the chain has converged. The 506	
associated likelihood values are computed as part of the algorithm. Among the 40 MCMC 507	
samples, we picked that with likelihood closest to the mean across samples, as a proxy for the 508	
set of latent variable values maximizing the posterior distribution.  509	

We selected the optimal number K of assemblages by cross-validation. We partitioned 510	
the data into random sets of 10 samples, and fitted the model on the data while successively 511	
holding out each 10-sample validation set. We then measured the predictive power of each 512	
fitted model on the corresponding validation set. We measured it using perplexity, a 513	
decreasing function of predictive power defined as the geometric mean of the likelihood 514	
across OTU occurrences (perplexity function in R package ‘topicmodels’; Grün & Hornik, 515	
2011). We compared the mean perplexity across validation sets for K between 2 and 35, and 516	
picked the minimum value after smoothing the curve with a 6-degree-of-freedom spline 517	
(function smooth.spline, R package ‘stats’; R Core Team, 2018). For large datasets, the mean 518	
perplexity as a function of K may enter a plateau after an initial decrease (Fig. S1). As a 519	
heuristic means to select the K value corresponding to the onset of the plateau, we first fitted 520	
the model to the whole dataset for the K value with minimum mean perplexity, and used the 521	
number of assemblages obtained after removing all the assemblages with a cumulative 522	
prevalence across the dataset of less than one sample. We then fitted the model again for the 523	
number of assemblages thus obtained.  524	

Once we had selected the K value, we ran 100 independent MCMC chains on the 525	
whole dataset from random initial conditions. To check for potential insufficient mixing along 526	
the chains, we measured the similarity in the spatial distribution of assemblages across the 527	
chains (Table S1), using the metric defined in Sommeria-Klein et al. (2019). We picked the 528	
chain with posterior probability closest to the mean across chains for the final interpretation. 529	

 530	
Comparing assemblages 531	
Each assemblage is characterized by a list of OTUs and their relative prevalence. When 532	
running LDA on the whole eukaryotic data set, we measured the pairwise dissimilarity 533	
between assemblages as the Simpson dissimilarity of their composition in OTUs. We then 534	
built an UPGMA tree out of the dissimilarity matrix to obtain a hierarchical clustering of 535	
assemblages (function agnes, R package ‘cluster’). 536	
 537	
 538	
 539	
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Major eukaryotic groups 540	
After having first considered all eukaryotic OTUs combined, we sought to compare 541	
biogeographic patterns across major groups of eukaryotic plankton. To this end, we classified 542	
OTUs into deep-branching monophyletic groups based on taxonomic assignations, as in de 543	
Vargas et al. (2015), and we discarded those tallying less than 100 OTUs. We obtained 70 544	
groups tallying between 101 to 72,769 OTUs (Dinophyceae), for a total of 241,020 OTUs. 545	

We classified eukaryotic groups into four broad ecological categories based on the 546	
dominant ecology of their constituent OTUs: parasites, phototrophs, phagotrophs and 547	
metazoans. All groups fell entirely or mostly into one of these categories, except Dinophyceae 548	
(various ecological functions, including many mixotrophs) and Collodaria (mostly 549	
phagotrophic photohosts), which we did not classify and thus excluded from our statistical 550	
comparisons to ecology. 551	

We estimated the mean body size of each group based on the distribution of the 552	
corresponding sequence reads over the four size fractions and across samples. Specifically, 553	
we computed the mean body size 𝑑!  of group G across samples as: 554	

𝑑! =
1
𝑆

𝑝!,!,!𝑑!!∈!
!
!!!

𝑝!,!,!!∈!
!
!!!

!

!!!

 

where 𝑆 is the number of samples, 𝑑! the mid-range body size of fraction f (i.e., respectively 555	
2.9 mm, 12.5 mm, 100 mm, and 1,090 mm for the four size fractions), and 556	
𝑝!,!,! = 𝑛!,!,! 𝑛!,!,!!  the relative abundance of OTU t in fraction f of sample i, as inferred 557	
from the number 𝑛!,!,! of sequence reads assigned to it. Groups’ mean body size ranges from 558	
24 mm (Cryptophyta) to 731 mm (Chaetognatha). 559	

Groups diversity and body size are independent from each other (𝑝 = 0.25), but 560	
variation in body size partly overlaps with ecological categories: all pairs of ecological 561	
categories have significantly distinct body size except parasites and phagotrophs (Fig. S7). 562	

 563	
Amount of biogeographic structure 564	
To quantify the amount of biogeographic structure exhibited by a planktonic group, we 565	
computed, separately for surface and DCM samples, the short-distance spatial autocorrelation 566	
𝐼! in the global distribution of each assemblage k across stations. We measured 𝐼! using 567	
Moran’s index (function Moran.I, R package ‘ape’; Paradis & Schliep, 2018), defined as: 568	

𝐼! =
𝑆

𝑤!"!
!!!

!
!!!

𝑤!" 𝜃!! − 𝜃! 𝜃!! − 𝜃!!
!!!

!
!!!

𝜃!! − 𝜃! !!
!!!

 

where S is the number of stations, 𝜃!!  the proportion of assemblage k in station i (i.e., 569	
𝜃!!!

!!! = 1 ), 𝜃! = 𝜃!! 𝑆!
!!!  its mean over stations, and 𝑤!" = 𝑤 𝑑!"  is a weight 570	

function that decreases with the spatial distance 𝑑�! between stations i and j. We defined the 571	
spatial distance between two stations as the shortest path between them that follows Earth’s 572	
surface without crossing land (Dijkstra’s algorithm; Richter et al., 2019). We chose an 573	
inverse-square weight function satisfying 𝑤 𝑚𝑎𝑥𝑑!" = 0 and 𝑤 𝑚𝑖𝑛𝑑!" = 1: 574	

𝑤!" = 𝑤 𝑑!" =

max𝑑!"
𝑑!"

!

− 1

max 𝑑!"
min𝑑!"

!

− 1
 

where 𝑚𝑖𝑛𝑑!" is about 100 km and 𝑚𝑎𝑥𝑑!" 23,500 km. We then computed the overall short-575	
distance spatial autocorrelation I in the biogeography as the weighted mean of 𝐼!  over 576	
assemblages, using the mean assemblage proportions 𝜃!  as weights, separately for the 577	
surface and the DCM: 578	
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𝐼 = 𝜃� 𝐼!

!

!!!

 

 579	
Scale of biogeographic organization 580	
We quantified the scale of biogeographic organization as the characteristic distance at which 581	
spatial autocorrelation vanishes. We measured this distance in surface and at the DCM by 582	
computing Moran’s I with a step weight function taking value 𝑤!" = 1𝑖𝑓𝑑!" < 𝑑 and 𝑤!" = 0 583	
otherwise, and by varying 𝑑  linearly between 𝑚𝑖𝑛𝑑!"  and 𝑚𝑎𝑥𝑑!"  over 20 increments: 584	
𝑑! = 𝑚𝑖𝑛𝑑!" + 𝑛 𝑚𝑎𝑥𝑑!" −𝑚𝑖𝑛𝑑!" 20 for n between 1 and 20. Moran’s I decreases first 585	
linearly with spatial distance 𝑑 and then vanishes asymptotically. We smoothed the 𝐼 𝑑  586	
curve with a 5-degree-of-freedom spline, and then performed a linear regression (function lm, 587	
R package ‘stats’) on its linear domain. We defined the characteristic distance at which spatial 588	
autocorrelation vanishes as the x-axis intercept of the linear regression (i.e., −𝑏 𝑎, where a 589	
and b are the slope and y-axis intercept, respectively). 590	
 591	
Autocorrelation within oceanic basins 592	
We measured the spatial autocorrelation within oceanic basins by computing Moran’s I with a 593	
step weight function taking value 𝑤!" = 1 when stations i and j belong to the same oceanic 594	
basin and 𝑤!" = 0 otherwise, separately at the surface and the DCM. We defined as separate 595	
oceanic basins the Arctic Ocean, North Atlantic Ocean, South Atlantic Ocean, Mediterranean 596	
Sea, Red Sea, Indian Ocean, North Pacific Ocean, South Pacific Ocean and Southern Ocean. 597	
We expect a correlation between short-distance and within-basin spatial autocorrelation, since 598	
both are computed as Moran’s I using different weight functions. To take this into account, 599	
we divided for each group the within-basin autocorrelation by the short-distance 600	
autocorrelation in statistical analyses. 601	
 602	
Latitudinal autocorrelation 603	
To measure whether the same assemblages tend occur at the same absolute latitude on both 604	
sides of the Equator, we computed, separately at the surface and the DCM, Moran’s I with a 605	
weight function taking value 𝑤!" = 𝑒! !! ! !!

! !! when 𝑠𝑖𝑔𝑛 𝑙! = −𝑠𝑖𝑔𝑛 𝑙!  and 𝑤!" = 0 606	
otherwise, where 𝑙! is the latitude of station i in degrees. We used 𝜎! = 25, the value that 607	
maximized latitudinal autocorrelation in the surface biogeography of all eukaryotic OTUs 608	
combined. As for within-basin autocorrelation, we divided for each group the latitudinal 609	
autocorrelation by the short-distance autocorrelation in statistical analyses. 610	
 611	
Comparing biogeography across groups 612	
We applied our LDA decomposition pipeline (see above) separately to each of the major 613	
groups. To compare the resulting biogeography across groups, we computed a measure of 614	
biogeographic dissimilarity between pairs of groups. We used the relative mutual information 615	
between the spatial distribution of assemblages, an information theoretic quantity closely 616	
related to the Variation of Information (Meila, 2006) but normalized by total entropy so as to 617	
make it insensitive to differences in number of assemblages between groups. 618	

We note 𝜃! = 𝜃!,!
!!

!∈ !,!

!!∈ !,!!  and 𝜃! = 𝜃!,!
!!

!∈ !,!

!!∈ !,!!  the spatial distribution over the 619	
S stations of the respectively 𝐾! and 𝐾! assemblages in the biogeographies of groups 1 and 2, 620	
with 𝜃!,!

!!!!
!!!! = 1 and 𝜃!,!

!!!!
!!!! = 1 for every station i. We computed the entropy 𝐻 𝜃!  621	

and the mutual information 𝐼 𝜃!,𝜃!  between 𝜃! and 𝜃! as: 622	
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𝐻 𝜃! = − 𝜃!! 𝑙𝑜𝑔 𝜃!!
!!

!!!!

 

𝐼 𝜃!,𝜃! = 𝜃!
!!𝜃!

!! 𝑙𝑜𝑔
𝜃!
!!𝜃!

!!

𝜃!
!! 𝜃!

!!
!!,!! ∈ !,!! × !,!!

 

where .  stands for the mean over the S stations. The relative mutual information between 𝜃! 623	
and 𝜃! is then defined as: 624	

𝐼 𝜃!,𝜃! =
𝐼 𝜃!,𝜃!

𝐻 𝜃! + 𝐻 𝜃! − 𝐼 𝜃!,𝜃!
 

The similarity index 𝐼 𝜃!,𝜃!  varies between 0 and 1, and can be transformed into a 625	
dissimilarity index by taking 1− 𝐼 𝜃!,𝜃! . 626	

We performed a Principal Coordinate Analysis (function pcoa.all, Legendre 2007) on 627	
the 1− 𝐼 dissimilarity matrix between the 70 major groups, resulting in 69 PCoA axes.  We 628	
performed multivariate linear regressions (function ‘lm’) of the projections of groups onto the 629	
PCoA axes against six explanatory variables: the amount of biogeographic structure, the scale 630	
of biogeographic organization, the within-basin autocorrelation, the latitudinal 631	
autocorrelation, the logarithm of group diversity and the logarithm of group body size. Each 632	
of these explanatory variables explained a significant part of the variance in the groups’ 633	
projections onto all PCoA axes (𝑝 < 10!!). When considering each PCoA axis separately, 634	
groups’ projections onto the first two PCoA axes could be well predicted by the combination 635	
of these six explanatory variables (𝑅!"#.! = 0.86, 𝑝 = 10!!" for the first axis, 𝑅!"#.! = 0.69, 636	
𝑝 = 10!!"for the second axis), while this was not the case for subsequent PCoA axes 637	
(𝑅!"#.! < 0.17, 𝑝 ≳ 10!!). Therefore the first two PCoA axes carry most of the interpretable 638	
biogeographic variation across groups, and as a consequence we focused on the ordination of 639	
the groups along those two axes.  640	
 641	
Disentangling the effect of body size, diversity and ecology 642	
We assessed correlations between continuous variables using Pearson’s correlation coefficient 643	
and associated t-test (function cor.test). We tested the effect of ecology (with four factor 644	
levels: phototrophs, phagotrophs, metazoans and parasites) on a continuous variable (i.e., 645	
group position on the first two PCoA axes, or a ratio of explained variances) by an Analysis 646	
of Variance (ANOVA), and the respective effects of ecology and a continuous covariate 647	
(either log body size or log diversity) by an Analysis of Covariance (ANCOVA; functions lm 648	
and anova). We considered the t-tests between pairs of ecological categories only when the F-649	
test was significant, and grouped ecological categories together when this improved the 650	
model. We used a 5% significance threshold. 651	
 652	
Abiotic environmental variables 653	
For each sample, we used as local abiotic conditions the mean annual values measured at the 654	
approximate location and depth of the sample for temperature, nitrate, phosphate and silicate 655	
concentrations, dissolved oxygen concentration, oxygen saturation and apparent oxygen 656	
utilization (World Ocean Atlas 2013; Boyer et al., 2013). We also used iron concentration 657	
values derived from model simulations (Menemenlis et al., 2008). We conducted a Principal 658	
Component Analysis (PCA) on these abiotic environmental variables, separately for surface 659	
and DCM samples, after centering and standardization (function dudi.pca, R package ‘ade4’; 660	
Chessel, Dufour, & Thioulouse, 2004). We retained the first three axes for further analysis 661	
(axes with eigenvalue larger than 0.8). 662	

For surface samples, the first axis amounts to 44% of the total variance (eigenvalue = 663	
3.5), and corresponds to variation in temperature as well as in nitrate, phosphate, silicate and 664	
dissolved oxygen concentrations. The second axis amounts to 26% of variance (eigenvalue = 665	
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2.1) and corresponds to variation in oxygen saturation and utilization. The third axis amounts 666	
to 16% of variance (eigenvalue = 1.3) and is mostly driven by iron concentration (Fig. S11). 667	

For DCM samples, the first axis amounts to 51% of the total variance (eigenvalue = 668	
4.1), and corresponds mostly to variation in phosphate and nitrate concentration, as well as 669	
oxygen utilization and saturation. The second axis amounts to 27% of variance (eigenvalue = 670	
2.2), and corresponds mostly to variation in temperature and dissolved oxygen concentration. 671	
The third axis amounts to 10% of variance (eigenvalue = 0.84) and is driven by iron 672	
concentration. 673	
 674	
Biotic environmental variables 675	
We used the relative abundances in the community of the 70 major groups of eukaryotic 676	
plankton under study as proxy for local biotic conditions. We estimated the local relative 677	
abundance 𝑎!,! of a group in sample i as the mean of its relative read count in the four size 678	
fractions: 679	

𝑎!,! =
𝑝!,!,!!∈!

!
!!!

𝑝!,!,!!
!
!!!

 

where, as defined previously for the calculation of body size, 𝑝!,!,! is the relative read count of 680	
OTU t in fraction f of sample i. The quantity 𝑎!,! is not directly a measure of the relative 681	
number of individuals in group G, because it is obtained by summing over size fractions, and 682	
both the density of individuals per volume of water and the sampled volume of water differ 683	
widely among size fractions. It can nevertheless be used to characterize the variation in 684	
community composition across stations.  685	

We conducted a Principal Component Analysis (PCA) on relative abundances 𝑎!  686	
across groups, separately for surface and DCM samples, after centring and standardization 687	
(function dudi.pca, R package ‘ade4’; Chessel et al., 2004), and we retained the axes with 688	
eigenvalue larger than 0.8 as biotic environmental variables for further analysis (the first 28 689	
axes for surface samples; the first 23 axes for DCM samples; Fig. S12). To avoid using the 690	
abundance of the group under study as an explanatory variable, we performed 70 separate 691	
PCAs, each time removing the focal group. 692	
 693	
Transport times along currents 694	
To quantify the role of transport by currents in generating the observed biogeographies, we 695	
compared them with connectivity maps, known as Moran Eigenvector Maps (MEMs), 696	
obtained by decomposing the matrix of pairwise minimum transport times between stations 697	
using Principal Coordinate Analysis (PCoA), as described below (Legendre & Legendre, 698	
2012). In terrestrial ecology, similar maps are obtained by decomposing the matrix of 699	
pairwise geographic distances between sampled sites, and are classically used to assess the 700	
effect of dispersal limitation by distance on the distribution of species.  701	

Here, we measure the connectivity of stations using minimum transport times between 702	
stations, in line with previous studies using Lagrangian transit times to explain the spatial 703	
distribution of marine plankton (Jönsson & Watson, 2016; Watson et al., 2011; Wilkins, van 704	
Sebille, Rintoul, Lauro, & Cavicchioli, 2013). This measure of connectivity is more robust 705	
than physical connectivity (i.e. the number of particles exchanged between stations), which 706	
strongly depends on the number of particles considered in the simulation as well as on the 707	
method used to reconstruct the trajectories of particles between stations. When seeking to 708	
explain patterns of taxon presence-absence for planktonic organisms, the minimum transport 709	
time between stations appears more relevant than the mean transport time, since only a few 710	
individuals are required to ‘seed’ a location with a given taxon (Jönsson & Watson, 2016; 711	
Wilkins et al., 2013). Moreover, mean transport times are not well-defined in the global ocean 712	
in the absence of a physically motivated upper time-scale (Jönsson & Watson, 2016). Finally, 713	
minimum transport time has been shown to be a good predictor of the average amount of 714	
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change in global plankton community composition that takes place along currents over a 715	
timescale of a year (i.e. a few thousands km), as a result of mixing, environmental variations, 716	
internal biotic interactions, behaviour and random compositional drift (Richter et al., 2019). 717	
 The minimum transport times were computed by Richter et al. (2019) using a 718	
numerical simulation of a global oceanic circulation model (MITgcm Darwin; Clayton et al., 719	
2017), as summarized here. In this simulation, particles were released uniformly across the 720	
globe and advected for a cycle of 6 years using the horizontal velocity field along with a 721	
turbulent diffusivity. A set of 10,000-year trajectories was then constructed using this 6-year 722	
master cycle with particles seeded in each sampling station. Transport times between sampled 723	
locations were inferred by considering every event when a particle travelled from one 724	
sampled location to another, up to a radius of 200 km (see Richter et al., 2019 for more 725	
details). Only stations that had exchanged at least 10 particles were considered significantly 726	
connected. This computation was performed twice using simulations at 5-m depth and 75-m 727	
depth, so as to estimate the minimum transport times at the surface and at the DCM, 728	
respectively. We thus obtained two symmetric square matrices, one for surface samples and 729	
one for DCM samples, with minimum transport times as entries for connected pairs of stations 730	
and missing values for unconnected pairs.  731	
 From these two matrices of pairwise minimum transport times, we generated 732	
connectivity maps (MEMs) taking one value per station as follows (Legendre & Legendre, 733	
2012). We first computed for each matrix a minimum spanning tree among samples using 734	
function spantree of R package ‘vegan’ (Oksanen et al., 2018). Following the 735	
recommendations of Legendre & Legendre (2012), we truncated the matrix of minimum 736	
transport times to retain only those connections necessary to connect all stations together (i.e., 737	
to obtain a connex graph), if possible. For surface samples, we found that a single tree 738	
connected all stations as long as we retained all minimum transport times below 2.1 years 739	
(which corresponds to distances up to a few thousands km, cf. Fig. S9). By doing so, we 740	
effectively restricted ourselves to the range of minimum transport times over which minimum 741	
transport time increases approximately linearly with the geographic distance between stations. 742	
For DCM samples, no single spanning tree connected all stations, and so we chose to retain 743	
all minimum transport times below 3.15 years, which led to the Mediterranean, the Red Sea 744	
and the Southern Ocean being disconnected from the remaining samples. In both matrices, we 745	
set the diagonals and all the elements above the selected threshold to four times the threshold 746	
value, and we conducted a PCoA of the resulting truncated connectivity matrices (function 747	
pcoa.all, Legendre 2007). We obtained 61 eigenvectors associated with strictly positive 748	
eigenvalues for the surface connectivity matrix and 35 for the DCM connectivity matrix, 749	
which we used as connectivity maps at the surface and the DCM. 750	

The resulting connectivity maps display patterns of connectivity at temporal and 751	
spatial scales ranging from a few days and a hundred km (the minimal distance between a pair 752	
of stations) up to the global scale, and can therefore be used to assess the influence of 753	
transport by currents both within and between ocean basins (Fig. S10), which is difficult to 754	
achieve when directly using pairwise transport times between stations. They identify 755	
oceanographic features that are known to support high connectivity, such as the North 756	
Atlantic gyre system, the eastward flow between Scandinavia and Siberia in the Arctic Ocean, 757	
the South Pacific gyre, the Mediterranean Sea cyclonic circulation and the western Indian 758	
Ocean gyre system (Fig. S10). 759	
 760	
Variation partitioning 761	
To assess the influence of explanatory variables on biogeography, we compared their 762	
distribution across stations to that of assemblages through multivariate linear regression, after 763	
centering and standardization. We used the adjusted coefficient of multiple determination 𝑅!! 764	
as a measure of the variance in the distribution of assemblages across stations (i.e., in the 765	
biogeography) that can be explained by a set of explanatory variables (function rda, R 766	
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package ‘vegan’; Oksanen et al., 2018). Given a partition of the explanatory variables into 767	
two subsets A and B (e.g., connectivity maps and local environmental conditions), we 768	
partitioned the explained variance 𝑅!,!∩!!  into the variance explained purely by subsets A and 769	
B as well as jointly by both subsets: 𝑅!,!∩!! = 𝑅!,!! + 𝑅!,!! + 𝑅!,!∩!! . This partitioning can be 770	
obtained from the variance independently explained by subsets A and B (𝑅!,!!  and 𝑅!,!! ) as 771	
follows (function varpart, R package ‘vegan’):  772	

𝑅!,!∩!! = 𝑅!,!! + 𝑅!,!! − 𝑅!,!∩!!  
𝑅!,!! = 𝑅!,!∩!! − 𝑅!,!!  
𝑅!,!! = 𝑅!,!∩!! − 𝑅!,!!  

For each taxonomic group, we tested whether each variable individually explained a 773	
significant amount of variance in the biogeography (functions rda and anova), separately for 774	
the surface and DCM sets of samples, and we retained only the significant variables in further 775	
analyses.  776	
 We partitioned the variance explained by the combination of all retained variables into 777	
the following three fractions: the variance purely explained by connectivity maps, that purely 778	
explained by environmental variables (lumping biotic and abiotic variables together) and 779	
finally the variance jointly explained by both sets of variables (function varpart). We 780	
interpreted the fraction purely explained by connectivity maps as the part of the biogeography 781	
that can be attributed to transport by currents, through the homogenization of plankton 782	
communities at the local scale and through neutral structuring at the global scale. We 783	
interpreted the fraction purely explained by environmental variables as the part of 784	
biogeography that can be attributed to the response of community composition to local biotic 785	
and abiotic conditions. The jointly explained fraction is the part of the biogeography that is 786	
compatible with either of the two mechanisms. Some overlap is indeed to be expected 787	
between patterns of connectivity and environmental conditions, since environmental 788	
conditions are themselves transported by currents. Finally, the unexplained part of the 789	
variance can be interpreted as reflecting the effect of environmental variations along currents 790	
between stations, which are not taken into account in our analyses, unmeasured local abiotic 791	
and biotic parameters, local fluctuations in community composition, and sampling and 792	
measurement noise. We compared across taxonomic groups the following quantities: the total 793	
explained variance, the fraction of it purely explained by connectivity maps, the fraction of it 794	
purely explained by the local environment, and the ratio of the variance explained by 795	
connectivity (both purely and jointly) over that explained by the local environment (both 796	
purely and jointly). 797	
 We similarly partitioned the variance explained by the local environment into the 798	
variance purely explained by abiotic variables, that purely explained by biotic variables, and 799	
the variance jointly explained by both sets of variables, and compared them across taxonomic 800	
groups. 801	
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