1 De Novo Design of Allosteric Control into Rotary Motor V1-ATPase 2 by Restoring Lost Function

Takahiro Kosugi^{1,2,3}*, Tatsuya Iida^{4,5}, Mikio Tanabe⁶, Ryota Iino^{4,5}, Nobuyasu Koga^{1,2,3}*

 $\mathbf{5}$

3

4

¹Research Center of Integrative Molecular Systems, Institute for Molecular Science (IMS), National 6 Institutes of National Sciences (NINS), Okazaki, Aichi, 444-8585, Japan $\overline{7}$ ²Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of 8 National Sciences, Okazaki, Aichi, 444-8585, Japan 9 ³Department of Structural Molecular Science, School of Physical Sciences, SOKENDAI (The 10 Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan 11 ⁴Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 12(IMS), National Institutes of National Sciences (NINS), Okazaki, Aichi, 444-8585, Japan 13⁵Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The 14Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan 15⁶Structural Biology Research Center, Institute of Materials Structure Science, High Energy 16Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan 17

18

* To whom correspondence should be addressed. Tel: 81-564-55-7379. E-mail:
 <u>takahirokosugi@ims.ac.jp</u> or nkoga@ims.ac.jp

21 Abstract

Protein complexes exert various functions through allosterically controlled cooperative work. De 22novo design of allosteric control into protein complexes provides understanding of their working 23principles and potential tools for synthetic biology. Here, we hypothesized that an allosteric control 24can be created by restoring lost functions of pseudo-enzymes contained as subunits in protein 25complexes. This was demonstrated by computationally de novo designing ATP binding ability of the 26pseudo-enzyme subunits in a rotary molecular motor, V₁-ATPase. Single molecule experiments with 27solved crystal structures revealed that the designed V₁ is allosterically accelerated than the wild-type 28by the ATP binding to the created allosteric site and the rate is tunable by modulating the binding 29affinity. This work opened up an avenue for programming allosteric control into proteins exhibiting 30 concerted functions. 31

32	Protein complexes exert their various functions through the cooperative work between their
33	constituent subunits ^{1,2} . The orchestration between the subunits is enabled by the allosteric mechanism,
34	in which a protein function in an active site is controlled by the response to stimuli that occurs at a site
35	away from the active site ³ . The design of allosteric control into protein complexes to reveal their
36	working principles and provide novel functionalities has been attempted ⁴⁻⁹ . One of these approaches
37	is to create fusion proteins between the target protein, whose functions are to be controlled, and a
38	protein undergoing conformational changes in response to stimuli, such as the binding of an effector
39	molecule ^{6,7} or light absorption ^{8,9} . Nakamura <i>et al.</i> created the remotely controlled linear motor protein
40	with a light-sensitive domain ⁸ . In this study, we sought an approach to program allosteric control into
41	protein complexes by creating binding sites for an allosteric effector molecule in the complexes.
42	We focused on pseudo-enzymes, which are homologs of some enzymes but are proven or predicted
43	to have lost their enzymatic activity ¹⁰⁻¹² . The overall structures of pseudo-enzymes are similar to those
44	of the enzymes, but the conserved amino acids required for their functions are lost from the active
45	sites; therefore, these sites are called pseudo-active sites. Interestingly, it has been reported that such
46	pseudo-enzymes exhibit allosteric control when they form complexes ^{10,11} . For example, a complex-
47	forming pseudo-kinase—the pseudo-active site can bind ATP but has lost kinase activity—activates
48	the catalytic function of a complex-forming partner protein, by ATP binding at the pseudo-active

site^{13,14}. Here, we hypothesized that an allostery can be de novo designed into protein complexes by

49

50	restoring the lost function of pseudo-enzymes included in the complexes (Fig. 1a).
51	A pseudo-enzyme is found in a protein complex, the rotary motor V_1 -ATPase (V_1). V_1 is a part of an
52	ion pump V-ATPase which transports cations across the membrane by ATP hydrolysis-driven rotation ¹⁵ .
53	The V_1 consists of a rotor composed of the D- and F- subunits and the stator of the hexametric ring
54	composed of three A-subunits and three B-subunits (Fig. 1b) ¹⁶ . The B-subunit is a pseudo-enzyme of
55	the A-subunit and has homology with the A-subunit (e.g. for Enterococcus hirae V1-ATPase, the
56	BLAST E-value between the subunits is 4×10^{-22}) and the overall subunit structures resemble each
57	other (Supplementary Fig. 1). However, the details of their sequences and structures are different,
58	resulting in the two different interfaces between the A- and B- subunits in the A ₃ B ₃ hexameric ring.
59	One is the catalytic interface, at which the A-subunit has an ATP hydrolysis catalytic site, and the other
60	is the non-catalytic interface, at which the B-subunit has a pseudo-active site, which does not hydrolyze
61	or even bind ATP ^{16,17} (Supplementary Fig. 2).

The relation of the pseudo-active site to the activity at the active site is reported for V_1 , in which the mutations in the pseudo-active site decrease its activity^{18,19}. Furthermore, a study on the rotary motor F_1 -ATPase from the thermophilic *Bacillus* PS3, which shares a common ancestor with V_1 -ATPase²⁰, reported the relationship between the pseudo-active site and the active site in the rotational

66	mechanism ²¹ . Similar to V ₁ , F ₁ has the stator $\alpha_3\beta_3$ ring complex, in which the β -subunit has ATP
67	hydrolase ability, while the α -subunit, a pseudo-enzyme subunit of the β -subunit, can bind but not
68	hydrolyze ATP ^{20,22} . The mutation in the pseudo-active site in the α -subunit, which significantly
69	decrease the ATP binding ability, was found to cause F ₁ to have long pauses more frequently than the
70	wild-type. This is likely because of the impeded release of ADP at the active site, indicating that the
71	pseudo-active site away from the active site allosterically impacts on the active site's function ²¹ . This
72	study leads to the hypothesis that the pseudo-active site in the non-catalytic interface of V_1 , which does
73	not have ATP binding ability ^{16,17} , can be a target for de novo design of a binding site for an allosteric
74	effector molecule. We tested this hypothesis by computationally designing an ATP-binding site at the
75	pseudo-active site in <i>Enterococcus hirae</i> V ₁ -ATPase.

76 **Results**

77 Computational design of an allosteric site in the pseudo-active site

The pseudo-active site in the B-subunit does not have space for nucleotide binding or the well-known 78loop motif for phosphate binding, the Walker-A motif (GX₁X₂X₃X₄GK[T/S])^{23,24}, also called a P-loop 79(Supplementary Fig. 2). Recently, computational methods for designing small molecule binding 80 proteins have been developed, using Rosetta design software²⁵⁻²⁷. We attempted to computationally 81 design an ATP binding site de novo together with a P-loop at the pseudo-active site in the B-subunit 82 monomer, using Rosetta with a set of features for P-loops obtained from statistical analyses of naturally 83 occurring proteins (Supplementary Fig. 3). 84 First, the backbone structure of the P-loop was built at the pseudo-active site by using the backbone 85of the A-subunit's P-loop, considering the P-loop orientation feature (Supplementary Fig. 3a). 86 Subsequently, side-chain conformations (amino acid sequences) of the P-loop and the surrounding 87 residues, which have favorable interactions with ATP, are explored with various ATP conformations, 88 the feature for native P-loops for the conserved amino acid (Gly) at X₃ (Supplementary Fig. 3c), and 89 the typical distances between the atoms of the P-loop and the phosphate atoms of ATP (Supplementary 90 Fig. 3d). The resulting designed structures bound to an ATP were energetically minimized. This 91sequence design followed by energy minimization was iterated, and the designs with high ATP binding 92

93	ability predicted by the Rosetta score were selected; the designs that lost the feature for the conserved
94	backbone torsion pattern of native P-loops (Supplementary Fig. 3b) during the minimization step were
95	abandoned. The ATP binding ability of 29 selected designs was further evaluated by short (10 ns)
96	molecular dynamics simulations for the monomer (Supplementary Fig. 6). Finally, a resulting designed
97	V1 was experimentally characterized. Details regarding the design procedure is described in Methods
98	and Supplementary Figs. 4 and 5.

99 Designed B-subunits forms a ring complex with A-subunits

100	The designed B-subunit (De), expressed with the A-subunit in E. coli using the plasmid pTR19-
101	AB ²⁸ and purified by a Ni ²⁺ -affinity chromatography followed by size exclusion chromatography,
102	formed a ring complex with the A-subunit (A ₃ (De) ₃ ring complex) (Supplementary Fig. 7a).
103	Subsequently, to evaluate the ATP binding ability of De, we introduced a double mutation in the A-
104	subunit (K238A and T239A) to significantly impair ATP binding ability ²⁹ . However, De did not form
105	the A ₃ (De) ₃ ring complex with the mutant A-subunit (Supplementary Fig. 7b). Therefore, we purified
106	De as a monomer (Supplementary Fig. 7c) and the nucleotide binding ability was indirectly evaluated
107	by thermal shift ³⁰ in circular dichroism spectroscopy in the presence or absence of nucleotides
108	(Supplementary Fig. 8). The De monomer exhibited an increase of its melting temperature upon the
109	addition of nucleotide, while the melting temperatures for the wild-type B-subunit monomer was
110	almost the same in the presence and absence of nucleotides, suggesting that De has nucleotide binding
111	ability. Thus, we attempted to determine the crystal structures of the $A_3(De)_3$ complex to prove the
112	nucleotide-binding ability of De.

113 The designed B-subunit binds to nucleotide

114	First, the A ₃ (De) ₃ complex was crystallized in the absence of nucleotide and the structure was solved
115	at 2.77 Å resolution, named A ₃ (De) ₃ _empty. This showed the hexameric ring structure without
116	nucleotide, which is the same as the wild-type structure (Fig. 2a). The structure of the designed site in
117	the B-subunit in the crystal structure was almost identical to the computationally designed model
118	(Supplementary Fig. 9a,b). When we incubated the nucleotide-free crystals with 20 μ M AMP-PNP for
119	5 hours, we found an extra density corresponding to AMP-PNP in a catalytic site. The structure,
120	A ₃ (De) ₃ (ANP) _{1cat} , was solved at 3.44 Å resolution (Fig. 2b). Next, the nucleotide-free crystals were
121	incubated for 5 hours with ADP by gradually increasing ADP concentration to 10 mM and the resulting
122	structure, $A_3(De)_3_(ADP \cdot Pi)_{1cat}(ADP)_{2cat,2non-cat}$, was solved at 2.90 Å resolution. In
123	$A_3(De)_3_(ADP \cdot Pi)_{1cat}(ADP)_{2cat,2non-cat}$, each of the three catalytic sites is occupied by ADP (one of the
124	sites has ADP with a possible Pi) and each of the two sites out of the three design sites is with ADP
125	(Fig. 2c). This crystal structure proved that the designed site in the non-catalytic interface has the
126	nucleotide binding ability, although the binding mode was not same as we designed (Supplementary
127	Fig. 9c,d). Furthermore, the nucleotide-free crystals were incubated overnight by gradually
128	increasing the ADP concentration to 5 mM and two different structural states in an asymmetric unit
129	were obtained from one dataset: one is A ₃ (De) _{3_(ADP)3cat,1non-cat} , in which each of the three catalytic

130	sites and one of the designed sites are occupied by ADP (Fig. 2d), and the other is
131	$A_3(De)_3_(ADP)_{3cat,2non-cat}$, in which each of the three catalytic sites and each of the two designed sites
132	are occupied by ADP (Fig. 2e). Although the resolution of these structures is relatively low (3.95 Å),
133	the densities for the main chain $C\alpha$ -trace and bound ADPs were clearly observed. The nucleotide-
134	bound state of $A_3(De)_3_{(ADP)_{3cat,2non-cat}}$ is different from that of $A_3(De)_3_{(ADP)_{3cat,1non-cat}}$ in terms of
135	nucleotide occupation at the designed site; these structures may provide the allosteric response upon
136	ADP binding in the designed site (details are described later and in Fig. 5d).

Creation of ATP binding sites at the non-catalytic interfaces impacts on the catalytic interfaces

139	Fluorescence polarization measurements using the fluorescent-labeled AMP-PNP (Mant-AppNHp)
140	and ADP (Mant-ADP), revealed that the nucleotide-binding affinities of the designed complex are
141	much lower than those of the wild-type complex (Fig. 3a). The measured binding affinity of the A_3B_3
142	and $A_3(De)_3$ complexes respectively were 14.5 \pm 5.7 nM and 2.03 \pm 0.18 μM for AMP-PNP, and 64.2
143	\pm 0.9 nM and 0.55 \pm 0.003 μM for ADP. Note that the affinities of A3(De)3, measured in a range of
144	relatively low nucleotide concentration, are expected for the first nucleotide binding to one of the
145	catalytic interfaces, as supposed by the A ₃ (De) ₃ (ANP) _{1cat} structure, in which a single nucleotide was
146	bound to one of the catalytic interfaces (Fig. 2b). Structure comparison of $A_3(De)_3$ _empty with the
147	nucleotide-free wild-type A ₃ B ₃ provides an interpretation for the decreased affinities (Fig. 3b). The P-
148	loops in the three A-subunits in the wild-type A3B3 complex are classified into the two distinct
149	conformations, bound and unbound forms (Supplementary Fig. 10). The P-loop in an A-subunit is
150	the bound form and those in the other two A-subunits are the unbound form (Fig. 3b, top). The bound
151	form is expected to have a higher binding affinity than the unbound form ¹⁶ . However, the P-loop
152	conformations of all A-subunits in A ₃ (De) ₃ _empty were found to be the unbound form, explaining the

lower affinities of the catalytic interface. In other words, the creation of ATP binding sites in the non-

¹⁵⁴ catalytic interfaces changed the conformations of the ATP binding sites in the catalytic interfaces.

Creation of ATP binding sites induces global conformational change of the A₃(De)₃ complex

157	The comparison of the $A_3(De)_3$ _empty with the nucleotide-free wild-type complex revealed that
158	conformational changes occurred not only in the P-loop of the A-subunits but also in the overall
159	structure of the A-subunits (Fig. 3b, bottom), although remarkable conformational changes were not
160	found in any of the B-subunits (the structures of α -helical domains are locally different from the wild-
161	type B-subunits due to their innate flexibility) (Fig. 3d). In the nucleotide-free wild-type complex, the
162	A-subunit, of which the P-loop is the bound form, shows the closed conformation (the C-terminal
163	domain bends toward the pore of the ring complex), and the other two A-subunits with the unbound
164	form are in the open conformation 16 . However, all A-subunits in the design complex, A ₃ (De) ₃ _empty,
165	show the open conformation with the unbound form (Fig. 3b). Furthermore, these conformational
166	changes broke the asymmetric arrangement of A- and B- subunits found in the wild-type ring
167	complex ¹⁶ , resulting in a nearly symmetric arrangement with the expansion of the ring pore in the
168	design complex (Fig. 3c). This observation leads to the hypothesis that the central rotor is difficult to
169	retain in the expanded pore. As expected, the reconstitution experiments of the rotor (D- and F-
170	subunits) and ring (A- and B- subunits) complex show that the reconstitution ratio was quite low
171	(Supplementary Fig. 11). Interestingly, the conformational changes observed in A ₃ (De) ₃ _empty were

almost reverted by a nucleotide binding at a catalytic interface, as observed in A₃(De)_{3_}(ANP)_{1cat}

- 173 (Supplementary Fig. 11), and the complex reconstitution ratio was also recovered in the presence of
- nucleotide (Supplementary Fig. 12). The detailed comparisons of A3(De)3_empty and
- $A_3(De)_3(ANP)_{1cat}$ with the nucleotide-free wild-type complex structure¹⁶ are described in
- 176 Supplementary Tables 1-4.

177 The designed V₁ rotates faster than the wild-type

Finally, we carried out single-molecule experiments to observe the rotation of the A₃(De)₃DF 178complex in various ATP concentrations ([ATP]s). The designed V₁ was found to rotate unidirectionally 179in a counterclockwise fashion with discrete 120° steps, similar to the wild-type, but rotates faster than 180 the wild-type at 100 µM ATP (Fig. 4a). Furthermore, in contrast to the wild-type, the rotation rate of 181 the designed V1 exhibited an unique non-Michaelis-Menten type dependence on [ATP]. Rotation rates 182very similar to the wild-type were observed at the lowest (1 µM) and the highest (30 mM) [ATP], but 183 the rotation was significantly accelerated in the range between the highest and lowest [ATP]s (Fig. 4b, 184top). At 100 μ M ATP, the designed V₁ showed the most accelerated rotation rate (115 ± 17 rps) 185compared with the wild-type (76 ± 4.8 rps). To the best of our knowledge, this is the first time that 186unidirectional movements of ATP-driven rotary molecular motors have been "overclocked" by protein 187 engineering. 188

Furthermore, we found that the [ATP], at which the designed V_1 shows the maximal acceleration compared with the wild-type, can be tuned by modulating the nucleotide-binding affinity of the designed site (Fig 4b). The mutant K157Q at one of the conserved residues in P-loop motif in the designed site, expected to have a decreased binding affinity³¹, exhibited the non-Michaelis-Menten type rotation rate similar to the design, but notably, the [ATP], at which the most accelerated rotation

194	was observed, shifted higher from that for the original design: 1 mM [ATP](Fig. 4b, middle). In
195	addition, the double mutant K157A/S158A in the P-loop, which has a further decreased binding
196	affinity (Note that the mutant is still expected to have a capability to bind ATP ²⁹), rotated in the similar
197	fashion but the [ATP], at which the most accelerated rotation was observed, further shifted higher from
198	that for the K157Q mutant: 3 mM [ATP] (Fig. 4b, bottom). Furthermore, the rotation rate at the ATP
199	concentration was the highest (161 \pm 18 rps) among those for the wild-type, the original design and
200	the mutants (Fig. 4b). This observed correlation between the nucleotide binding affinity of the designed
201	site and the [ATP] at which the most acceleration is observed strongly suggests the allosteric effect
202	produced by the nucleotide-binding to the designed site.

ADP-release at the catalytic site is facilitated allosterically

204	In the 120° step rotation, the designed V_1 was found to have the main-pauses and sub-pauses before
205	the 40° and 80° sub-steps respectively, which is the same as the wild-type V_1^{28} (Fig. 5a). To reveal the
206	mechanism of allosteric acceleration, we carried out dwell-time analyses of the two pauses at the high
207	and low [ATP] (1 μ M and 30 mM, respectively), in which the designed V ₁ rotated at a similar rate as
208	the wild-type, and at the 100 μ M [ATP], in which the design exhibited the most accelerated rotation.
209	In the proposed rotation model for the wild-type ²⁸ , the main-pause corresponds to the dwell-time
210	waiting for ATP-binding, ATP-hydrolysis, and Pi-release, and the sub-pause corresponds to that for
211	ADP-release. The main-pause time constants of the design at each measured [ATP] are roughly the
212	same as those of the wild-type, irrespective of [ATP] (Fig. 5b). The sub-pause time constants for the
213	wild-type stayed constant between 2.1~2.7 ms, at any [ATP]s, and the time constants for the design at
214	the low and high [ATP] are similar to those for the wild-type. However, the time constant at the [ATP]
215	(100 μ M ATP), at which the designed V ₁ showed the most accelerated rate, significantly decreased to
216	1.0 ms (Fig. 5b). The double mutant (K157A/S158A) also exhibited behavior similar to the original
217	design, and the sub-pause time constant was drastically decreased to 0.6 ms at 3 mM ATP. The rotation
218	rates estimated from the measured time constants for the main- and sub-pauses, agreed with the
219	observed rotation rates shown in Fig. 4b (Supplementary Table 6). All these results indicate that the

origin of the acceleration is the facilitated ADP-release at the catalytic sites, which is generated through
 the allosteric effect triggered by nucleotides binding to the designed sites.

222	Structural comparisons between the solved structures, $A_3(De)_3(ADP)_{3cat,1non-cat}$ and
223	A ₃ (De) _{3_(ADP)_{3cat,2non-cat}, provide a structure-based interpretation for ADP-release promoted by the}
224	allosteric effect, although these structures are bound not with ATP but ADP, and do not contain the
225	rotor. An ATP-binding at the designed site is suggested to induce conformational changes of the
226	neighboring A-subunit and the catalytic interface from the closed conformation to the open-like
227	conformation (Fig. 5c,d and Supplementary Tables 7 and 8), which creates space to facilitate ADP
228	release.

Possible model of the rotation scheme for designed V₁

From the results described above, a rotation scheme for the designed V_1 is proposed based on the 230scheme for the wild-type recently proposed by Iida et al. (Fig. 5e, left)²⁸. For the wild-type, two or 231three catalytic sites are occupied at any time with ATP or its product(s) of hydrolysis. ATP-binding to 232an empty catalytic site triggers a 40° sub-step, and the subsequent release of ADP from the neighbor 233catalytic-site generates the 80° sub-step. The design may rotate in a similar scheme except for the ATP-234binding to one or two designed sites at the non-catalytic interfaces, which facilitates ADP-release in 235the neighboring catalytic site through an allosteric effect (Fig. 5e, right). It is obvious that the allosteric 236effect does not emerge at low [ATP] since the designed sites are not able to bind ATP due to low affinity, 237but it is still puzzling why the allosteric effect is not observed in high [ATP]; the full nucleotide 238occupation in the three designed sites may suppress the allosteric effect, but, this should be verified in 239the future. 240

241 Implications to native V₁-ATPase and a common mechanism for rotary motors

242	The designed V_1 not only exhibited the allosteric control over the rotation, but also provided possible
243	designs and working principles for the native V1-ATPase. It is suggested that ancestral V1-ATPase
244	existed as a homo hexameric ring, in which all subunits perform ATP binding and hydrolase functions,
245	which has since evolved to form the current hetero hexameric ring containing the pseudo-enzyme
246	subunit (B-subunit) that lost these functions ²⁰ . Restoring ATP binding ability at the pseudo-active site
247	may lead to an understanding of why the modern, descendant V_1 -ATPase lost its ATP binding and
248	hydrolase functions. First, it is plausible that the non-catalytic interface observed in the modern V_1 -
249	ATPase plays a role in attaining the Michaelis-Menten type rotation, in which the rotation rate is
250	smoothly regulated along an [ATP] (Fig. 4b). The sudden increase and decrease of rotation rate at an
251	[ATP] as observed in the designed V_1 would not be preferable in terms of functional regulation by
252	nature (this property can be beneficial for human since V_1 can be engineered with the maximal rotation
253	rate at an arbitrary [ATP]). Second, the non-catalytic interface may be a key factor for making the
254	asymmetrical ring shape observed in the modern V1-ATPase in the absence of nucleotides, as we
255	observed that the designed V_1 forms a nearly symmetric ring structure (Fig. 3b,c). The asymmetrical
256	ring shape is considered to be one of the key factors to realize the unidirectional rotation ¹⁶ (it is reported
257	that the N-terminal β barrel domains in the A- and B-subunits also play this role ³²). At the end, restoring

258	ATP binding ability also implies a common mechanism for hexameric rotary motors of V_1 and F_1 : the
259	non-catalytic interface has the capability to provide allosteric control over ADP release at the
260	neighboring catalytic interface, as observed in our design of V_1 (Fig. 4b, and Fig. 5b,d) and the
261	mutation of F_1 described in the Introduction ²¹ .

263 Conclusion

264	We succeeded in programing allosteric control into the molecular motor V ₁ -ATPase by computational
265	de novo design of a ATP binding site at the pseudo-active site in the non-catalytic interface of V_1 .
266	Furthermore, the artificially designed V1 provided implications for design and working principles of
267	the native V ₁ -ATPase. Pseudo-enzymes are frequently found in native complex-forming proteins, e.g.
268	F ₁ -ATPase ²² , dynein ³³ , kinesin ³⁴ , 20S proteasome ³⁵ , kinases ¹³ and plant resistosome ³⁶ . Engineering
269	pseudo-active sites could be one of the promising approaches for de novo design of allosteric control
270	into complex-forming proteins.

271 Methods

272 Computational design protocol

273	The B-subunit was computationally redesigned using the structure, chain E in PDB 3VR6. First, the
274	pseudo P-loop in B-subunit (the residues 151-158) were replaced by the P-loop motif of A-subunit (the
275	residues 232-239), by superimposing the A-subunit (chain B in the same PDB 3VR6) to the B-subunit
276	with the orientation feature of P-loop shown in Supplementary Fig. 3a. Second, ATP binding modes
277	were designed using Rosetta design software ³⁷ with Talaris2014 score function (Parameters for ATP-
278	Mg ²⁺ were determined using those for atom types already defined in Rosetta). In the design calculation,
279	side-chain conformations for the residue positions of the P-loop and the surrounding residues (E169,
280	T248, Q339, and F417), having favorable interactions with ATP, were explored with various ATP
281	conformations generated by BCL software ³⁸ and with the distance constraints between the atoms of P-
282	loop and the phosphate atoms of ATP (Supplementary Fig. 3d) (the amino acid at X ₃ in P-loop was
283	fixed to Gly (Supplementary Fig. 3c)). Third, the designed B-subunit structures with ATP were
284	minimized. The second and third steps were iterated 20 times and 800 different ATP binding modes
285	were designed. Fourth, the designed structures that lost the feature for conserved backbone torsion
286	pattern of P-loop (Supplementary Fig. 3b) were abandoned, and then those of which ATP binding score
287	(Rosetta ddG score) are less than -8.0 were finally selected (29 designs).

288 Molecular dynamics simulations

The 29 designs obtained by the computational design using Rosetta was further evaluated for their 289ATP binding ability by observing the stability of ATP in the designed site during short molecular 290dynamics (MD) simulations. The AMBER14 software suite³⁹ was used for all MD simulations. The 291 design models were used as the initial structures, of which hydrogen atoms were added by the LEaP 292module of AMBER14³⁹. The simulation system contains a designed B-subunit monomer with ATP 293placed in a water box of approximately $82 \text{ Å} \times 112 \text{ Å} \times 100 \text{ Å}$. To neutralize the system, 15-17 sodium 294ions were put in the box. AMBER ff99SB sets and TIP3P were utilized for the protein and water 295molecules, respectively. Parameters for ATP molecule were adopted from a reference paper⁴⁰. Long 296 range electrostatic interactions were treated by the particle mesh Ewald (PME) method. Non-bonded 297interactions were cut off at 10 Å. After carrying out a short minimization to remove artificial repulsions 298 in the initial structure, 10 ns MD simulations in a constant-NPT (300K, 1atm) ensemble were 299 performed after the 100 ps heating stage with NVT ensemble (the time step is 2.0 fs and hydrogen 300 atoms were constrained with SHAKE procedure). At the heating step, the temperature was raised 301 gradually from 0 K to 300 K with the weak restraints (10 kcal/mol/A²) to the atoms of designed B-302 subunit. The MD simulation trajectory for each designed structure are shown in Supplementary Fig. 6 303 with the root mean square deviation (RMSD) values for the heavy atoms of ATP molecule from the 304

minimized structure. Finally, a designed structure showing low RMSD value throughout the MD

³⁰⁶ simulation was selected for experimental characterization.

307 Expression and purification of the A₃(De)₃ Complex

A DNA fragment of the design was synthesized from the *ntpB* gene in pTR19-AB²⁸ using megaprimer 308 PCR method, and then the *ntpB* gene was replaced by this design fragment. The DNA sequence of 309 design plasmid was confirmed by DNA sequencing analysis (Fasmac). E. coli. BL21* (DE3) 310 competent cells were transformed with the plasmid and cultured at 30 °C for 20 hours in Super Broth 311(32 g/L Tryptone, 20 g/L yeast extract and 5 g/L sodium chloride) containing 100 µg/mL ampicillin 312 and 2 mM isopropyl β-D-thiogalactopyranoside. Grown cells were spun down at 6,000 rpm for 10 313 minutes and washed twice with buffer A (20 mM potassium P_i (pH 7.0) and 100 mM NaCl). The cells 314were suspended in 15 mL of buffer A supplemented with 75 µL 100 mM phenylmethylsulfonyl fluoride 315(PMSF) solution and subsequently disrupted by sonication. After removing cell debris by 316 centrifugation at 10,000 rpm for 20 minutes at 4 °C, the solution was filtered and applied to a Ni-NTA 317column. After washing with buffer B (20 mM potassium Pi (pH 7.0), 230 mM NaCl and 20 mM 318 Imidazole), A₃(De)₃ complex was eluted with buffer C (20 mM potassium P_i (pH 7.0), 50 mM NaCl 319 and 250mM Imidazole). The eluted fractions were concentrated with a Vivaspin20 5,000 MWCO 320 (Sartorius) and then passed through a Superdex 200 Increase column (GE Helthcare) equilibrated with 321 buffer D (20 mM MES-NaOH (pH 6.5), 100 mM KCl, 5 mM MgSO₄, 0.1 mM DTT and 10% glycerol). 322 The purified proteins were stored at -80 °C. The above described methods were also used for 323

 $_{324}$ expression and purification of the wild-type A₃B₃ complex.

325

Expression and purification of the design monomer

327	The designed B-subunit monomer was obtained by breaking the A ₃ (De) ₃ complex sample in the
328	presence of high concentration ATP. After expression and Ni-NTA purification of the A ₃ (De) ₃ complex
329	sample by the above described methods, the buffer of the A ₃ (De) ₃ sample solution eluted from a Ni-
330	NTA column was exchanged to buffer E (20 mM MES-NaOH (pH 6.5), 10% Glycerol, 100 mM KCl
331	and 5 mM MgSO ₄) using PD-10 column (GE Helthcare). The sample solution mixed with 2 mM ATP
332	was rocked for 30-40 minutes at 4 °C, filtered and applied to a Ni-NTA column. Because A-subunit
333	has a His-tag and designed B-subunit does not, designed B-subunit can be selectively recovered in the
334	flow through. In the flow through sample, Tris-HCl was added (100 mM final concentration; pH 8.5).
335	The buffer of sample solution was exchanged to buffer F (20 mM Tris-HCl (pH 8.5), 10% Glycerol,
336	100 mM KCl and 5 mM MgSO ₄) by concentrating with a Vivaspin20 5,000 MWCO (Sartorius) and
337	adding buffer F. The samples were passed through a Superdex 200 Increase column (GE Helthcare)
338	equilibrated with buffer F. The purity of design monomer sample was confirmed by SDS-PAGE
339	(Supplementary Fig. 7c).

Expression and purification of the wild-type B-subunit

341	The wild-type B-subunit monomer was expressed with pTR19-B plasmid, which is constructed from
342	the pTR19-AB plasmid ²⁸ by deleting the <i>ntpA</i> gene and adding His-tag to the <i>ntpB</i> gene, using the
343	same protocol used for the $A_3(De)_3$ complex. The cells were suspended in 25 mL of buffer G (20 mM
344	Tris-HCl (pH 8.5), 5% Glycerol, 0.7 M KCl, 5 mM MgSO ₄ , 0.1 mM DTT and 20 mM Imidazole
345	(pH8.5)) supplemented with 125 μ L of 100 mM PMSF solution, and then disrupted by sonication.
346	After removing cell debris by centrifugation at 10,000 rpm for 20 minutes at 4 °C, the solution was
347	filtered and applied to a Ni-NTA column. After washing with buffer H (20 mM Tris-HCl (pH 8.5), 5%
348	Glycerol, 0.7 M KCl, 5 mM MgSO ₄ , 0.1 mM DTT and 20 mM Imidazole (pH8.5)), B-subunit
349	monomer was eluted with buffer I (20 mM Tris-HCl (pH 8.5), 5% Glycerol, 0.7 M KCl, 5 mM MgSO ₄ ,
350	0.1 mM DTT and 250 mM Imidazole (pH8.5)). The eluted fractions were concentrated with a
351	Vivaspin20 5,000 MWCO (Sartorius) and then passed through a Superdex 200 Increase column (GE
352	Helthcare) equilibrated with buffer F. The purified proteins were stored at -80 °C.

Expression and purification of the DF-subcomplex

The DF-subcomplex of *Enterococcus hirae* V₁ were expressed in *E. coli.* BL21* (DE3) competent 354cells using the pTR19-D(M1G/T60C/R131C)F plasmid²⁸. The transformed cells were cultured in 355Super Broth containing 100 µg/ml ampicillin at 37°C for 4-5 hours until OD₆₀₀ reached 0.5, then the 356 temperature was decreased to 30 °C and expression of DF-subcomplex was induced by the addition of 3572 mM isopropyl β-D-thiogalactopyranoside. Cells were harvested 20 hours after induction by 358centrifugation at 6,000 rpm for 10 minutes. The cells were suspended in 20 mL of buffer J (20 mM 359 potassium P_i (pH 8.0), 300 mM NaCl and 20 mM Imidazole) supplemented with 100 µL of 100 mM 360 PMSF solution, and then disrupted by sonication. After removal of cell debris by centrifugation at 361 10,000 rpm for 20 minutes at 4 °C, the solution was filtered and applied to a Ni-NTA column. After 362washing with buffer J, DF-subcomplex was eluted with buffer K (20 mM potassium P_i (pH 8.0), 300 363 mM NaCl and 500 mM Imidazole). The eluted sample and TEV protease were mixed in 10:1 molar 364 ratio and dialyzed against buffer L (20 mM potassium Pi (pH8.0), 50 mM NaCl, and 1 mM DTT) 365overnight. The dialyzed sample was spun down at 10,000 rpm for 20 minutes at 4 °C, and then applied 366 to PD10 column for changing the buffer to buffer J. The eluted sample was applied to a Ni-NTA column 367 and the flow thorough was collected. After adding 1 mM DTT, the sample was concentrated with a 368 Vivaspin20 5,000 MWCO (Sartorius) and then passed through a Superdex 75 column (GE Helthcare) 369

370	equilibrated with buffer M (20 mM Tris-HCl (pH 8.0), 150 mM NaCl). The purified proteins were
371	stored at -80 °C. For single-molecule experiments, the cysteine residues introduced in D-subunit by
372	the mutations T60C and R131C were biotinylated using the purified DF-subcomplex sample. The
373	buffer of sample solution was changed to buffer N (20 mM potassium P _i (pH7.0), 150 mM NaCl) using
374	PD10 column. The biotinylation regent (biotin-PEAC5-maleimide, Dojindo) was mixed into the
375	purified DF-subcomplex sample solution with 3:1 molar ratio, and then incubated for 30 minutes at
376	room temperature. Finally, DTT (10 mM final concentration) was added to the sample solution and
377	the sample was stored at -80 °C. The purification results for gel filtration and SDS-PAGE are shown
378	in Supplementary Fig. 7d.

879 Expression and purification of the A₃(De)₃ for crystallization

380	The A ₃ (De) ₃ protein sample for crystallization were prepared by cleaving the His-tag attached to the
381	N-terminal of A-subunit. TEV protease cleavage site was inserted between the <i>ntpA</i> gene and His-tag
382	in pTR19-AB ²⁸ by KOD-Plus-Mutagenesis Kit (TOYOBO). With this plasmid, the A ₃ (De) ₃ sample
383	was expressed and purified by using Ni-NTA column in the same protocol described above. The eluted
384	sample and TEV protease were mixed in 10:1 molar ratio and dialyzed against buffer O (20 mM Tris-
385	HCl (pH8.0) and 50 mM NaCl). This dialyzed samples were applied to a Ni-NTA column and the flow
386	through was collected. Then, the sample was loaded onto a HiTrap Q HP column (GE Healthcare Life
387	Sciences) equilibrated with buffer O, and then eluted with a linear gradient of buffer O with 50-1,000
388	mM NaCl in 20 min at flow rate of 1.0 ml min ⁻¹ . The concentrated sample with a Vivaspin20 5,000
389	MWCO (Sartorius) was loaded onto a Superdex 200 Increase 10/300 GL column (GE Healthcare)
390	equilibrated with buffer P (20 mM Tris-HCl (pH8.0), 150 mM NaCl and 2 mM DTT) at a flow rate of
391	0.5 ml min ⁻¹ . The purified sample were concentrated with a Vivaspin500 5,000 MWCO.

Preparation of the design mutants

393	The mutations were introduced by Quick Change Multi Site-Directed Mutagenesis Kit (Agilent
394	Technologies). The purification and expression were carried out with the same method as the original
395	design. The DNA sequence were confirmed by DNA sequencing analysis (Fasmac).
396	
397	
398	Circular Dichroism measurement
399	Thermal denaturation experiments for the designed B-subunit and the wild-type B-subunit were
400	carried out by using the Circular Dichroism spectrometer, J-1500KS (JASCO). Far-ultraviolet circular
401	dichroism spectra at 220 nm along the increase of temperature in steps of 1.0 °C/min with 60 s of
402	equilibration time were collected for 5 μ M protein samples in buffer F in a 1-cm-path-length cuvette.
403	The measurements were carried out in the absence of nucleotides or in the presence of 1 mM ADP, 1
404	mM ATP and 5 mM ATP after the incubation of the mixed solutions for 1 hour at 4 °C.

Fluorescence polarization measurement for evaluating nucleotide-binding affinity of the A₃(De)₃ complex

Fluorescence polarization-based affinity measurements for the wild-type A₃B₃ complex and the 407 designed A₃(De)₃ complex were performed using the fluorescent-labeled nucleotides, Mant-ADP and 408 Mant-AppNHp (Jena Bioscience), in 100 nM. The changes in fluorescence anisotropy (r) of the 409 fluorescent-labeled nucleotides mixed with the protein samples in Greiner black flat bottom 96 well 410 plates, against the increase of the protein concentrations, were observed after 1 hour equilibration at 411 room temperature on a Spark 10M (TECAN) using 360 nm excitation and 465 nm emission filters 412with 35 nm bandwidth filters. Buffer D was used for all measurement. Equilibrium dissociation 413 constants (K_d) were determined by the fitting to eq 1 with the anisotropy plots averaged over period of 414 10 min (20 measurements), where A is the experimentally measured anisotropy, Af is anisotropy of the 415free ligand, A_b is the anisotropy of the fully bound ligand, $[L]_T$ is the total ligand concentration, and 416 $[R]_T$ is the total protein concentration. The K_d values were determined by averaging the values from 417three independent measurements. 418

419
$$A = A_f + (A_b - A_f) * \left(\frac{([L]_T + K_D + [R]_T) - \sqrt{(-[L]_T - K_D - [R]_T)^2 - 4[L]_T[R]_T}}{2[L]_T}\right) \quad \text{eq 1}$$

420 Note that the measured nucleotide affinities of the wild-type A₃B₃ complex are possibly 421 underestimated by the binding at the second catalytic site, since the 100 nM nucleotide concentration, which is required to detect the fluorescence polarization of Mant, is not low enough against the binding

423 affinity.

Reconstitution experiments of the A₃(De)₃DF complex from the A₃(De)₃ complex and the DF-subcomplex

426	The $A_3(De)_3DF$ complex was reconstituted from the $A_3(De)_3$ complex and the DF-subcomplex. The
427	purified A ₃ (De) ₃ and DF were mixed in a 1:5 molar ratio with the addition of MES-NaOH (pH6.0, 100
428	mM final concentration) and incubated for 2 hour at room temperature in the presence or absence of
429	20 μ M AMP-PNP or ADP. The samples were filtered and passed through a Superdex 200 Increase
430	column (GE Helthcare) equilibrated with buffer Q (20 mM MES-NaOH (pH 6.5), 10% Glycerol, 100
431	mM NaCl, 5 mM MgSO ₄ and 2 mM DTT). The reconstitution rate shown in Supplementary Fig. 11
432	was evaluated by SDS-PAGE for 1.5 μ M, 14 μ L of purified samples mixed with Tris-Glycine SDS
433	buffer, and then quantified by ImageJ ⁴¹ using eq 2, where A_{WT} , A_{Design} are the optical densities of A-
434	subunit in the wild-type complex or in the design complex, respectively, and D_{WT} and D_{Design} are those
435	of D-subunit.

436

$$(A_{WT}/A_{Design}) \times D_{Design}/D_{WT}$$
 eq 2

437

438 Crystallization, data collection and structure determination

439	The sitting drop vapor diffusion method was used for crystallization. Crystals for $A_3(De)_3$ _empty
440	were obtained by mixing 2.0 μL protein solution drop (10-15 mg/mL protein in buffer P) with 2.0 μL
441	of reservoir solution (0.1 M Tris-HCl (pH 8.5), 20-24% PEG 3350 and 0.2 M Ammonium Acetate).
442	The crystals were appeared in 1-2 weeks at 293K. The crystals were soaked in cryo-protectant
443	solutions with an increasing concentration of 10% (v/v) glycerol. For $A_3(De)_3_(ANP)_{1cat}$,
444	$A_3(De)_3_empty$ crystals were soaked for 5 hours in 20 μM AMP-PNP, 200 μM MgSO4 and 10%
445	glycerol. For $A_3(De)_3_(ADP \cdot Pi)_{1cat}(ADP)_{2cat,2non-cat}$, $A_3(De)_3_empty$ crystals were soaked to ADP,
446	MgCl ₂ and glycerol for 5 hours by gradually increasing the concentration to 10 mM, 10 mM and 10%,
447	respectively. For $A_3(De)_3_{(ADP)_{3cat,1non-cat}}$ and $A_3(De)_3_{(ADP)_{3cat,2non-cat}}$, $A_3(De)_3_{empty}$ crystals were
448	soaked to ADP, MgCl ₂ and glycerol overnight by gradually increasing the concentration to 5 mM, 5
449	mM and 10%, respectively.

The crystals were mounted on cryo-loops (Hampton Research), flash-cooled and stored in liquid nitrogen. All X-ray diffraction data were collected at the wavelength 1.1 Å on beamline BL-1A at Photon Factory (Tsukuba, Japan), from a single crystal at the cryogenic temperature (100K). The collected data were processed by using XDS^{42} . The structure of $A_3(De)_3$ _empty and $A_3(De)_3$ with nucleotides were determined by molecular replacement method with Phaser⁴³ using A_3B_3 complex

455	from <i>Enterococcus hirae</i> (PDB 3VR2) and obtained A ₃ (De) ₃ _empty structure as a search model,
456	respectively. The initial model was iteratively refined with PHENIX ⁴⁴ and REFMAC5(CCP4 Suite) ⁴⁵
457	and manually corrected with COOT ⁴⁶ . Figures are prepared by PyMOL ⁴⁷ , CueMol2 ⁴⁸ and Chimera ⁴⁹ .
458	The crystallographic and refinement statistics are summarized in Supplementary Table 9.

459 Single-molecule experiments of the designed V₁-ATPase

The protein sample was prepared by mixing the purified $A_3(De)_3$ and the biotinylated DF-subcomplex 460in a 1:5 molar ratio with the addition of MES-NaOH (pH6.0, 100mM final concentration), followed 461 by the incubation in the presence of 200 µM ADP for 2 hours at room temperature. The sample was 462 filtered and passed through a Superdex 200 Increase column (GE Helthcare) equilibrated with buffer 463O and were concentrated to few µM with a Vivaspin500 5,000 MWCO. The samples were stored at -46480 °C. 465Single-molecule experiments were carried out by the method reported in the paper²⁸. The flow cell 466 was prepared by covering an untreated coverglass ($18 \times 18 \text{ mm}^2$, Matsunami Glass) on a coverglass 467 $(24 \times 32 \text{ mm}^2)$, Matsunami Glass) treated by overnight immersion in piranha solution (H₂SO₄/H₂O₂ = 4683:1). After capturing the protein sample on the treated coverglass by His-tag, the streptavidin-coated 469 40-nm gold nanoparticle was attached to the biotinylated DF. The rotation of gold nanoparticle was 470 observed by using an objective-type total internal reflection dark-field microscope⁵⁰ constructed on an 471inverted microscope (IX-70, Olympus). The gold nanoparticles were illuminated by the evanescent 472field with the penetration depth of 100 nm from the glass surface. The scattered image of a rotating 473gold nanoparticle was recorded as a movie with a high-speed CMOS camera (FASTCAM 1024PCI, 474

Photron) at 10,000 frames per second (fps) for almost all samples and at 27,000 fps for dwell time

analyses of the double mutant at 3 mM ATP. During observation and recording under the microscope,

477 ATP-regeneration system, in which ADP is rapidly regenerated to ATP by the coupling with

dephosphorylation of phosphoenolpyruvate catalyzed by pyruvate kinase, was used to keep ATP

479 concentration constant.

480 **References**

- Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. *Nature* 440,
 631-636 (2006).
- Alberts, B. The Cell as a Collection of Protein Machines: Preparing the Next Generation of
 Molecular Biologists. *Cell* 92, 291-294 (1998).
- Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization.
 Nature 450, 983-990 (2007).
- Makhlynets, O.V., Raymond, E.A. & Korendovych, I.V. Design of Allosterically Regulated
 Protein Catalysts. *Biochemistry* 54, 1444-1456 (2015).
- 489 5. Liu, H. et al. Control of a biomolecular motor-powered nanodevice with an engineered
 490 chemical switch. *Nature Materials* 1, 173-177 (2002).
- 491 6. Lee, J. et al. Surface Sites for Engineering Allosteric Control in Proteins. *Science* 322, 438
 492 (2008).
- Feng, J. et al. A general strategy to construct small molecule biosensors in eukaryotes. *eLife* 4,
 e10606 (2015).
- 8. Nakamura, M. et al. Remote control of myosin and kinesin motors using light-activated
 gearshifting. *Nature Nanotechnology* 9, 693 (2014).
- 9. Cosentino, C. et al. Engineering of a light-gated potassium channel. *Science* **348**, 707 (2015).
- I0. Zeqiraj, E. & van Aalten, D.M. Pseudokinases-remnants of evolution or key allosteric
 regulators? *Curr Opin Struct Biol* 20, 772-81 (2010).
- Ribeiro, A.J.M. et al. Emerging concepts in pseudoenzyme classification, evolution, and
 signaling. *Science Signaling* 12, eaat9797 (2019).
- Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The Protein Kinase
 Complement of the Human Genome. *Science* 298, 1912 (2002).
- I3. Zeqiraj, E., Filippi, B.M., Deak, M., Alessi, D.R. & van Aalten, D.M.F. Structure of the LKB1 STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation. *Science* 326,
 1707 (2009).
- ⁵⁰⁷ 14. Rajakulendran, T. & Sicheri, F. Allosteric Protein Kinase Regulation by Pseudokinases:
 ⁵⁰⁸ Insights from STRAD. *Science Signaling* 3, pe8 (2010).
- Marshansky, V. & Futai, M. The V-type H+-ATPase in vesicular trafficking: targeting,
 regulation and function. *Curr Opin Cell Biol* 20, 415-26 (2008).
- Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric
 crystal structures. *Nature* 493, 703-7 (2013).
- ⁵¹³ 17. Arai, S. et al. Reconstitution in vitro of the catalytic portion (NtpA3-B3-D-G complex) of

514 Enterococcus hirae V-type Na+-ATPase. *Biochem Biophys Res Commun* **390**, 698-702 (2009).

- Liu, Q., Kane, P.M., Newman, P.R. & Forgac, M. Site-directed mutagenesis of the yeast VATPase B subunit (Vma2p). *J Biol Chem* 271, 2018-22 (1996).
- Vasilyeva, E., Liu, Q., MacLeod, K.J., Baleja, J.D. & Forgac, M. Cysteine scanning
 mutagenesis of the noncatalytic nucleotide binding site of the yeast V-ATPase. *J Biol Chem* 275, 255-60 (2000).
- ⁵²⁰ 20. Mulkidjanian, A.Y., Makarova, K.S., Galperin, M.Y. & Koonin, E.V. Inventing the dynamo ⁵²¹ machine: the evolution of the F-type and V-type ATPases. *Nat Rev Microbiol* **5**, 892-9 (2007).
- 522 21. Matsui, T. et al. Catalytic activity of the $\alpha 3\beta 3\gamma$ complex of F1-ATPase without noncatalytic 523 nucleotide binding site. *J Biol Chem* **272**, 8215-21 (1997).
- Walker, J.E. ATP Synthesis by Rotary Catalysis (Nobel lecture). *Angew Chem Int Ed Engl* 37,
 2308-2319 (1998).
- Walker, J.E., Saraste, M., Runswick, M.J. & Gay, N.J. Distantly related sequences in the alpha and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a
 common nucleotide binding fold. *The EMBO journal* 1, 945-951 (1982).
- Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop--a common motif in ATP- and GTPbinding proteins. *Trends Biochem Sci* 15, 430-4 (1990).
- Tinberg, C.E. et al. Computational design of ligand-binding proteins with high affinity and
 selectivity. *Nature* 501, 212-216 (2013).
- 533 26. Dou, J. et al. De novo design of a fluorescence-activating beta-barrel. *Nature* 561, 485-491
 534 (2018).
- Bick, M.J. et al. Computational design of environmental sensors for the potent opioid fentanyl.
 eLife 6, e28909 (2017).
- 537 28. Iida, T. et al. Single-molecule analysis reveals rotational substeps and chemo-mechanical
 538 coupling scheme of Enterococcus hirae V1-ATPase. *J Biol Chem* 294, 17017-17030 (2019).
- Imamura, H., Funamoto, S., Yoshida, M. & Yokoyama, K. Reconstitution in vitro of V1
 complex of Thermus thermophilus V-ATPase revealed that ATP binding to the A subunit is
 crucial for V1 formation. *J Biol Chem* 281, 38582-91 (2006).
- Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine
 the thermodynamics of protein unfolding and binding interactions. *Nat Protoc* 1, 2527-35
 (2006).
- ⁵⁴⁵ 31. Parsonage, D., Al-Shawi, M.K. & Senior, A.E. Directed mutations of the strongly conserved
 ⁵⁴⁶ lysine 155 in the catalytic nucleotide-binding domain of beta-subunit of F1-ATPase from
 ⁵⁴⁷ Escherichia coli. *J Biol Chem* 263, 4740-4 (1988).
- 548 32. Maruyama, S. et al. Metastable asymmetrical structure of a shaftless V1 motor. Science

549 *Advances* **5**, eaau8149 (2019).

- 33. Kon, T. et al. The 2.8 A crystal structure of the dynein motor domain. *Nature* 484, 345-50
 (2012).
- Allingham, J.S., Sproul, L.R., Rayment, I. & Gilbert, S.P. Vik1 Modulates Microtubule-Kar3
 Interactions through a Motor Domain that Lacks an Active Site. *Cell* 128, 1161-1172 (2007).
- 35. Stadtmueller, B.M. & Hill, C.P. Proteasome Activators. *Molecular Cell* **41**, 8-19 (2011).
- 36. Wang, J. et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. *Science*364, eaav5868 (2019).
- 37. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and
 design of macromolecules. *Methods Enzymol* 487, 545-74 (2011).
- 38. Kothiwale, S., Mendenhall, J.L. & Meiler, J. BCL::Conf: small molecule conformational
 sampling using a knowledge based rotamer library. *J Cheminform* 7, 47 (2015).
- 39. D.A. Case, V.B., J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, III, T.A.
 Darden, R.E. Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I.
 Kolossváry, A. Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K.M. Merz, F.
 Paesani, D.R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C.L. Simmerling, W.
 Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu and P.A. Kollman. AMBER 14.
 (University of California, San Francisco., 2014).
- 40. Meagher, K.L., Redman, L.T. & Carlson, H.A. Development of polyphosphate parameters for use with the AMBER force field. *Journal of Computational Chemistry* **24**, 1016-1025 (2003).
- Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image
 analysis. *Nature Methods* 9, 671-675 (2012).
- 42. Kabsch, W. XDS. Acta Crystallographica Section D 66, 125-132 (2010).
- McCoy, A.J. et al. Phaser crystallographic software. *Journal of Applied Crystallography* 40, 658-674 (2007).
- 44. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular
 structure solution. *Acta Crystallographica Section D* 66, 213-221 (2010).
- Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of Macromolecular Structures by
 the Maximum-Likelihood Method. *Acta Crystallographica Section D* 53, 240-255 (1997).
- Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. *Acta Crystallographica Section D* 66, 486-501 (2010).
- 580 47. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 2.1. (2018).
- 581 48. CueMol: Molecular Visualization Framework (<u>http://www.cuemol.org/</u>).
- 49. Pettersen, E.F. et al. UCSF Chimera—A visualization system for exploratory research and
 analysis. *Journal of Computational Chemistry* 25, 1605-1612 (2004).

584 50. Ueno, H. et al. Simple Dark-Field Microscopy with Nanometer Spatial Precision and 585 Microsecond Temporal Resolution. *Biophysical Journal* **98**, 2014-2023 (2010).

586

587 Acknowledgement

588	We thank Prof. T. Murata at Chiba University for helpful suggestions; Dr. M. Kondo at ExCELLS
589	and Dr. F. Kawai at Yamagata University for discussion about protein expression and purification; Dr.
590	H. Ueno and Dr. Y. Minagawa at the University of Tokyo for advice about single-molecule
591	experiments; Prof. T. Kinoshita at Osaka Prefecture University for discussion about pseudo-kinases;
592	Prof. S. Akiyama at the Institute for Molecular Science and Prof. S. Takada at Kyoto University for
593	comments on the manuscript; and Dr. R. Koga at ExCELLS for general discussion. We thank the
594	Research Center for Computational Science (RCCS), Okazaki, Japan for providing its computational
595	resources; the staff at the Photon Factory (PF) at KEK for assistance in synchrotron experiments and
596	data collection for crystallographic analyses under the approval of PF program advisory committee
597	(Proposal No. 2017G141); and for the support of the Basis for Supporting Innovative Drug Discovery
598	and Life Science Research (BINDS) from AMED under Grant Number JP20am0101071 (supporting
599	number BINDS0471). This work was supported by a Grant-in-Aid for Scientific Research on
600	Innovative Areas "Molecular Engine" (JSPS KAKENHI Grant Number 18H05420 to T. K. and N. K.
601	and 18H05424 to R. I.), by the National Institute for Natural Sciences (NINS), Okazaki Institute for
602	Integrative Bioscience (Orion Project Grant Number 10341630611 to T.K. N. K. and R. I.), and by the
603	Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and

⁶⁰⁴ Technology (PRESTO, Grant Number JPMJPR13AD to N. K.).

605

606 Author Contributions

607	T. K., R. I. and N. K. designed the research; T. K. computationally designed the ATP binding site; T.
608	K. expressed and purified protein samples; T. K. performed biochemical measurements; T. K. and M.
609	T. performed crystallography experiments and analyzed the data; T. K. and T. I. performed single-
610	molecule experiments and analyzed the data; T. K. and N. K. wrote the manuscript; and T. K.
611	coordinated the overall research. All authors discussed the results and commented on the manuscript.
612	

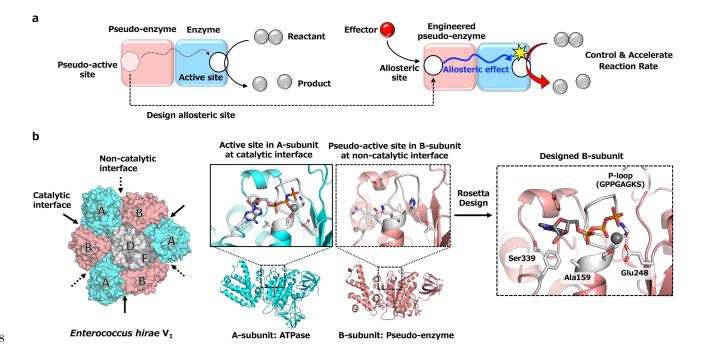
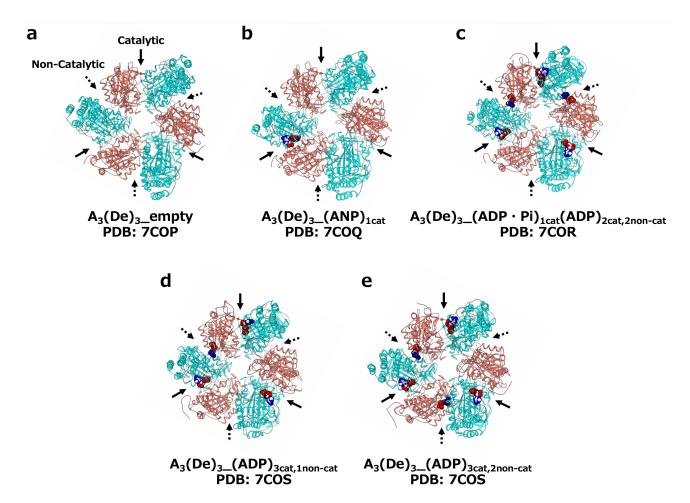
613 Competing financial interests

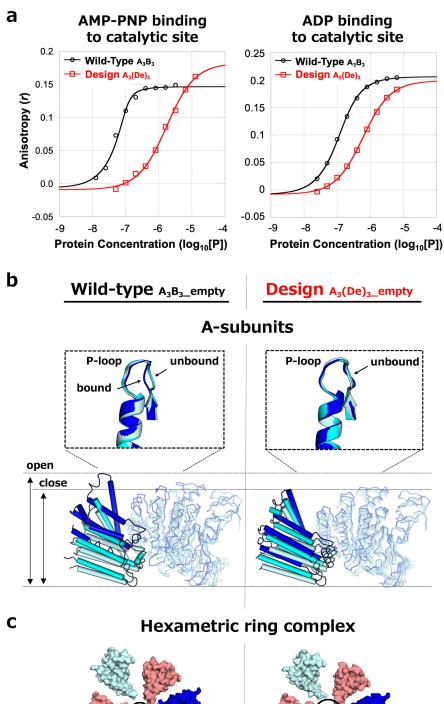
614 The authors declare no competing financial interests.

615

616 Additional Information

617 **Supplementary Information** is available for this paper.


Fig. 1. De Novo Design of an allosteric (ATP binding) site at the pseudo-active site of V₁-ATPase. 619 a, Strategy to de novo design of allosteric control into protein complexes by engineering the pseudo-620 active site. b, Overview of design scheme. Left: Catalytic and non-catalytic interfaces, indicated by 621 solid and dotted arrows respectively, in the hexameric ring of V1 consisting of A-subunits (cyan) and 622 their pseudo-enzyme B-subunits (salmon pink). The rotor of the D- and F- subunits (gray) is located 623 in the center of the ring. Middle: The structures of A- and B-subunits with the active and pseudo-active 624 sites, respectively. Right: An ATP binding site created at the pseudo-active site using the protein design 625 software Rosetta; gray color residues were selected for the design (11 residue positions). The residues 626 changed from the original sequence by the design are denoted with characters: the P-loop for binding 627 to the phosphate group of ATP was built at the residue positions 151-158 with the amino acid sequence, 628 GPPGAGKS; the Walker-B motif coordinating magnesium ion was built with glutamic acid at the 629 residue position 248; the nucleotide-binding pocket was made with the alanine at 159, creating space 630 for the binding of the sugar group of ATP (originally glutamic acid), and serine 339, making a hydrogen 631 bond with the adenine ring. 632

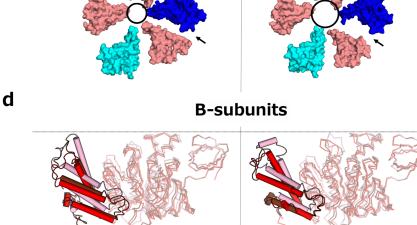

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.288571; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 2. Solved five crystal structures of the A₃(De)₃ complex in various conditions.

635	The presented structures are viewed from the C-terminal domain of the A- and designed B-subunits.
636	a , $A_3(De)_3$ complex structure (De represents the design subunit) in the absence of nucleotides, solved
637	at 2.77 Å resolution. This structure was named as $A_3(De)_3$ _empty. b , $A_3(De)_3$ complex structure bound
638	to an AMP-PNP at a catalytic interface (3.44 Å resolution): A ₃ (De) ₃ _ANP _{1cat} . (C) A ₃ (De) ₃ complex
639	structure bound to 3 ADPs in the catalytic interfaces and 2 ADPs in the designed non-catalytic
640	interfaces (2.9 Å resolution): A ₃ (De) ₃ (ADP·Pi) _{1cat} (ADP) _{2cat,2non-cat} . (D) A ₃ (De) ₃ complex structure
641	bound to 3 ADPs in the catalytic interfaces and an ADP in a designed non-catalytic interface (3.95 Å
642	resolution): A ₃ (De) ₃ (ADP) _{3cat,1non-cat} . (E) A ₃ (De) ₃ complex structure bound to 3 ADPs in the catalytic
643	interfaces and 2 ADPs in the designed non-catalytic interfaces (3.95 Å resolution):
644	A ₃ (De) ₃ (ADP) _{3cat,2non-cat} .

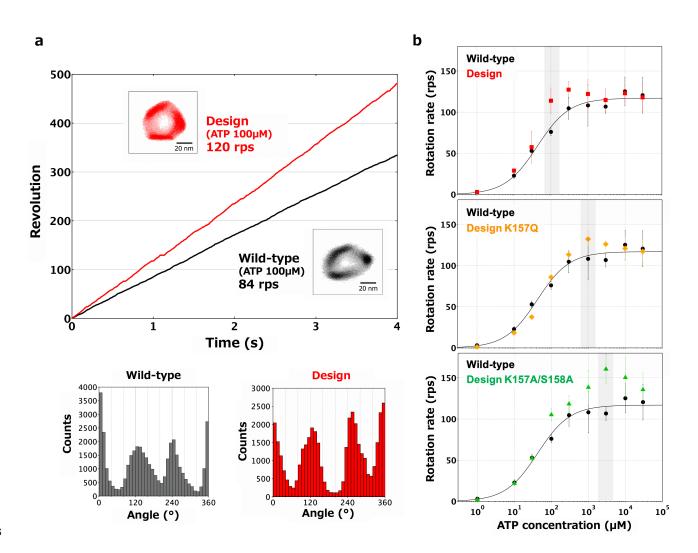


Fig. 3. Creation of ATP binding sites in the B-subunit induced conformational changes of the Asubunit and the ring complex.

648	a , The nucleotide binding affinities of the wild-type A_3B_3 and $A_3(De)_3$ complexes to AMP-PNP (top)
649	and ADP (bottom), observed by fluorescent polarization experiments. b, Superpositions of the three
650	A-subunit structures in the wild-type A ₃ B ₃ (PDB: 3VR2) (left) and A ₃ (De) ₃ _empty (PDB: 7COP)
651	(right), using the β -barrel domains (residues 1-71), together with the close-up views for the structures
652	around the P-loop. c, Ring complex conformations of the wild-type A_3B_3 complex (left) and
653	$A_3(De)_3$ _empty (right). The C-terminal domains of A- and B- subunits viewed from the N-terminal β -
654	barrel side, are shown. The circles and arrows show the central pore and the catalytic interface at which
655	the largest conformational change is observed. d , Superpositions of the three B-subunit structures.

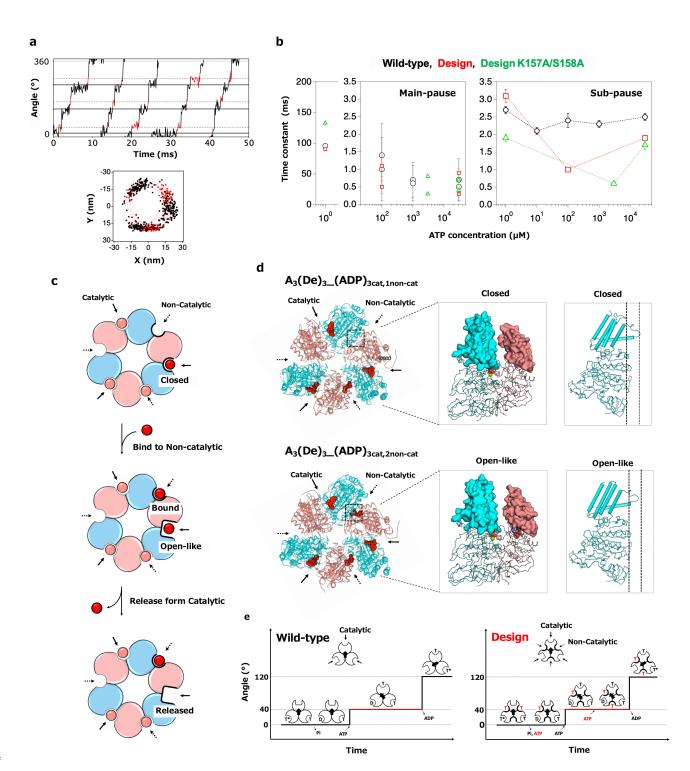

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.288571; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 4. ATP binding to the designed site accelerates rotation rate allosterically.

658	a , A typical rotation time course of the designed V_1 (red) and that of the wild-type V_1 (green) ²⁸ , at 100
659	μ M ATP. The insets show the rotation xy-trajectory. The angle distributions are shown at the bottom.
660	b , [ATP] dependence of rotational rates for the wild-type (black) ²⁸ , the designed V_1 (red), the design
661	mutant K157Q (orange) and the design double mutant K157A/S158A (green). The [ATP], at which
662	the most accelerated rotation was observed, is highlighted in gray. The rates were plotted with averaged
663	values using three molecules or more (Supplementary Table 5) and the error bars representing S. D.

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.288571; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 5. The mechanism of allosteric acceleration, revealed by analysis of rotation sub-steps and solved structures.

667	a , A close-up rotation time course of the design at 100 μ M ATP and the rotation xy-trajectory. The
668	main-pause and sub-pause are black and red, respectively. b , Duration times at different [ATP] for the
669	two pauses for the wild-type V_1 (black), the designed V_1 (red), and the design double mutant
670	K157A/S158A (green). See Supplementary Fig. 13 for distributions of the duration time. Note that for
671	the main pauses at 100-3000 μ M ATP, two time constants were obtained for each [ATP] assuming
672	consecutive reactions (see Supplementary Fig. 13). c, Structure-based interpretation on the ADP-
673	release promoted by the allosteric effect. Ellipses indicate A-subunits (cyan) and designed B-subunits
674	(salmon). Nucleotides are red (or salmon pink) circles. d , Comparison of A ₃ (De) _{3_(ADP)3cat,1non-cat}
675	(top) and A ₃ (De) _{3_} (ADP) _{3cat,2non-cat} (bottom). The hexameric structures viewed from the C-terminal
676	domain of the A- and B-subunit (left) and the structures of the catalytic interfaces and the A-subunits,
677	which form the closed and open-like conformations, respectively (middle and right). ADP molecules
678	are shown as red spheres. e, A rotation scheme for the wild-type, proposed by Iida et al. ²⁸ (left).
679	Proposed hypothetical rotation scheme for the design (right). ATP and ADP are represented by T and
680	D, respectively. Red indicates nucleotides bound to non-catalytic interfaces.