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Abstract

The brain functional network extracted from the BOLD signals reveals the correlated activity
of the different brain regions, which is hypothesized to underlie the integration of the information
across functionally specialized areas. Functional networks are not static and change over time and
in different brain states, enabling the nervous system to engage and disengage different local areas
in specific tasks on demand. Due to the low temporal resolution, however, BOLD signals do not
allow the exploration of spectral properties of the brain dynamics over different frequency bands
which are known to be important in cognitive processes. Recent studies using imaging tools with
a high temporal resolution has made it possible to explore the correlation between the regions at
multiple frequency bands. These studies introduce the frequency as a new dimension over which
the functional networks change, enabling brain networks to transmit multiplex of information at
any time. In this computational study, we explore the functional connectivity at different frequency
ranges and highlight the role of the distance between the nodes in their correlation. We run the
generalized Kuramoto model with delayed interactions on top of the brain’s connectome and show
that how the transmission delay and the strength of the connections, affect the correlation between
the pair of nodes over different frequency bands.

1 Introduction

A very prominent feature of brain networks is the ability to dynamically changing the routes for commu-
nication between the brain regions when undertaking different cognitive and executive functions (Park
et al., 2018; Valdes-Sosa et al., 2011; Friston, 2011; Honey et al., 2007). This is revealed by extensive
studies on the pattern of inter-relation between the activities of different brain regions at different brain
states based on BOLD signals (Park et al., 2018; Allen et al., 2014; Calhoun et al., 2014; Chang and
Glover, 2010; Wang et al., 2016). These correlated activities are supposed to underlie the integration
of information over subsets of the whole-brain network, each comprising several regions (Friston, 2002).
It is shown that each region can engage in one functional module and disengage from the other one
due to the environmental demands and the state of the brain, enabling the brain to switch between
multiplex of tasks across time. The recent advancement in the brain imaging using sophisticated EEG
and MEG tools and developed methods of data analysis has made it possible to overcome the shortcom-
ings of such approaches due to the high noise and difficulties in source localization (Haufe et al., 2011;
Rodŕıguez-Rivera et al., 2006). The higher temporal resolution of these tools has extended the studies
on the functional networks to the frequency domains which were not accessible through fMRI due to its
low temporal resolution. This frequency range spans several specific bands which are believed to under-
lie different perceptional, cognitive, and executive functions, including delta, alpha, beta, and gamma
bands (De Pasquale et al., 2010; Brookes et al., 2016; Li et al., 2017; Tewarie et al., 2016; Schnitzler
and Gross, 2005). For example coherence in the gamma range is believed to provide a means for con-
trolling effective communication between the brain regions (Bonnefond et al., 2017; Ray and Maunsell,
2015; Schroeder and Lakatos, 2009; Womelsdorf and Fries, 2007). Recent studies using MEG have shown
that functional networks change in different frequency bands and multiplex of functional networks are
present at any given time. These observations assert that any region can simultaneously participate in
multiple functional modules, acting in parallel, and exploiting the structural communication channels for
multiple tasks (Brookes et al., 2016). In this study, we question what properties of the brain structural
network determine the pattern of the frequency-resolved functional network (Ziaeemehr et al., 2020a).
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Our focus is on the role of the distance between the nodes on the correction of their activity at different
frequencies. Since both the delay in the interaction and the strength of the connections are dependent on
the distance, we explore the effect of these two parameters by simulation of a simple model composed of
phase oscillators, on top of the brain connectome network. Our results show that the dependence of the
correlation on the distance is in general bolder at higher frequencies. We show that the variation of the
correlation with frequency is faster for smaller delays, i.e., when the nodes are of shorter distance; while
the connection strengths determine the amplitude of the variation of the correlation with frequency. Our
results highlight the role of distance in the pattern of correlation between the nodes in brain networks.

2 Model

Our model consists of N phase oscillators each representing a region of interest of the brain and connected
with time-delayed interactions described by a generalized Kuramoto model (Yeung and Strogatz, 1999):

θ̇i = ωi + ξi(t) +
K

N

N∑
j=1

aij sin [θj(t− τij)− θi(t)] , (1)

where, θi and ωi = 2πνi (νi being the frequency) are the phase and natural angular frequency of the i-th
oscillator, respectively. aij are the elements of the adjacency matrix: A. aij = 1 if there is a link between
the nodes i and j with a time delay τij ; otherwise aij = 0. The parameter K sets the overall coupling
strength. In our simulations, the initial values of θi are randomly drawn from a uniform distribution
in the interval [0, 2π], and natural frequencies are drawn from a narrow normal distribution with given
mean and variance. The degree of synchrony of the phase oscillators is quantified by the Kuramoto order
parameters r, which is defined as r(t) = 1

N 〈|
∑N
i=1 eiθi(t)|〉. Here, 〈. . . 〉 represents averaging over different

network realizations and initial conditions. The magnitude is 0 ≤ r ≤ 1. The extreme cases are r = 1
(coherent state) and r = 0 (incoherent state). The time average of r after achieving a steady state is
symbolized by R.

To measure the degree of synchronization between any two nodes of the network, we use the correlation
index defined as σij = 〈cos[θi(t) − θj(t)]〉. Here σij is an element of the correlation matrix C (Arenas
et al., 2006).

The system of delayed differential equations (DDE) (Eq. 1) is solved numerically using adaptive
Bogacki-Shampine (Flunkert, 2011) with minimum time step 0.05 [ms], absolute and relative error toler-
ance of 10−8 and 10−5, respectively. Noise can also be included in the differential equations, which are
solved by the Euler-Maruyama method. For the simulations, we dropped the first 7 [s] and continued
the simulations for 12 [s] and repeated the simulations 200 times with different initial conditions and
frequency distribution. We also used a small amplitude of noise (0.05) and narrow normal distribution
with a standard deviation of 0.01-0.1 for the initial frequencies. Adding small amplitude noise does not
change the behavior of the system and only increases the transition time to a steady-state.

To quantify the pairwise distance between the distribution of values in functional networks and the
connection strength of the connectome network, we used pdist module with the Euclidean metric from
Scipy package (Oliphant, 2007).

We also considered a narrow interval of 0.05 to filter edges at a determined weight and an interval
of 16 mm for selecting nodes with specific distance from each other. All the dropped units for time and
distance are [ms] and [mm], respectively.

3 Results

In this paper, we aim to study the properties of the functional network of the brain at different frequency
bands through simulation of a simple model of the human brain network. Specifically, we explore how
the correlation between the nodes at different frequencies changes with the distance between the nodes.
Our model is based on a generalized Kuramoto model run on top of the brain connectome composed of 66
nodes, whose properties are shown in Figure 1. The weight of the connections in the structural network,
based on the number of axonal tracts between any two nodes is shown in Figure 1A, and the distance of
the nodes is shown in Figure 1B. The structural network shows a modular structure at two levels, with 6
modules at the first level and two modules at the second (corresponding to two hemispheres). In Figure
1C and D we have shown the scatter plot of the connection strengths, and their mean and SD versus
the distance between the nodes, respectively. In particular, it is seen that most strong connections are
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Figure 1: structural properties of the human connectome. (A) The normalized coupling weights
and (B) length of fibers in the human connectome with 66 nodes (Hagmann et al., 2008). The solid
squares show the modules and dash lines indicate the hemispheres. (C) Scatter plots of normalized
coupling weights versus distance. (D) The distribution of mean the values of couplings and their standard
deviation for different distances.

distributed around short distances with 2 < d < 5 cm, and distant nodes are only connected by weak
links. Note that following other studies we assumed that the coupling strengths are scaled by the number
of axonal fibers between any two nodes (Hagmann et al., 2008). When the connection strengths are then
normalized, notably, 80% of them are very small < 10−1.

3.1 Frequency-resolved correlation matrix

In the model, we assume that the interaction between the nodes takes place through a delay time which
in general is dependent on the distance. The distribution of the delays turns out to be the determinant
factor for the functional network at different frequency bands. We first assume that the interaction delay
is (linearly) proportional to the distance between the nodes, i.e., we take a fixed value for the speed
of the signal transmission between the nodes (5 [m/s]). We also assume a weighted structural network
where the connection strengths are scaled by the number of axonal tracts. The correlation matrix at five
different frequency bands is shown in Fig. 2a. The appearance of anti-correlation between some pairs
of nodes over higher frequency bands is apparent. Anti-correlation first appears between the nodes in
different hemispheres over the beta range and in the gamma range, they are also observed for the intra-
hemisphere pairs. This indicates the possible role of distance in the correlation between the nodes at
different frequencies. The mean correlation between the nodes versus connection strength and distance is
shown in Fig. 2b only for the pairs with a direct connection. At lower frequencies mean correlation shows
no apparent conclusive dependence on the distance and connection strength. Anti-correlation appears
at high distances at the beta range and shifts to lower distances with increasing frequency in accordance
with the results shown in Fig. 2a. To get insight to the role of transmission delays and connection
strength, we have shown scatter plots of the correlation between all the pairs at different frequencies
in Fig 2c, where colors indicate the weights (left) and distances (right) between the nodes, respectively.
It is seen that the mean correlation between all the pairs of nodes decreases at higher frequencies and
negative correlation is observed at higher frequencies for distant nodes. The left panel shows that strong
synapses lead to high positive and negative correlations at low and high frequencies, respectively. As it
is seen in the right panel, at low frequencies the high positive correlation is seen mostly for low distances,
while at higher frequencies short-distance nodes may show either positive or negative correlation with a
high value. Long-distance nodes show lower values of correlation for all the frequencies. In the following,
we inspect the frequency-resolved correlation matrix in more detail.

3.2 Relation to distance and frequency

We have shown the scatter plot of the correlation of the pairs versus the distance of the nodes, at different
frequencies in Fig. 3a. We observe a small negative correlation between the distance and correlation,
i.e., those nodes which are farther from each other have a slightly lower correlation. But, while at
lower frequencies the correlation almost linearly decreases with distance, at higher frequencies a steeper
drop with distance is observed similar to the structural distribution of the connection weights. As an
important corollary, we have compared this distribution with the structural one (Fig. 1c) by the distant
measure introduced in Methods. The best similarity between the distribution of structural and dynamical
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Figure 2: The correlation distributions. (A) The correlation matrices at five different frequencies.
(B) The distribution of correlations versus weight and distance of connections at each frequency. C The
distribution of correlations versus frequencies. The colors in left and right panels show the corresponding
wights and distances, respectively.
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Figure 3: (A) The scatter plots of the correlations matrices versus distances. The colors indicate the
corresponding weights of the connections. (B) The scatter plots of correlations matrices versus weights of
connections. The colors indicate the corresponding distances at different frequencies. (C) The euclidean
distance between scatter plots of correlations and weights of connections in the panels (A). (D) The
slope of fitted lines in panel (B) versus frequency.
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Figure 4: The correlation versus frequency for connections with fixed strength (A) W ≈ 0.15 and (B)
W ≈ 0.25 and various distances indicated in the legends. The correlation versus frequency for connections
with fixed distance (C) d ≈ 25 mm and (D) d ≈ 35 mm and various strengths indicated in the legends.
The colored areas show the results for p-value = 0.05.

couplings between the nodes (lowest distance between two distributions) is seen in beta and low gamma
range around 30 Hz (Fig. 2b). We have also colored the points in Fig. 3a based on the weight of the
structural link between the nodes. It is observed that strong links overall lead to a larger correlation
between the nodes, but this is only observable at low distances since there are hardly strong links between
the far nodes (Fig. 1c). Again, it is seen that while strong links lead to high positive correlation at low
frequencies, they give rise to negative correlation at high-frequency ranges. To inspect more precisely,
the relationship between the link strength and the correlation between the nodes, we have shown them
in the scatter plots of Fig. 3c. Since in the connectome most of the links are very weak, the points in
the scatter plot are packed in the small strength links. Nevertheless, the positive correlation between
the link weight and correlation is observed for low frequencies and this correlation decreases in higher
frequencies Fig. 3d. Notably, very weak links can carry high correlations in low frequencies and short
distances (shown by color).

3.3 Distinct role of connection weight and delay

Since both the connection strength and the delay in communication between the nodes are dependent on
the distance between the nodes, we question what is their distinct role on the pairwise correlation? More
specifically, the results show that the distant nodes show smaller correlation at all frequency bands and
they show anti-correlation for higher frequencies. Is that because they communicate through a longer
delay or because they are connected by relatively weaker connections? To this end, we pick the pair
of nodes with almost the same connection strength locating at different distances. Note that fixing the
connection strength, only the delay is changing when the distance is varied. We have shown the mean
correlation versus frequency for three different distances (delays) in Fig. 4a-b (for two different strengths).
It can be seen that the correlation shows an almost periodic behavior with frequency and the variation in
correlation is faster for the pairs with a longer delay. A comparison of the two panels also shows that the
amplitude of the changes is larger for stronger connections, while the rate of the change with frequency
is only dependent on the communication delay and is independent of the connection strengths.

To confirm the above results, we also presented the results for the nodes which are in almost the same
distance but are connected by different connection strengths. The results presented in Fig. 4c-d (for two
different distances) confirm that stronger connections lead to a larger amplitude of variation while for the
pairs at the same distance, show the same rate of the change of correlation, with respect to frequency.
Another point is that strong synapses not only give rise to higher correlation in low frequencies but also
lead to more negative correlation at higher frequencies. To summarize, the presented results show that
the rate of the changes in the correlation with frequency is determined by the transmission delay but
the amplitude of the correlations is dependent on the link’s strength.
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4 Discussion

In this manuscript, we studied the dependence of the correlation between the oscillatory activities of
the pair of nodes to their distance, at different frequency bands, through simulation of a system of
delayed-coupled phase oscillators on top of the brain’s connectome network. Since both delays in the
communication between the nodes and the strength of the synaptic connections between them are a
function of distance, we studied how the communication delay and connection strength can affect the
correlation. We showed that the effect of these two parameters can be different at different frequencies.
In particular, we found that at low frequencies the dependence of the correlation between the nodes
is compatible with expectation and shorter delay and stronger connections lead to larger correlation.
On the other hand at higher frequencies, the dependence is not trivial. Stronger connections in this
range can lead to anti-correlation of the nodes and longer delays can both result in positive and negative
correlation. In an intermediate-range, around beta and low gamma, we observed that the pattern of the
correlations and the distribution of the weights against distance has maximal similarity to each other,
compatible with the recent results (Ziaeemehr et al., 2020b).

Brain functional networks are constructed upon the statistical interdependencies between the ac-
tivities of the brain regions which is conventionally measured by fMRI. The indirect measurement of
the collective neuronal activity by fMRI can only reveal the slow dynamics of the brain due to its low
temporal resolution, around one second (Sejnowski et al., 2014; Kim et al., 1997). Brain oscillations
over several frequency bands which are known to be important for a variety of cognitive and executive
functions have much shorter periods and it is impossible to assess them with BOLD signals. On the
other hand, EEG and MEG recordings have a finer time resolution (Sejnowski et al., 2014; Burle et al.,
2015) and recent instrumental advancements and improvements in data analysis software had made it
possible to study frequency-resolved functional networks over wider frequency ranges(Hillebrand et al.,
2012; Gramfort et al., 2013). These warrant the need for theoretical and computational studies on the
spectral properties of the correlation matrix and the functional networks.

In the studies on the synchronization of the oscillators on complex networks, the connection strength
and the interaction delays are two determinant factors which their effect is extensively explored (Cabral
et al., 2012; Deco et al., 2009; Wang et al., 2014; Madadi Asl et al., 2018; Asl et al., 2018). It is shown
the phase relations between the pair of the coupled oscillators depend on the connection strength and to
the delay (Yeung and Strogatz, 1999; Sadeghi and Valizadeh, 2014; Esfahani et al., 2016; Esfahani and
Valizadeh, 2014). Since these phase relations are hypothesized to underlie the communication between
the brain populations, it is important to know how they change in realistic brain networks. In the brain
networks, both the delay and connection strengths have a wide distribution making the brain structural
network a very heterogeneous one. In this study, we used a realistic distribution for both the parameters
and inspected how each of them impacts the pattern of the correlation between the brain regions, at
different frequencies. With such a wide distribution of these parameters, a diversity of the correlations
and the phase relations are observed which are important for a diverse and dynamic communication
pattern in the brain (Maris et al., 2016; Ghosh et al., 2008; Breakspear et al., 2010).

While we did not directly explore the phase difference between the activities of the nodes, changes
in the correlation could indirectly determine the phase relations. Namely, a high positive and negative
correlation could indicate an almost in-phase or antiphase evolution of phases, respectively, with a
continuum of intermediate phase differences between the two extremes. Our results indicated that the
phase relations for any pair of nodes are in general dependent on the frequency. This has an important
functional implication for the communication between the brain’s areas. Since the phase differences could
determine the effective functional connectivity between the nodes (Maris et al., 2016; Friston, 2011), the
pairs can communicate at different frequencies with different efficacy at multiple frequency bands. Such
a multiplex of effective functional networks makes it possible to simultaneously engage the nodes at
multiple functional modules (Park and Friston, 2013).

Moreover, our results showed more diverse phase relations at higher frequencies. Indeed over low-
frequency bands, the correlation more slowly changes with distance and this means that long-range
communication between the brain areas can take place by slow dynamics. On the other hand, a faster
change in correlation with distance at high frequencies makes it possible to functionally dissociate the
areas at a certain distance and form local functional modules. This can be a fundamental need for the
brain networks for segregation of information processing at high-frequency bands and global integration
at low frequencies (Isomura et al., 2006; Buzsáki and Mizuseki, 2014). The presence of multiple fre-
quency bands could then lead to a hierarchy of spatial scales over which the information is integrated,
corresponding to each frequency band (Zhou et al., 2006; Meunier et al., 2010). Our results show that
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the heterogeneous communication delay is the key requisite for the brain to enable such a hierarchical
integration of information.
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Buzsáki, G. and Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations.
Nature Reviews Neuroscience, 15(4):264–278, 2014.

Cabral, J., Hugues, E., Kringelbach, M. L., and Deco, G. Modeling the outcome of structural discon-
nection on resting-state functional connectivity. Neuroimage, 62(3):1342–1353, 2012.

Calhoun, V. D., Miller, R., Pearlson, G., and Adalı, T. The chronnectome: time-varying connectivity
networks as the next frontier in fmri data discovery. Neuron, 84(2):262–274, 2014.

Chang, C. and Glover, G. H. Time–frequency dynamics of resting-state brain connectivity measured
with fmri. Neuroimage, 50(1):81–98, 2010.

De Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P.,
Ciancetta, L., Pizzella, V., Romani, G. L., et al. Temporal dynamics of spontaneous meg activity in
brain networks. Proceedings of the National Academy of Sciences, 107(13):6040–6045, 2010.

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kötter, R. Key role of coupling, delay, and noise
in resting brain fluctuations. Proceedings of the National Academy of Sciences, 106(25):10302–10307,
2009.

Esfahani, Z. G., Gollo, L. L., and Valizadeh, A. Stimulus-dependent synchronization in delayed-coupled
neuronal networks. Scientific reports, 6(1):1–10, 2016.

Esfahani, Z. G. and Valizadeh, A. Zero-lag synchronization despite inhomogeneities in a relay system.
PloS one, 9(12):e112688, 2014.

Flunkert, V. Delay-Coupled Complex Systems: And Applications to Lasers. Springer Science & Business
Media, 2011.

Friston, K. Functional integration and inference in the brain. Progress in neurobiology, 68(2):113–143,
2002.

Friston, K. J. Functional and effective connectivity: a review. Brain connectivity, 1(1):13–36, 2011.

Ghosh, A., Rho, Y., McIntosh, A., Kötter, R., and Jirsa, V. Cortical network dynamics with time delays
reveals functional connectivity in the resting brain. Cognitive neurodynamics, 2(2):115, 2008.

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.291591doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291591
http://creativecommons.org/licenses/by/4.0/


Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas,
M., Brooks, T., Parkkonen, L., et al. Meg and eeg data analysis with mne-python. Frontiers in
neuroscience, 7:267, 2013.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., and Sporns, O.
Mapping the structural core of human cerebral cortex. PLoS biology, 6(7):e159, 2008.

Haufe, S., Tomioka, R., Dickhaus, T., Sannelli, C., Blankertz, B., Nolte, G., and Müller, K.-R. Large-
scale eeg/meg source localization with spatial flexibility. NeuroImage, 54(2):851–859, 2011.

Hillebrand, A., Barnes, G. R., Bosboom, J. L., Berendse, H. W., and Stam, C. J. Frequency-dependent
functional connectivity within resting-state networks: an atlas-based meg beamformer solution. Neu-
roimage, 59(4):3909–3921, 2012.

Honey, C. J., Kötter, R., Breakspear, M., and Sporns, O. Network structure of cerebral cortex shapes
functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104
(24):10240–10245, 2007.
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