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 25 

Abstract 26 

Genotype-environment association (GEA) methods have become part of the standard 27 

landscape genomics toolkit, yet, we know little about how to filter genotype-by-sequencing data 28 

to provide robust inferences for environmental adaptation. In many cases, default filtering 29 

thresholds for minor allele frequency and missing data are applied regardless of sample size, 30 

having unknown impacts on the results. These effects could be amplified in downstream 31 

predictions, including management strategies. Here, we investigate the effects of filtering on 32 

GEA results and the potential implications for adaptation to environment. Using empirical and 33 

simulated datasets derived from two widespread tree species to assess the effects of filtering on 34 

GEA outputs. Critically, we find that the level of filtering of missing data and minor allele 35 

frequency affect the identification of true positives. Even slight adjustments to these thresholds 36 

can change the rate of true positive detection. Using conservative thresholds for missing data 37 

and minor allele frequency substantially reduces the size of the dataset, lessening the power to 38 

detect adaptive variants (i.e. simulated true positives) with strong and weak strength of 39 

selections. Regardless, strength of selection was a good predictor for GEA detection, but even 40 

SNPs under strong selection went undetected. We further show that filtering can significantly 41 

impact the predictions of adaptive capacity of species in downstream analyses. We make 42 

several recommendations regarding filtering for GEA methods. Ultimately, there is no filtering 43 

panacea, but some choices are better than others, depending largely on the study system, 44 

availability of genomic resources, and desired objectives of the study.  45 

 46 

Keywords: Eucalyptus; climate adaptation; genome sequencing; genomic simulation; GEA; 47 

reduced representation; SNP analysis 48 
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 50 

Introduction 51 

Identifying genomic patterns associated with adaptation in wild populations can provide 52 

information to support management strategies as well as facilitate fundamental discoveries 53 

(Garner et al., 2016; Sgrò, Lowe, & Hoffmann, 2011). We can improve our understanding of the 54 

response of species to changing climates and their evolutionary potential by leveraging 55 

knowledge about adaptive genetic variation in natural populations (Browne, Wright, Fitz-Gibbon, 56 

Gugger, & Sork, 2019; Razgour et al., 2019; Sork, 2017). Genotype–environment association 57 

(GEA) methods are used to identify potentially adaptive loci in non-model systems based on 58 

correlations between allele frequencies and environmental data. In recent years, there has been 59 

a proliferation of genomic studies on landscape adaptation using GEA analyses (Ahrens et al., 60 

2018), which is becoming a standard part of the analytical pipelines for landscape genomics.    61 

The utility of GEA analyses is limited by several problems, including the presence of false 62 

positives (type I errors) (Storz, 2005). While, false negatives (type II errors) are likely common 63 

due to controlling for population structure (Sork et al., 2013), they are unlikely to limit or 64 

confound the GEA results. False positives are present in GEA outputs regardless of filtering, 65 

significance thresholds or false discovery corrections (Forester et al., 2018). From a biological 66 

perspective, false positives are genomic variants significantly associated with the environment 67 

through random, neutral processes. For example, demographic processes can generate clines 68 

in allele frequencies that covary with environmental gradients, leading to neutral SNPs 69 

potentially being falsely identified as adaptive (François, Martins, Caye, & Schoville, 2016; 70 

Hoban et al., 2016; Lotterhos & Whitlock, 2015). However, these impacts will vary depending on 71 

the unique demographic history (e.g. bottlenecks, population growth, or rapid expansion) of a 72 

species. Many GEA methods control for patterns of population structure, to reduce false positive 73 

call rates, but by doing so, true positives are also at risk of becoming false negatives (Nadeau, 74 
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Meirmans, Aitken, Ritland, & Isabel, 2016; Orsini, Mergeay, Vanoverbeke, & Meester, 2013). 75 

One way to control for false positive call rates is to combine the results of multiple approaches 76 

in the hope of identifying loci with well-supported associations with environmental variables  77 

(Meirmans, 2015). However, the outcomes of these approaches are variable (Nadeau et al., 78 

2016) and, this is not surprising given the numerous statistical models and methods used to 79 

mitigate the confounding effects of genetic structure. Also, the consequences of false positives 80 

could vary, depending on the conservation or management applications associated with the 81 

analysis. For example, the presence and overrepresentation of false positives could have 82 

implications for conservation actions, through the identification of patterns of putative adaptation 83 

that are supported more by false positives than true positives (i.e. the noise is stronger than the 84 

signal). 85 

The occurrence of false positives is partially attributable to incomplete genome sampling (Lowry 86 

et al., 2017). The proportion of the genome sampled can be influenced at many stages of the 87 

workflow, including choice of genotyping method, library preparation method (e.g. enzyme 88 

choice), bioinformatic processing, and data quality filtering (O’Leary, Puritz, Willis, Hollenbeck, & 89 

Portnoy, 2018). Most GEA studies of non-model organisms employ reduced representation 90 

approaches, as they are cost-effective, do not require extensive genomic resources (e.g. 91 

reference genomes) (Manel et al., 2016) and often yield thousands of loci scattered across a 92 

species’ genome. Yet, even small genomes are poorly sampled through reduced representation 93 

library preparation. For example, a dataset of 20 k SNPs only represents ~0.7% of a 550 Mbp 94 

genome with a linkage disequilibrium decay of 200 bp (2.75 million linkage blocks). Thus, for 95 

many reduced representation approaches, the likelihood of detecting positive associations is 96 

limited by querying a very small proportion of the genome. Previous studies have amply 97 

reviewed how choices made during library preparation and bioinformatic processing impact the 98 

level of genome sampling that can be achieved for any given reduced representation dataset 99 

(Mastretta-Yanes et al., 2015; O’Leary et al., 2018). In addition, total sample size is also known 100 

to have an impact on the power of GEA analyses and identification of false positives (Lotterhos 101 
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& Whitlock, 2015). While the importance of sample size alone has been discussed previously as 102 

an important factor for sample design for GEA analyses (Lotterhos & Whitlock, 2015; de Mita et 103 

al., 2013), it is unknown how sample size interacts with filtering choices. Therefore, in this study 104 

we explore the explicit impact of data quality filtering on downstream GEA results. 105 

Filtering remains incredibly challenging, and a highly important aspect of population genomics 106 

data analysis (Andrews & Luikart, 2014). Optimal, default filtering settings suitable for all GEA 107 

studies are unlikely, given the range of organisms and research questions explored. Even so, 108 

documenting the effects of data filtering on analyses has proved highly useful for other 109 

population genetic applications, assisting researchers to set filters that are appropriate for their 110 

experimental design and individual study goals (Narum, Buerkle, Davey, Miller, & Hohenlohe, 111 

2013). For example, it has been shown previously that SNP calling and filtering settings can 112 

affect estimates of heterozygosity and FST (Díaz-Arce & Rodríguez-Ezpeleta, 2019; Shafer et 113 

al., 2017), routinely used in conservation decision making (Gautier et al., 2012; Pool, Hellmann, 114 

Jensen, & Nielsen, 2010). Minor allele frequency (MAF) filtering settings can change FST 115 

estimates (Hendricks et al., 2018; Linck & Battey, 2019), due to the inclusion of locally isolated 116 

alleles increasing the perceived dissimilarity of populations. Liberal thresholds of missing data 117 

have been shown to reduce estimates of expected heterozygosity and increased inference of 118 

inbreeding; however, the results vary across species (Fu, 2014). Stringent filtering increases 119 

completeness of the dataset at the expense of the number of SNPs retained and the proportion 120 

of the genome sampled. While it is general practice to filter missing data to low levels, no 121 

studies to date, as far as we are aware, have investigated the impact of missing data on 122 

downstream GEA results. In addition, filtering of reduced representation datasets from 123 

organisms without genomic resources is even more critical, because de novo alignment can 124 

introduce errors (O’Leary et al., 2018). While the importance of filtering has been 125 

acknowledged, the impacts of filtering thresholds on GEA analyses have yet to be fully 126 

investigated.  127 
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In many cases, GEA analyses and outputs are cited as being useful for downstream 128 

applications, including the improvement of management, conservation, and breeding programs. 129 

While commendable, we do not know how filtering choices might impact final recommendations. 130 

As the dataset changes due to filtering, so too will the identified set of putatively adaptive SNPs, 131 

and these differences could be compounded when extrapolating across environmental space. 132 

Often these extrapolated maps, of adaptive genomic variation across species’ ranges, are the 133 

currency of interpretation for stakeholders and decision-makers. The connections between 134 

geospatial predictions of adaptation and genomic variation to support management / 135 

conservation outcomes is evident in studies on birds (Bay et al., 2018) and grasses (Ahrens et 136 

al., 2020), where researchers quantify the heterogeneity of genomic vulnerability to climate 137 

change. However, these predictive outputs could be affected by filtering choices.  138 

Filtering requires subjective decisions about how best to compile the best available dataset to 139 

investigate genomic adaptation across landscapes, while limiting the proportions of false 140 

positives and false negatives identified by GEA analyses. No definitive filtering guidelines for 141 

GEA currently exist. Instead researchers are left to iteratively change filtering thresholds and 142 

subjectively choose a perceived optimal dataset for the question at hand (as demonstrated by 143 

the range of filtering settings identified in a GEA meta-analysis; Ahrens et al., 2018). This 144 

subjective process may result in ambiguous interpretation and the potential for bias in the 145 

reporting of results. As the incorporation of GEAs into analytical pipelines increases, it is 146 

important to establish objective guidelines to assist researchers in determining the impact that 147 

filtering can be expected to have on downstream GEA results. Therefore, we ask two questions: 148 

1) how does filtering affect the identification of putatively adaptive loci? and, 2) how does our 149 

ability or inability to identify associations affect downstream applications? To answer these 150 

questions, we test four common assumptions:  151 

(1) More stringent filtering reduces identification of false positives. 152 

(2) Loci with strong selection strengths will be identified as significant, regardless of filtering 153 

choices. 154 
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(3) Combining GEA analyses reduces false positive call rates. 155 

(4) Extrapolation of adaptive variants across the landscape reveals consistent areas of 156 

climate adaptation. 157 

We test these assumptions using both empirical and simulated data sets, the latter matched to 158 

the empirical demographic scenarios with the addition of known true positives. We explore how 159 

early filtering decisions affect conservation and management decisions and provide guidelines 160 

for data filtering to optimise the effectiveness of GEA methods. 161 

Methods 162 

SNP and climate data 163 

We chose two reduced representation SNP datasets from different genera within the eucalypt 164 

group: Eucalyptus microcarpa (Maiden) Maiden (Jordan, Hoffmann, Dillon, & Prober, 2017) and 165 

Corymbia calophylla (Lindl.) K.D.Hill & L.A.S.Johnson (Ahrens, Byrne, & Rymer, 2019). Both 166 

species are native to south-eastern and south-western Australia respectively (Figure 1). By 167 

comparing phylogenetically close species, we minimised potential confounding effects arising 168 

from using species with very different genomes, thereby allowing us to focus on how filtering 169 

affects GEA results.  170 

 171 

The datasets were based on sampling across the range of each species. The E. microcarpa 172 

dataset consisted of a total of 577 samples from 26 populations and the C. calophylla dataset 173 

comprised 263 samples from 27 populations. Genomic data for both species were generated 174 

using DArTseq (Diversity Arrays Technology P/L, Canberra, Australia), with the same library 175 

preparation, multiplexing, and sequencing protocols. The raw, unfiltered genotype data were 176 

used as the input datasets, with different filtering applied as described below. Genotypes were 177 

quality filtered prior to analysis, retaining those with an individual minimum read-depth of 10x, 178 

minimum genotype quality Phred-score of 30 and a maximum mean read-depth of 100x, 179 

retaining only biallelic SNPs. 180 
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 181 

Climate data were extracted from WorldClim (Fick & Hijmans, 2017) for each sampling location 182 

using the R package raster (R core team 2019). We chose the mean maximum temperature of 183 

the warmest month (BIO5) to test the effect of filtering on genotype-environment association 184 

(GEA) analyses. Temperature was selected as it is commonly used in GEA analyses and a key 185 

selective force given projected increases into the future; BIO5 represents the high temperature 186 

extremes, presumably a greater selective pressure than mean annual temperatures in Australia 187 

(Prober et al., 2016; Costa e Silva, Potts, Harrison, & Bailey, 2019). To assess the potential 188 

effect of multiple variables confounding GEA results, we also tested mean precipitation of the 189 

driest month (BIO14), representing a second key selective force of precipitation. Assessments 190 

of spatial autocorrelation (Moran’s I) and effective population size, given the environment (neff-191 

env) was performed, provide critical metrics for determining which climate variables have greater 192 

power to detect SNPs under selection (details in Supplementary information).  193 

 194 

Figure 1. Map of the sampled locations for the two study species with maximum temperature of 195 
the warmest month (BIO5) shown across Australia.  196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.288308doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288308
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 197 
Table 1. Attributes of empirical and simulated datasets. Pearson’s correlation coefficient (r); 198 
spatial autocorrelation (Moran’s I); effective sample size due to environment (neff-env); BIO5 - 199 
maximum temperature of the warmest month; BIO14 - precipitation of the driest month; number 200 
of SNPs remaining after filtering for largest and smallest analysis datasets (#SNP). 201 
 202 

 Empirical    Simulation   Structure r Moran’s I neff-env 

species # 
samples 

# 
pops 

#SNP 
largest 

#SNP 
smallest 

# samples #SNP 
largest 

#SNP 
smallest 

FST BIO5 ~ 
BIO14 

BIO5 BIO5 

E. microcarpa 577 26 25,826 2,931 650 20,685 3,494 0.01 0.014 0.267 15.1 

C. calophylla 263 27 25,811 5,595 270 21,255 5,031 0.05 -0.75 0.327 13.6 

 203 
 204 

Simulated data set creation 205 

Simulated SNP datasets were generated to be comparable to the empirical datasets, with two 206 

main motivations. First, the effect of missing data can be studied by generating complete 207 

simulated SNP datasets, and then implementing different levels of ‘missingness’. Second, 208 

simulated datasets enable evaluation of the performance of GEA (rates of detection of false 209 

positives and negatives) in relation to different filtering treatments. This can be accomplished by 210 

including known true positives (TP) with different magnitudes of selection pressure.  211 

 212 

Simulated datasets were generated using the simulate.baypass R function in BayPass (Gautier, 213 

2015). This function creates simulated datasets under a BayPass model (see  Coop, Witonsky, 214 

Rienzo, & Pritchard, 2010; Günther & Coop, 2013) using an empirical matrix of allelic 215 

covariances (the Ω matrix). It generates SNPs whose allele frequencies vary across populations 216 

according to the covariance matrix previously estimated from the empirical datasets, with an  217 

additional associations of prescribed strength to a bioclimatic variable. Two simulated datasets 218 

were generated based on the species’ empirical data, hereafter referred to as ‘Sim microcarpa’ 219 

and ‘Sim calophylla’ to distinguish from empirical datasets of E. microcarpa and C. calophylla, 220 

respectively. 221 

 222 
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We simulated population-level allele counts for ~25 000 ‘neutral’ SNPs plus 200 ‘adaptive’ (i.e. 223 

simulated SNPs that are correlated with a specific climate variable) SNPs whose coefficients of 224 

association with each of the two bioclimatic variables were drawn from a uniform distribution 225 

between -0.3 and 0.3 (beta.coef). We chose these selection coefficients knowing that, at their 226 

extremes, they are likely greater than the values we would find in wild populations. We did this 227 

intentionally to verify that loci with very strong selection coefficients were highly likely to be 228 

identified in the GEA analyses. Other simulate.baypass parameters were chosen so that the 229 

simulated data resembled our empirical datasets. For example, the simulation function uses a 230 

beta distribution to describe the frequencies of ancestral alleles among loci. We chose the 231 

parameters for this distribution by fitting the beta distribution to the minor allele frequencies 232 

observed in the empirical datasets. Corymbia calophylla returned shape1 = 0.54 and shape2 = 233 

0.53, whereas E. microcarpa returned shape1 = 0.43 and shape2 = 0.43. Fixed loci were 234 

removed from the simulated datasets, resulting in a loss of 1000-1600 SNPs per dataset. We 235 

also wanted to approximate, in the simulations, the way missing data were distributed across 236 

samples and across loci in the empirical data sets. We therefore began by fitting statistical 237 

distributions to frequencies of missing genotypes across loci and samples in the empirical data. 238 

We used the estimated distributions to impose missing alleles on the loci and samples across 239 

the simulated datasets (Figure S1). If we sampled from a distribution and obtained a negative 240 

number of missing genotypes for a locus, we set the value of missingness for that locus to 0. 241 

 242 

 243 

Subsetting datasets 244 

To understand how filtering choices affect the ability of GEAs to identify true positives ,we 245 

filtered each data set by minor allele frequency (MAF), missing data (MD), and the number of 246 

samples per population (all 150 data sets represented in Table 2). We chose three MAF to 247 

explore (0.01, 0.05, and 0.1; Table 2) based on the most commonly applied thresholds (Ahrens 248 

et al., 2018). We applied five MD thresholds (10%, 20%, 30%, 40%, and 50%; Table 2). The 249 
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most commonly applied MD thresholds are between 10 and 30%; we included thresholds up to 250 

50% to test how less-stringent MD thresholds would behave with GEA methods.  251 

 252 

The importance of biological sampling design on GEA analyses has been demonstrated 253 

previously (see Forester et al., 2018; Lotterhos & Whitlock, 2015; de Mita et al., 2013 for more 254 

thorough treatments of sampling design), and do not try to replicate these studies but rather. Six 255 

individuals per population is often regarded as the minimum sample size for population genetics 256 

analyses when thousands of SNPs are available (Nazareno, Bemmels, Dick, & Lohmann, 2017; 257 

Willing, Dreyer, & Oosterhout, 2012) and GEA studies (Lotterhos & Whitlock, 2015). We 258 

therefore tested the effect of using 6 or 10 individuals per population for both species, as well as 259 

25 individuals per population for E. microcarpa, reflecting the empirical C. calophylla and E. 260 

microcarpus datasets, respectively.  261 

 262 

Table 2. Matrix detailing the 150 data filtering combinations explored in the present study. 263 
Numbers within the table represent the total number of individuals per dataset: 6, 10, or 25 264 
individuals per population. The number of populations remained constant throughout the study 265 
(C. calophylla - 27 populations; E. microcarpa - 26 populations). MAF - minor allele frequency.  266 
  Proportion of Missing Data 

MAF Dataset 50% 40% 30% 20% 10% 

0.01 

C. calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

Sim calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

E. microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

Sim microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

0.05 

C. calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

Sim calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

E. microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

Sim microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

0.1 

C. calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

Sim calophylla 6, 10 6, 10 6, 10 6, 10 6, 10 

E. microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

Sim microcarpa 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 6, 10, 25 

 267 
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 268 

GEA Analyses 269 

We focused on three commonly used GEA methods with different underlying computational 270 

models to identify SNP-climate associations. We compared two univariate methods, LFMM2 271 

(Caye, Jumentier, Lepeule, & François, 2019) and BayPass (Gautier, 2015) which associates 272 

each SNP individually with a given climate variable, and one multivariate method, redundancy 273 

analysis, RDA following the usage in Forester et al., (2018). 274 

 275 

LFMM2 uses discrete ancestral clusters computed via principal component analysis (PCA) to 276 

control for population structure, and a least-squares approach for confounder estimation of 277 

genomic data (Caye et al., 2019). As LFMM2 requires a full data set, we imputed data using the 278 

mean method with the impute function as the default and may be considered the ‘worst case 279 

scenario’ imputation method (note: the mean method is a naive imputation method, and we 280 

suggest using other imputation methods). We ran PCAs for each data set to assess the change 281 

in population structure as a result of filtering choices (data not shown). As expected, population 282 

structure varied across datasets, likely due to the low, but present population structure (FST = 283 

0.05 & 0.01; Table 1). We observed only very slight changes from a K = 3 to a K = 4, 5, or 6, 284 

with K = 3 being the most consistent solution for both species. Therefore, we used K = 3 for all 285 

LFMM2 analyses to allow direct comparisons across data sets. Significant associations were 286 

called at 𝛼 = 0.001 after applying a false discovery rate as suggested by Caye et al., (2019). We 287 

explored lower significance thresholds but found they were too permissive, returning high 288 

numbers of false positives; 0.001 seemed to be similar to the BayPass significance factor, a 289 

Bayes Factor (BF), of 20.  290 

 291 

BayPass uses an Ω matrix to account for population structure based on allelic covariance 292 

between populations. BayPass analyses were run following the methods described in the 293 

BayPass manual. We ran the standard model twice to obtain the Ω matrix, and averaged the Ω 294 
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matrix across runs. The mean Ω matrix was used as the covariance matrix within the auxiliary 295 

model, which calculates a BF to assist with identification of SNP-climate associations. The 296 

auxiliary model was run twice, and results averaged across runs. The parameters used for both 297 

models (standard and auxiliary) were 20 pilot runs for 1000 iterations, 2500 burn-in, and 1000 298 

MCMC samples. Significant associations were called at a BF > 20, considered ‘decisive’ 299 

evidence (Jeffreys, 1961). As above, for LFMM2, we explored other significance levels with 300 

results returning high numbers of false positives.  301 

 302 

Complementing the univariate GEA analyses, we also performed a redundancy analysis (RDA). 303 

This multivariate method has been shown to be robust across a wide range of selection 304 

strengths, demographic histories, sampling designs, and in the presence of many levels of 305 

population structure (Forester et al., 2018).To address the RDA requirement of a complete data 306 

set, we calculated and used population-level allele frequencies, instead of imputation. For RDA, 307 

an α = 0.05 was used to extract significant SNPs along the two climate axes, across the three 308 

main RDA axes. Variance inflation factors (VIF) were used to check multicollinearity between 309 

the two climate variables, C. calophylla returned 2.35 VIF for both climatic variables and E. 310 

microcarpa returned 1.00 VIF for both, indicating that these are sufficiently independent to 311 

identify associations via RDA because they are below 10 (Zuur et al., 2010). 312 

 313 

For each dataset and analysis, we recorded the SNPs that were identified as having significant 314 

associations with environment. For simulated datasets, we recorded which SNPs were true 315 

positives (TP) and which were false positives (FP). We also recorded ‘pseudo positives’ (PP), 316 

defined as SNPs that were found to be significantly associated with one climate variable but 317 

were in fact TP for the other climate variable i.e. were identified as significantly associated with 318 

BIO5 but were actually adapted to BIO14. 319 

 320 

In order to test whether there is a strength of selection threshold for which GEA methods 321 

achieve a 100% TP call rate, we plotted strength of selection (beta coefficient applied during 322 
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simulations) against the significance of association for BayPass (BF) and LFMM2 (calibrated P-323 

value) for Sim calophylla. We also calculated the difference between the significance values for 324 

each MAF threshold and the standard deviation. This estimate allowed us to quantify the mean 325 

differences and variance between data sets differentiated only by MAF. 326 

 327 

Impacts of filtering on extrapolation and interpretation of adaptive variation 328 

To determine how filtering thresholds may affect the downstream extrapolation of putatively 329 

adaptive genomic variation across geographic space, we estimated the genomic-informed 330 

‘climate selection surface’ for both species. Here, a climate selection surface refers to the 331 

prediction of adaptation through geographic space. This extrapolation followed the logic of 332 

Steane et al. (2014), but using RDA instead of canonical analysis of principal coordinates 333 

(details provided in supplementary information). The effect of each filtering parameter was 334 

explored separately in the simulated datasets, holding other filtering parameters constant (e.g., 335 

when assessing the effect of MAF, the MD and sample size thresholds were held constant). We 336 

also compared the impact of different filtering methods on the empirical datasets for the most 337 

liberal (MD = 50%; MAF = 0.01) and conservative (MD = 10%; MAF = 0.1) datasets. Significant 338 

differences between climate selection surfaces were determined using a pixel pairwise z-score 339 

test. Here, the liberal dataset was compared to the conservative dataset, such that a positive 340 

difference between the two resulting climate selection surfaces corresponds to the liberal 341 

dataset predicting more adaptive variation, and a negative difference corresponds to the 342 

conservative dataset predicting more adaptive variation. 343 

Results  344 

Effects of filtering on GEA outputs - simulated data 345 

Using simulated data that reflected natural population structure and climate gradients across C. 346 

callophylla and E. microcarpa (‘Sim calophylla’ and ‘Sim microcarpa’ respectively), we found 347 

that data filtering influenced the identification of ‘adaptive’ SNPs. Filtering regimes differentially 348 
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impacted the data sets and GEA programs in various ways. Both filtering thresholds (missing 349 

data (MD), minor allele frequency (MAF)) and biological sample size influenced the number of 350 

significant SNP-climate associations. Furthermore, filtering thresholds also impacted the 351 

number of true positives (TP), false positives (FP) and pseudo-positives (PP). 352 

 353 

With the exception of RDA for Sim calophylla, the GEA methods identified SNP associations 354 

with BIO5, including TPs (Figures 2 & 3). The multivariate RDA approach performed 355 

exceedingly poorly for Sim calophylla and only moderately well for Sim microcarpa compared to 356 

the other two GEA methods in all aspects, particularly in identifying TPs. For Sim calophylla, this 357 

finding was surprising and might be due to the fact that the climate variable is closely associated 358 

with the population structure (see Ahrens et al., 2019 for details), identifying all TPs as false 359 

negatives; alternatively, the demographic history C. calophylla may make RDA less sensitive to 360 

true associations, as no associations were found in the empirical dataset either. Because of this 361 

complication, we focus the results on BayPass and LFMM2.  362 

 363 

The numbers of TPs and FPs increased with higher proportions of missing data (Figure 2). This 364 

pattern reflects, in part, the total number of SNPs retained in each filtered dataset, with fewer 365 

SNP-climate associations and TPs retained when more stringent filtering was applied (Figure 366 

S2). There were significant relationships between the number of TPs found and the total 367 

number of SNPs kept in the analysis for both species (Sim microcarpa - r2 = 0.93, p = <0.0001; 368 

Sim calophylla - r2 = 0.89, p = <0.0001) (Figure S2). On the other hand, the amount of missing 369 

data had little influence on the proportion of TPs in ‘All Associations’ (AA) and, thus, the ratio of 370 

TPs to AAs remained constant within method and species (TP:AA; Figure 3). Although the 371 

TP:AA ratio was markedly different between species and between methods within species 372 

(Figure 3).  373 

 374 

In general, a smaller MAF identified more TPs and more FPs than a large MAF (Figure 2). The 375 

increase in FPs was especially apparent in the LFMM2 analysis for the Sim calophylla data, 376 
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where a MAF of 0.01 yielded nearly twice as many FPs as TPs (Figure 2b). For the Sim 377 

microcarpa dataset, a MAF of 0.1 identified substantially fewer TPs then lower MAFs, although 378 

the decrease in FPs was not as clear because of the already low FP call rate. The proportion of 379 

TPs in AAs varied with MAF (Figure 3). For the Sim calophylla data, a larger MAF generally 380 

resulted in a higher proportion of TPs (higher ratio of TP:AA). For the Sim microcarpa data, a 381 

MAF of 0.01 generally had the lowest proportion of TPs (lowest ratio of TP:AA), with the highest 382 

proportion of TPs varying between MAF 0.05 and 0.1 depending on the program used and 383 

amount of missing data. 384 

 385 

Sample size and pseudo positives differed between species and method. Larger biological 386 

sample sizes consistently identified more TPs for Sim microcarpa, whereas sample size had 387 

less influence on TP identification (Figure 2; more detailed results about sample size are in the 388 

supplementary information). Pseudo positives (PP) were at or near zero for Sim microcarpa for 389 

both BayPass and LFMM2, but PPs were detected for Sim calophylla in LFMM2, but few in 390 

BayPass (Figures 2a).  391 

 392 

 393 

 394 
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 395 

 396 

Figure 2. The number of significant SNP-climate associations with BIO5 (maximum temperature 397 
of the warmest month), for the simulated datasets (a-e) Sim calophylla and (f-j) Sim microcarpa 398 
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using three GEA analytical approaches: (a,e) BayPass, (b,g) LFMM2, and (c,h) RDA; including 399 
‘overlap’ –  common identified associations – between (d,i) BayPass and LFMM2, and (e,j) 400 
BayPass, LFMM2 and RDA. Associations called false positives (FP) –  significant ’non-adaptive’ 401 
SNPs; true positives (TP) –  significant ‘adaptive’ SNPs; and pseudo positives (PP) – SNPs 402 
’adaptive’ for BIO14 (precipitation of the warmest month) but found to be significantly associated 403 
with BIO5. 404 

 405 

 406 

 407 

Figure 3. The proportion of True Positives (TP) among all identified associations (AA) called in 408 
BayPass, LFMM2, and the SNPs shared between them. The dashed horizontal line indicates 409 
50% TPs in AA; equal to a 1:1 ratio of TPs vs false positives (FP). For values above this line 410 
TPs > FPs, while below the line TPs < FPs. 411 
 412 

Overlapping results 413 

A common approach for determining putatively ‘adaptive’ SNPs is to select those SNPs 414 

identified in multiple, independent analyses (Lotterhos et al., 2017), the rationale being that 415 

these SNPs are more likely to be TPs. Our results show a slight increase in the proportion of 416 

TPs identified (increased TP:AA) when results from independent analyses were combined 417 

(Figure 3). This was due to a small reduction in the number of FPs compared to the most 418 

conservative method (i.e. BayPass). However, this reduction in FPs came at the cost of fewer 419 

TPs being retained. In general, the number of TPs retained was reduced to the level of the more 420 

conservative dataset. For Sim microcarpa, the number of TPs was reduced to BayPass 421 

numbers for the BayPass-LFMM2 overlap (Figure 2i) and reduced to RDA numbers for the 422 
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BayPass-LFMM2-RDA overlap in Sim microcarpa (Figure 2j). Sim calophylla had a substantially 423 

greater decrease in TPs when comparing the overlap between BayPass and LFMM2, dropping 424 

to less than either Baypass or LFMM2 (Figure 2d). There were no identified TPs common to all 425 

three analyses for Sim calophylla, reflecting the lack of TPs from RDA (Figure 2e). Using 426 

multiple methods decreased the number of FPs, to the point of there being very few or zero FPs 427 

for Sim microcarpa (Figure 2). This decrease in FPs compared to TPs when using multiple 428 

methods slightly increased the proportion of TPs in the set of SNPs common to multiple GEA 429 

methods (Figure 3). 430 

 431 

The influence of selection strength on identifying associations 432 

We hypothesised that the strength of selection prescribed in the simulations would influence the 433 

magnitude of the association inferred, and ultimately, the likelihood of detecting TPs. In 434 

particular, we wanted to know if it was possible to identify a threshold above which the call rate 435 

for TP was 100%. The strength of selection for individual TPs did impact the identification of 436 

significant associations. While never 100% accurate at any strength of selection, linear models 437 

revealed significant relationships between the strength of selection and levels of significance for 438 

BayPass and LFMM2 (r2 = 0.47 and 0.22 respectively), showing the strength of selection does 439 

have some effect on results (Figure S3). However, a threshold for high TP call rates was only 440 

observed at low levels of missing data (10%) for BayPass (strength of selection +/- 0.28; Figure 441 

4). This threshold disappeared when we included more SNPs through filtering and no threshold 442 

was identified for LFMM2. 443 

 444 

Increasing the strength of selection increased the rate of TP detection. However, false negatives 445 

(SNPs under selection not detected as significant) occurred across all selection strengths 446 

(Figure 4). The proportion of missing data appeared to have more of an effect on identifying TPs 447 

than the number of samples, but this is likely due to differences in the total number of SNPs in 448 

the dataset and not due to missing data per se (Figure S2). There was little change in the 449 

number of TPs identified whether 6 or 10 individuals per population were sampled. Furthermore, 450 
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as more data were retained through less stringent filtering of missing data, we could identify TPs 451 

under weaker selection for both BayPass and LFMM2. However, even with adjustments to 452 

sample size and the amount of missing data (number of SNPs retained), a large proportion of 453 

TPs were not identified irrespective of filtering parameters. For example, in Sim calophylla only 454 

20% (± 3% SD) of the simulated adaptive SNPs were identified by LFMM2, 30% (± 3% SD) by 455 

BayPass, and 0% (± 0% SD) by RDA. In analyses of Sim microcarpa a higher proportion of the 456 

adaptive variants was identified, with 75% (± 5% SD) of the SNPs under selection being 457 

identified by LFMM2, 62% (± 3% SD) by BayPass, and 38% (± 2% SD) by RDA. 458 

 459 

Minor allele frequency, in combination with biological sample size, impacted the significance of 460 

individual SNPs. There were multiple examples where a SNP was considered significant for one 461 

MAF but not another (Figure 4 highlights three SNPs indicted by red, black, and blue arrows). 462 

One SNP (red arrow, Figure 4) was identified as significant when MAF = 0.01 and 0.05 but not 463 

when MAF = 0.1, while holding the number of individuals to 10 and MD at 10%. However, these 464 

three SNPs were significant at all MAFs when allowing 50% missing data. Furthermore, the 465 

significance of the same SNP with different MAFs can change depending on the method or 466 

sample size. For example, one SNP (black arrows, Figure 4) in the Baypass analysis using six 467 

individuals per population (162 total), was most significant when MAF = 0.1. When there were 468 

10 individuals per population (270 total) the significance of this SNP was greatest when MAF = 469 

0.01, and lowest when MAF = 0.1. We investigated whether these differences might be due to 470 

variation in the covariance (Ω) matrices but found that the covariation among covariance 471 

matrices were highly correlated (correlation coefficients ranged between 0.87 and 0.93; all p-472 

values < 0.001) and had little effect on the observed differences. One SNP detected in the 473 

LFMM2 analyses (blue arrows, Figure 4) showed a significance pattern with MAF 0.1 >  0.05 >  474 

0.01 when there were six individuals per population, but the significance rank changed to MAF 475 

0.05 > 0.01 > 0.1 when there were 10 individuals per population.  476 
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 477 

Figure 4. The strength of selection for each SNP and the resulting power of association for 478 
BayPass (Bayes Factor) and LFMM2 (calibrated P-value) for Sim calophylla. S = significant 479 
(red); NS = not significant (black). See text for explanations of red, blue and black arrows. 480 
 481 

While significance levels were significantly (p < 0.001) consistent across datasets, LFMM2 had 482 

higher consistency with all values >0.98 correlation values while BayPass were between 0.8 483 

and 0.87 for both species (Table S2), slight changes of filtering thresholds did affect outcomes 484 

in some circumstances. The influence of MAF on individual SNP significance was observed 485 

when comparing significance levels of individual SNPs identified for Sim calophylla (Table S3). 486 

For BayPass, MAF had a greater effect on the significance level of individual SNPs when using 487 

smaller sample sizes (162 vs 270 individuals); more SNPs became non-significant when the 488 

biological sample size was smaller. Although the difference in significance level varied with 489 

biological sample size, the variation (SD) was similar (Table S3). The opposite was observed 490 

with LFMM2 where MAF had less impact (i.e. smaller differences and less variation) on the 491 

significance levels of individual SNPs in analyses that used smaller biological sample sizes 492 
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(Table S3), yet, compared to BayPass, more SNPs became non-significant when changing from 493 

MAF = 0.01 to MAF = 0.05.  494 

 495 

Impacts of filtering on extrapolation and interpretation 496 

The impact of filtering the SNP datasets on downstream extrapolation of ‘adaptive’ genomic 497 

variation across geographic space varied depending on the thresholds applied and the GEA 498 

method. The greatest difference in the climate selection surface (i.e. adaptive predictions 499 

through geographic space) between the two approaches and two species was observed for the 500 

empirical dataset for E. microcarpa using LFMM2 (Figure 5). Applying the conservative 501 

thresholds for MAF and MD (while keeping sample size constant) resulted in a significantly 502 

different pattern of adaptive genomic variation across the landscape (climate selection surfaces) 503 

with different geographic areas predicted to be locally adapted (e.g. red surfaces in Figure 5). 504 

This is evident in the comparison between the surfaces produced using the conservative and 505 

liberal thresholds using LFMM2 on E. microcarpa, where more liberal SNP filtering tended to 506 

have a north-south pattern compared to an east-west pattern for the conservative filtering. 507 

These contrasting spatial patterns resulted in large differences between predictions (an adaptive 508 

index change of > 4). The liberally filtered dataset for LFMM2 was more consistent with both of 509 

the predictions for BayPass. Conversely, the effect of filtering was not as apparent when using 510 

BayPass on E. microcarpa, nor on any of the C. calophylla predictions, where, though 511 

significant, only subtle differences between filtering thresholds and GEA methods were 512 

observed (Figure 5). Nevertheless, the incongruences for E. microcarpa occurred along the 513 

margins of the species distribution with the conservative filtering method slightly underpredicting 514 

putative adaption compared to the liberally filtered dataset. Likewise, incongruences for C. 515 

calophylla adaptive predictions showed statistically significant differences along the species 516 

margins but also within the interior region for both GEA methods, although LFMM2 had slightly 517 

larger incongruences compared to BayPass. Consistent with the empirical datasets, the general 518 

spatial patterns of adaptive variation predicted using the simulated datasets remained 519 

qualitatively the same despite filtering for MAF, MD, and sample size, indicating that the signal 520 
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to noise remained quite similar despite the higher number of FPs in the more liberal datasets 521 

(Figure S4). However, we detected regions where there were statistically significant differences 522 

among datasets, particularly along the margins of the species’ ranges. Those differences were 523 

driven by different filtering parameters and GEA methods. For instance, the biggest changes for 524 

Sim microcarpa in BayPass are driven by MAF, but missing data and number of samples had 525 

the biggest impact in LFMM2 (Figure S4). The increase in the number of individuals from 260 526 

total individuals to 650 individuals had very little impact on landscape-wide patterns of genomic 527 

variation (i.e. adaptive index). 528 
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Figure 5. Analysis of the effect of filtering on spatial extrapolation of adaptive variation within 531 
the empirical datasets. The maps within boxes (iii) show the differences between the ‘liberal’ (i) 532 
and ‘conservative’ (ii) maps (smaller maps directly above). Combinations of species are E. 533 
microcarpa and LFMM2 (a), E. microcarpa and Baypass (b), C. calophylla and LFMM2 (c), and 534 
C. calophylla and BayPass (d). Red surface colours in the smaller maps represent regions of 535 
each species gene pool putatively adapted to hotter and drier climates while the blue surface 536 
represents the regions putatively adapted to increasingly cooler and wetter climates. The red 537 
surface in the main differential maps represent regions where the liberal dataset predicted 538 
stronger adaptation, whereas the blue surface corresponds to regions where the conservative 539 
dataset predicted stronger adaptation. Note: the differential scales are different across 540 
comparisons, this was done to highlight the differences within each comparison. Areas of 541 
significant differences in predicted magnitude of adaptation are outlined with a black polygon. 542 
Liberal dataset = missing data (MD) = 50%; minor allele frequency (MAF) = 0.01. Conservative 543 
dataset = MD = 10%; MAF = 0.1; MAF = minor allele frequency; MD = missing data; N = sample 544 
size. 545 

Discussion 546 

Most studies filter data prior to GEA analysis with the aim of improving the quality of the input 547 

data to obtain better inferences of environmental adaptation. While several studies have 548 

explored the influence of demographic history, population structure, sampling strategy, 549 

landscape configuration, and strength of selection on the capacity of various approaches to 550 

detect loci under selection (Forester et al., 2018; Lotterhos & Whitlock, 2014, 2015; Luu, Bazin, 551 

& Blum, 2016; de Mita et al., 2013; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015; 552 

Schlamp et al., 2015; de Villemereuil et al., 2014), the impact of filtering thresholds on GEA 553 

outputs has not been thoroughly evaluated previously. Given the wide range of filtering choices 554 

used and the lack of broad scale patterns of adaptation (Ahrens et al., 2018), we explored the 555 

impact of filtering on the capacity of various approaches to identify putatively adaptive SNPs, 556 

and demonstrated that filtering thresholds do impact the outcomes of GEA analyses. We reveal 557 

that filtering for minor allele frequency and missing data affects GEA outputs in various ways 558 

depending upon species, sample size, and GEA analytical method. To summarise how our 559 

study challenges the four common assumptions addressed in the introduction: 560 

(1) More stringent filtering reduces the identification of FPs but the rate of identifying FPs 561 

remains constant across most filtering thresholds. 562 

(2) Loci with strong selection strengths are more likely to be identified as TPs but a strong 563 

selection strength does not guarantee a significant identification. 564 
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(3) Combining GEA analyses slightly reduces FPs but at the expense of TPs. 565 

(4) Predictions across the landscape, for the most part, were biologically robust but 566 

statistically different across all filtering thresholds, although some circumstances led to 567 

biologically and statistically different adaptive patterns.  568 

Ultimately, we found that filtering choices can have multiplicative effects for downstream 569 

interpretation, meaning that small filtering changes could change estimates of genomic 570 

predicted adaptation to the environment. While we focused on widespread tree species, the 571 

concepts drawn from our results are applicable across other organisms and we suggest that 572 

some common practices employed in GEA studies should be reconsidered. 573 

 574 

Effects of filtering on GEA outputs  575 

Missing data are usually minimised in order to improve the reliability of the dataset. However, 576 

our results suggest that filtering data with strict missing data thresholds does not necessarily 577 

improve GEA outcomes. In fact, filtering missing data seemed to have little effect on the ratio of 578 

TP to AA. This is in line with other population genetic studies that found that missing data (within 579 

reason) do not affect calculations of FST or He (Binks, Gibson, Ottewell, Macdonald, & Byrne, 580 

2019; Díaz-Arce & Rodríguez-Ezpeleta, 2019; Shafer et al., 2017). Indeed, we found that 581 

BayPass, LFMM2, and RDA (specific to Sim microcarpa) were robust to missing data with 582 

respect to TP:AA but the actual number of TPs and FPs identified varied. For BayPass and 583 

RDA, this could be partially due to the use of population-level allele counts or allele frequencies 584 

as the input data, a strategy that effectively ignores missing data. Because LFMM2 uses 585 

individual genotypes, and we naively imputed the gaps using loci means (default parameter), we 586 

expected that missing data would result in more FPs and thereby provide a possible source of 587 

differentiation among methods (de Villemereuil et al., 2014). While this was apparent for Sim 588 

calophylla, LFMM2 performed well for Sim microcarpa. The ‘missingness’ was similar among 589 

species, meaning that the different responses between species suggest that the relatively high 590 

FP call rate for Sim calophylla is likely due to a combination of missingness and other 591 

underlying differences between the species.  592 
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 593 

The lack of improvement to GEA outputs with decreasing proportions of missing data suggests 594 

that the number of SNPs in a dataset is more important than dataset completeness, within 595 

reason, bearing in mind that we only tested up to 50% missing data. More SNPs allow 596 

sufficiently large numbers to statistically define ‘neutral demographic structure’, an important 597 

aspect to all GEA analyses, and thus increase the number of putatively adaptive SNPs identified 598 

(see further discussion below). The relative importance placed on filtering missing data should 599 

depend on the downstream application of putatively adaptive loci. This is borne out by the maps 600 

in Figure S4 (particularly between the missing data thresholds), where the presence of more 601 

FPs do not affect the adaptive signal to non-adaptive noise, at least when the signal from TPs is 602 

sufficiently large. However, this interpretation must be qualified, because the discovery of TPs in 603 

empirical datasets is unknown, and it is the strength and number of TPs that will override a 604 

contrasting FP signal. 605 

 606 

Minor allele frequency is an important threshold, because nonsynonymous SNPs are likely to 607 

have a MAF less than 0.05 (Cargill et al., 1999) and, in human studies, inclusion of SNPs with 608 

low MAF increases the rate of identification of causal variants (Gorlov, Gorlova, Sunyaev, Spitz, 609 

& Amos, 2008). Our data suggest that a low minor allele frequency has a type I error (FP) rate 610 

close to nominal levels (i.e. FP rate is similar among datasets), which has been found in other 611 

studies (Moskvina, Craddock, Holmans, Owen, & O’Donovan, 2006; Tabangin, Woo, & Martin, 612 

2009). These findings suggest that low MAF should not be excluded from GEA datasets if 613 

sampling design is sufficiently large. However, in our study, MAF influenced FP call rates with 614 

varying impacts between programs and species. It is important to note that MAF filtering is also 615 

a function of sample size and missing data. The larger the sample size, the smaller the MAF 616 

threshold can be. This is most apparent when considering MAF as minor allele counts (MAC; 617 

see O’Leary et al., 2018 for discussion), where a low MAF could still result in a high MAC for 618 

larger sample sizes, allowing for sequencing error issues to be resolved by maintaining SNPs 619 
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that are called confidently (higher MAC). Ultimately, like missing data, MAF affects the total 620 

number of SNPs in the dataset, but it can also influence a SNP’s significance. 621 

 622 

While more stringent filtering may, theoretically, improve the quality of the dataset, the reduction 623 

in the overall size of the data set and the potential loss of informative loci may influence the null 624 

models underlying GEA analyses and thus the identification of SNP-environment associations. 625 

This is evident in the impact of both missing data and MAF on the detection of adaptive SNPs 626 

under different strengths of selection. Both Baypass and LFMM2 missed TPs at all selection 627 

strengths, even for SNPs under strong selection pressure. However, datasets that included 628 

more missing data yielded TPs that were under weak selection (~0.05). This is likely because 629 

less stringent filtering of missing data results in larger datasets, thereby increasing the overall 630 

number of TPs. In addition, despite the missing data, larger datasets (relative to reduced 631 

representation datasets with 2-20k SNPs) may enable a more statistically significant ‘null model’ 632 

for the GEA and therefore greater power to detect loci under selection (Morin, Martien, & Taylor, 633 

2009); and the power of the number of SNPs in genome-wide association studies has been 634 

discussed previously (Hong & Park, 2012; Klein, 2007; Spencer, Su, Donnelly, & Marchini, 635 

2009), and the same logic applies for GEAs. Filtering of MAF may also influence the null model, 636 

changing the significance of TPs and, thus, their potential to be identified as TPs. While 637 

stringently filtering genomic data may create a more reliable dataset in theory, having fewer 638 

data points appears to reduce the overall power and effectiveness of GEAs. 639 

 640 

Combining results 641 

Using loci identified across multiple analyses reduced both the number of FPs and TPs. This is 642 

common practice and in one sense, our results support this commonly-used approach (Forester 643 

et al., 2018; Lotterhos & Whitlock, 2015) in that we observed a slight increase in TP:AA. 644 

However, the TPs retained reflected the more conservative analysis, and most of the TPs 645 

identified by the other methods were lost. Each method uses unique approaches to identify 646 

SNPs (e.g. controlling for population structure and statistical model) and different methods are 647 
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likely to identify different suites of putatively adaptive SNPs. This output agrees with findings 648 

from Forester et al., (2018); that combining results will bias the results to strong selective 649 

sweeps and limit findings to the least powerful (or most conservative) method. The trade-off 650 

between reduced FPs and the loss of informative TPs therefore needs careful consideration, 651 

particularly given that downstream extrapolation of results tends to be largely unaffected by the 652 

presence of FPs. If one uses an overlapping approach we suggest using the Lotterhos et al. 653 

(2017) composite measure to improve the identification of adaptive signals by using the outputs 654 

across many GEA methods.  655 

 656 

Influence on downstream applications 657 

For the most part, the patterns of geospatial predictions were biologically similar but statistically 658 

different within species and methods, but across filtering thresholds. However, this was not the 659 

case for E. microcarpa and LFMM2. The difference between the liberal and conservative 660 

datasets revealed different biological and statistical geospatial adaptive patterns. The more 661 

liberal dataset was more similar to both BayPass outputs, suggesting that the LFMM2 662 

conservative prediction was spurious. While it is possible that both patterns are correct due to 663 

hierarchically complex relationships between adaptation and climate, this pattern is likely due to 664 

the fact that the FPs had a larger impact on the adaptive signal because there were fewer TPs 665 

overall (i.e. the noise was greater than the signal), as only five putatively adaptive SNPs 666 

associated with BIO5 (eight for BIO14) were identified in the conservative dataset compared to 667 

101 putatively adaptive SNPs associated with BIO5 (36 for BIO14) in the liberal dataset. This 668 

outcome suggests that FPs can affect predictions when fewer TPs are found for LFMM2, but 669 

this effect was lost when more TPs are kept through larger datasets and liberal filters.  670 

 671 

Pseudo positives (PP) were found to be a confounding factor, particularly for the Sim calophylla 672 

dataset. Indeed, the correlation coefficients of the two environmental variables suggested that 673 

PPs would have a much greater impact on the Sim calophylla dataset than on the Sim 674 

microcarpa dataset. While we did find PPs in Sim calophylla, they numbered only about 20% of 675 
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the number of TPs; this was less than expected considering the strong correlation of the two 676 

climatic variables across the distribution of C. calophylla. This suggests that it is preferable to 677 

include environmental variables that are not correlated in GEA analyses (see Hoban et al., 678 

2016); however, the inclusion of variables with correlation coefficients around 0.7 seems to be 679 

adequate (agreeing with the findings in Dormann et al., (2013)), particularly if they were chosen 680 

a priori with hypothesis-driven questions.  681 

 682 

In our simulations, we chose higher than expected strength-of-selection coefficients to try to 683 

identify selection coefficients that would enable identification of adaptive SNPs above a given 684 

threshold. We were unable to identify a consistent threshold and therefore conclude that strong 685 

selection pressure is not sufficient to identify adaptive SNPs, and that the SNPs must be 686 

distributed throughout the populations in specific ways. However, we did find a strong 687 

relationship between the significance of SNPs and strength-of-selection, indicating that, not 688 

surprisingly, there is a much higher probability of identifying SNPs of large effect using either of 689 

the univariate methods than with RDA.  690 

 691 

Differences among species 692 

The datasets that we examined showed different responses to the effects of filtering despite 693 

being (i) derived from related species that span similar climate gradients, and (ii) produced 694 

using the same reduced representation approach. One reason for these differences could be 695 

the different genome sizes of these species. The genome of C. calophylla is estimated to be 696 

400 Mb while that of E. microcarpa is around 700 Mb. Although genome size is likely not 697 

evolutionarily significant (Vu et al., 2015), it could influence the search for adaptive SNPs, as a 698 

smaller genome size would provide better representation of coding regions. A second reason for 699 

the differences between datasets could be that, even though the two species inhabit similar 700 

temperature gradients, the broader climate of each species is fundamentally different: C. 701 

calophylla occurs in a Mediterranean-type climate and E. microcarpa occurs in a temperate 702 

climate. A third reason for the differences between species could be that similar levels of global 703 
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population structure does not dictate how genetic variance is distributed within species. For 704 

instance, it is possible that when more SNPs are kept due to filtering thresholds, the estimated 705 

population structure may change in different ways for each species. Finally, species’ geographic 706 

range size, as well as demographic and evolutionary history, may explain differences in results. 707 

Eucalyptus microcarpa has a larger geographic range than C. calophylla, indicating that 708 

underlying demographic history could be fundamentally different (e.g. expansion/contraction).  709 

 710 

Table 4. Outcomes and suggestions of different filtering approaches for different project aims 711 
employing GEA analyses. TP = True Positive; FP = False Positive; MD = missing data; MAF = 712 
minor allele frequency; MAC = minor allele count. 713 

Aim / Concern Example research 
question or application 

Filtering approach Analysis outcome 

Conservation Understanding general 
landscape patterns of 
genomic diversity for 
conservation or 
management. Reference 
genome may not be 
available. 

More relaxed filtering to create 
larger overall SNP dataset. Smaller 
permissible MAF (given sample 
size and thus MAC). Larger 
amount of MD. Pool unique 
candidate SNPs across multiple 
methods.  

Large overall pool of 
‘adaptive’ SNPs, including 
mix of TPs and FPs; 
providing overview of the 
adaptive landscape. 

Maximise TP Patterns of genomic 
adaptation across major 
environmental gradients. 
Reference genome 
available. 

More relaxed filtering. Larger 
amount of MD. Smaller permissible 
MAF. Pool candidate SNPs from 
multiple methods (don’t just select 
overlapping results). Refine SNP 
sets with location and/or functional 
annotation. 

Larger overall dataset of 
‘adaptive’ SNPs; maximising 
number of TPs and 
improving dataset for 
downstream applications. 

Minimise FP Looking for candidate 
large-effect loci under 
selection for further 
investigation, especially 
where no genome is 
available. 

More stringent filtering. Fewer MD. 
Consider MAF as a function of 
sample size and missing data 
(MAC) as well as impacts on 
significance. Focus on SNPs 
occurring in multiple programs 
using the Lotterhos et al., (2017) 
composite method. 

Decreased absolute number 
of FPs at the expense of the 
number of TPs. Reduced 
identification of loci under 
weaker selection. 

Identify loci 
under weak 
selection 

Quantification of genome-
wide levels of adaptation 
driven by environmental 
selection. Reference 
genome may or may not 
be available. 

More relaxed filtering. Larger 
amount of MD. Lower permissible 
MAF with larger biological sample 
sizes. Refine SNP sets with 
location and/or functional 
annotation. 

Increased power of GEA 
analyses. Greater number of 
loci providing more 
informative null models for 
GEA analyses. Improved 
ability to detect loci under 
weaker selection.  

 714 
 715 

Conclusions 716 
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While we provide a filtering roadmap that enables users to understand how filtering might affect 717 

GEA outputs, all organisms and datasets we study are unique, and the questions developed for 718 

each will be different. Therefore, there is no universally ‘best’ way to perform filtering for GEA 719 

analyses. Datasets should be developed in ways that best fit the objectives of the study (some 720 

possible examples and recommendations are given in Table 4). Another important component 721 

that we have not addressed, and is outside the scope of this study, is the use of genomic 722 

resources for the betterment of GEA outputs. Additional genomic resources, such as an 723 

annotated reference genome, provide further chances to refine the SNP sets used for 724 

downstream analyses or applications. For example, it might be useful to examine whether SNPs 725 

that putatively mediate local adaptation are located near genes whose function is relevant to the 726 

environmental variable (Manel et al., 2016), or whose expression is induced by relevant 727 

environmental challenges. Collectively, if a large proportion of putatively adaptive SNPs are 728 

located near genes with relevant functions, it might promote confidence in the associations, and 729 

their application to management actions.  730 

 731 

Identifying true adaptive variants is difficult, particularly for non-model organisms, and this is 732 

true even when strengths-of-selection are large. When we try to create and use the most 733 

complete datasets through stringent filtering, we filter out many of those strongly adaptive SNPs 734 

that are likely to be identified as TPs. When we have fewer putatively adaptive SNPs, then the 735 

noise of FPs might lead to spurious adaptive signals through predictions, as we show. On the 736 

other hand, if we filter our datasets more liberally, the adaptive signal seems to overpower 737 

spurious signals. Together, as we identify clearer signals of adaptation, we are likely to better 738 

understand how non-model species have adapted to the environment, moving the field of 739 

landscape genomics toward a more complete understanding of our natural systems. 740 
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