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Abstract 24 

Aim: To identify functional traits that best predict community assembly without 25 
knowing the driving environmental factors. 26 

Methods: We propose a new method that is based on the correlation r(XY) between two 27 
matrices of potential community composition: matrix X is fuzzy-weighted by trait 28 
similarities of species, and matrix Y is derived by Beals smoothing using the 29 
probabilities of species co-occurrences. Since matrix X is based on one or more traits, 30 
r(XY) measures how well the traits used for fuzzy-weighting reflect the observed co-31 
occurrence patterns. We developed an optimization algorithm that identifies those 32 
traits that maximize this correlation, together with an appropriate permutational test 33 
for significance. Using metacommunity data generated by a stochastic, individual-based, 34 
spatially explicit model, we assessed the type I error and the power of our method 35 
across different simulation scenarios, varying environmental filtering parameters, 36 
number of traits and trait correlation structures. We then applied the method to real-37 
world community and trait data of dry calcareous grassland communities across 38 
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Germany to identify, out of 49 traits, the combination of traits that maximizes r(XY). 39 

Results: The method correctly identified the relevant traits involved in the community 40 
assembly mechanisms specified in simulations. It had high power and accurate type I 41 
error and was robust against confounding aspects related to interactions between 42 
environmental factors, strength of limiting factors, and correlation among traits. In the 43 
grassland dataset, the method identified five traits that best explained community 44 
assembly. These traits reflected the size and the leaf economics spectrum, which are 45 
related to succession and resource supply, factors that may not be always measured in 46 
real-world situations. 47 

Conclusions: Our method successfully identified the relevant traits mediating 48 
community assembly driven by environmental factors which may be hidden for not 49 
being measured or accessible at the spatial or temporal scale of the study. 50 

 51 

Keywords 52 

Beals smoothing, community assembly, environmental filtering, fuzzy-weighting, 53 
hidden environmental factors, species traits, species co-occurrence. 54 

 55 

 56 

Introduction 57 

Understanding how species assemble in space and time is critical for predicting 58 
biodiversity responses to environmental factors (D’Amen et al. 2017) and the effects of 59 
biodiversity losses on ecosystem processes and services (Newbold 2018). In 60 
communities connected by dispersal, patterns of repeated co-occurrence and apparent 61 
mutual avoidance among species have often been observed (e.g. Diamond 1975; 62 
Münzbergová & Herben 2004). This is a consequence of the species’ ecological niches 63 
and interactions, both of which are mediated by species’ morphological, physiological, 64 
phenological, or behavioural characteristics, here collectively indicated as functional 65 
traits (Keddy 1992; McGill et al. 2006; Wilson 2007; Götzenberger et al. 2012). These 66 
“restrictions on the observed patterns” constitute community assembly rules (Wilson et 67 
al. 1999). 68 

If community assembly is mediated by abiotic and biotic environmental factor-trait 69 
relations, species co-occurrence patterns may naturally arise, because species having 70 
similar traits will respond similarly to environmental factors. Imagine an environmental 71 
factor e1 affecting species performance via a trait t1, i.e., e1 -> t1. All else being equal, at a 72 
given level of e1 species will tend to co-occur with those having similar values of trait t1. 73 
This will generate trait convergence for t1 or, in other words, a trend in community-74 
weighted means (CWMs) along changing e1, i.e., e1 ->CWMt1. However, community 75 
assembly involves more complex mechanisms than that. First, the units subject to 76 
environmental filtering are whole organisms with sets of morpho-physio-phenological 77 
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traits (Violle et al. 2007) which cannot be physically disentangled in response to 78 
different factors. Second, traits are often correlated, given that the multivariate trait 79 
space of species is strongly concentrated in a small number of trait value combinations, 80 
owing to coordination and trade-offs between traits as well as ecological and 81 
phylogenetic constraints (Murren 2002; Díaz et al. 2016; Céréghino et al. 2018). As a 82 
consequence of these two constraints, a factor effect (e1) on a trait (t1) may depend on 83 
the value of another trait (t2) in the same organism, either under the effect of the same 84 
factor, i.e., e1 -> t1|t2, or another factor, i.e., (e1 -> t1) | (e2 -> t2). In this case, one trait may 85 
be more limiting than another depending on the strength of the factor effects (Sih & 86 
Gleeson 1995; Gorban et al. 2011). Also, unknown factors affecting t1 will generate 87 
increased variance in t1 along the known e1 gradient (Kaiser et al. 1994; Thomson et al. 88 
1996; Cade & Noon 2003). These mechanisms may generate patterns of trait divergence 89 
(Pillar et al. 2009), e.g., when the community-weighted variance, or functional diversity 90 
(FD), of a trait increases along an environmental gradient. 91 

But how to identify which functional traits are relevant in mediating community 92 
assembly, irrespective of whether this depends on mechanisms leading to convergence 93 
or divergence patterns? Traditionally, these traits have been identified by relating 94 
community trait patterns to environmental conditions or resource levels, hereafter 95 
called environmental factors for simplicity (Pillar & Orlóci 1993; Díaz & Cabido 1997; 96 
Pillar 1999; Lavorel & Garnier 2002; Pillar et al. 2009; Bruelheide et al. 2018). This 97 
approach, however, falls short when these factors are hidden, i.e., unknown or not 98 
observable. This is the case, for instance, when the factor was simply not measured, 99 
when it is related to unknown past conditions, but also when it affects community 100 
assembly at a much finer resolution than the grain size of the studied community units. 101 
Moreover, community assembly might also depend on biotic factors related, for 102 
instance, to predation, competition, or facilitation. These factors are often difficult to 103 
measure, but are likewise expected to shape the functional profile of ecological 104 
communities (Mason & Wilson 2006; D’Amen et al. 2017). 105 

Under the assumption that these relevant yet hidden factors are reflected in community 106 
composition, there might be a way for analysing compositional data which allows to 107 
highlight the fundamental traits mediating community assembly. Once the traits are 108 
known, one can use factor-trait relations known from ecological theory or from other 109 
empirical studies (e.g.  Díaz et al. 2007; Dubuis et al. 2013; Bruelheide et al. 2018) to 110 
make inferences about the factors, even if hidden, which are responsible for filtering 111 
(Keddy 1992) species in the studied communities. 112 

Here we propose and test a data-driven method to identify those functional traits that 113 
best predict community assembly without knowing the relevant environmental factors 114 
shaping the studied communities. The foundation of our approach is to relate two ways 115 
of predicting potential community composition to each other, either based on the 116 
probability of species co-occurrence (Beals, 1984) or using fuzzy-weighting based on 117 
species traits (Pillar et al. 2009). Given a set of m species spread across n communities, 118 
Beals (1984) smoothing predicts the probability of occurrence of every species j in each 119 
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community k, estimated as the average of the pairwise co-occurrence probabilities of 120 
species j with those species actually present in community k. Fuzzy-weighting (Pillar et 121 
al. 2009) has some analogy to Beals smoothing but, instead of co-occurrence 122 
probabilities, it is based on trait similarities between species. Fuzzy-weighting results in 123 
a trait-based transformation of species composition in a metacommunity (Leibold et al. 124 
2004) that can fully describe potential community composition regarding traits 125 
encompassing both convergence and divergence (Pillar et al. 2009). The correlation 126 
between these two matrices of predicted species composition should thus measure how 127 
well the traits used for fuzzy-weighting reflect the observed co-occurrence patterns. 128 
Hence, the objective of finding the set of functional traits mediating community 129 
assembly can be reduced to the task of developing an optimization algorithm that 130 
identifies the traits maximizing this correlation, together with an appropriate 131 
permutational test for significance. 132 

To test our method, we generated data with known environmental filtering mechanisms 133 
and analysed how often our method correctly identified those traits involved in the 134 
simulated process of community assembly. Then, we applied the method to real plant 135 
community data, and checked whether it identified traits that can be considered 136 
relevant in driving species assembly in the studied communities.  137 

 138 

Methods 139 

As input, the analysis uses community composition matrix W of sites by species, and 140 
matrix B of species described by traits. Here, we considered both simulated data 141 
generated under specified conditions and real data (see details in the following).  142 

Beals smoothing (Fig. 1a) requires matrix P of pairwise probabilities of species co-143 
occurrences, which is derived from the community composition matrix W: 144 

      Eq. 1 145 

Where pi|j is the probability of species i to occur in a community when species j is 146 
present, w0

ki and w0
kj are the incidences (0, 1) of species i and j in community k, and w0

.j 147 
is the total incidence of species j across the n communities in matrix W. Normalising W 148 
by its site-totals, to compute relative species abundances (Wp), and multiplying it by P 149 
(Fig. 1a) results in Beals smoothed matrix Y of species by communities (Beals 1984; De 150 
Cáceres & Legendre 2008). In this definition, the target species was included for the 151 
estimation of their own probability of occurrence in a community (Beals 1984). 152 

 153 
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Figure 1. Data analysis steps for (a) Beals smoothing applied to the species composition 157 
matrix W to generate the matrix Y, (b) fuzzy-weighting applied to the species 158 
composition matrix W which, combined with the species traits in matrix B, generates 159 
the matrix X, and (c) permutation test for the significance of the matrix correlation 160 
r(XY) by permuting the columns of B (or U) generating B0 (or U0) and derived X0 = 161 
WpU0. 162 
 163 

For the fuzzy-weighting of community composition in W (see Fig. 1b), the species 164 
probability of occurrence in a community is estimated based on the species’ trait 165 
similarities with other species observed in the same community (Pillar et al. 2009). For 166 
this task, considering the traits in B, a species by species similarity matrix S is computed 167 
by using the Gower similarity index (ranging 0-1). By normalising the rows of S by their 168 
row total, a matrix U is obtained whose elements define self-cross belongings between 169 
species (Duarte et al. 2016). Each column j of U defines a fuzzy set of species 170 
functionally similar to species j. The closer a given species is to species j in trait space, 171 
the higher is its degree of belonging to the fuzzy-set j and the better it can functionally 172 
represent the species j. Fuzzy-weighted community composition is computed by 173 
multiplying site-total standardised Wp by U, resulting in a communities by species 174 
matrix X (Fig. 1b). Each element in X is an estimation of the probability to find species j 175 
in community k, given the functional similarity of species j to the species actually occurring 176 
in community k. 177 
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To assess the correlation r(XY) between matrices X and Y, we used the Rd coefficient 178 
(Omelka & Hudecová 2013), which is a Pearson correlation coefficient of the Gower-179 
centred pairwise distances (Gower 1966) based on X and Y, considering the full 180 
distance matrices. The closer Rd is to 1, the higher is the association between 181 
community distances in fuzzy-weighted species composition based on traits and those 182 
in potential composition based on species co-occurrences. The Rd correlation r(XY) can 183 
be interpreted as the degree to which the traits used in X reflect co-occurrence patterns 184 
in Y. We chose the Rd coefficient based on unsquared Euclidean distances because, 185 
compared to the Mantel correlation or the RV coefficient (Robert & Escoufier 1976), it 186 
can also detect non-linear relations between the matrices (Omelka & Hudecová 2013). 187 

 188 

Testing for significant traits 189 

The significance of the Rd correlation r(XY) was tested under the null hypothesis that 190 
species assembly is unrelated to species traits (Pillar et al. 2009). This is achieved by 191 
keeping W and Y constant and permuting the columns of B (or, equivalently, of U) many 192 
times to allow the computation of a probability P(r(X0Y) ≥ r(XY)) (Fig. 1c). If the p-value 193 
is not larger than the a priori fixed error probability threshold α, r(XY) is deemed 194 
significant and we conclude that the trait or traits included in the definition of X 195 
has/have been relevant for community assembly. This permutation approach breaks all 196 
relations between the functional trait characteristics of the species and their presence 197 
or abundance in W, which has the following advantages: First, it controls for the fact 198 
that species composition (W) is used to derive the matrices at both sides of r(XY), thus 199 
it avoids bias that would result if permutations were done among sites in X or Y. Second, 200 
it avoids the source of bias described by Hawkins et al. (2017) affecting aggregated 201 
measures in community analysis; thus it conforms to the permutation solution 202 
described in Zelený (2018) for the analogous case of the community-weighted mean 203 
approach. Third, by keeping W and Y constant, any spatial or temporal autocorrelation 204 
in the compositional data will be incorporated in the null model, thus avoiding bias in 205 
the permutation testing (Pillar et al. 2009; Gotelli & Ulrich 2012). 206 

This permutation procedure can be repeated by considering different subsets of traits 207 
for deriving fuzzy-weighted community composition in X. The trait or combination of 208 
traits maximizing r(XY), as long as its p-value is significant, is expected to be optimal for 209 
observational and experimental studies aiming to identify traits linked to hidden 210 
environmental factors in community assembly.  211 

To select the optimal subset of traits, for the simulated data we considered the p-values 212 
generated according to Fig. 1c only, whereas for the real-world data we combined the 213 
permutation test with bootstrap resampling. Thus, since the real-world data are a 214 
sample, in addition to testing for significance, we calculated confidence intervals for the 215 
observed r(XY) for each trait or trait combination, and compared these across traits or 216 
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trait combinations. For this, in each bootstrap iteration, the plots were resampled with 217 
replacement to obtain a bootstrap sample, which was then used to redefine X* and Y* 218 
with the selected plots and recalculate r(X*Y*). We used the distribution of r(X*Y*) 219 
across bootstrap samples to determine the 95% confidence interval of observed r(XY). 220 
Yet, as both X and Y are based on the same species composition W, they are expected to 221 
have non-zero r(XY) even if the trait combination used to build X plays no role in 222 
community assembly. Thus, we applied the permutational approach shown in Fig. 1c to 223 

compare r(X*Y*) with a possible expected correlation r(X*

0
Y*) assuming the selected 224 

trait or traits has/have no role in community assembly. After a large number of 225 

bootstrap/permutation iterations, the probability P(r(X*

0
Y) ≥ r(X*Y*)) was the 226 

proportion of iterations in which r(X*

0
Y*) was larger than r(X*Y*). 227 

Finally, we used the 95% confidence intervals of each correlation r(XY) to compare and 228 
rank trait combinations. Ideally, we would examine iteratively every trait subset with 1 229 
to k traits in B and the corresponding significance of the resulting r(XY). However, when 230 
the number of traits is large (e.g., >20), the number of possible combinations may 231 
become numerically unmanageable (e.g., 1,048,575 possible combinations for 20 traits). 232 
Therefore, we adopted a partial stepwise algorithm to efficiently explore the space of 233 
trait combinations and reduce computation demand, and we benchmarked the results 234 
with those of the analyses performed on simulated data with known assembly rules. 235 
The algorithm acts as follows: once computed r(XY) for each single trait, the traits 236 
resulting in significant r(XY) correlations were selected. We then repeated the 237 
procedure by considering all the pairwise combinations of traits being individually 238 
significant. If any pairwise combinations had an r(XY) significantly better than the best 239 
trait (i.e., whose 95% confidence intervals did not overlap with those of the best traits), 240 
we considered the pairwise combination having the highest and significantly better 241 
r(XY) as the new best. We then kept these two traits as fixed, while testing the effect of 242 
adding another trait, trying to find a new best. If no pairwise combination performed 243 
better than the best trait, we tested all possible three-way combinations, and checked if 244 
a new best could be found. We added one trait at the time until finding the optimal 245 
combination of traits. For each combination, we generated p-values using 999 random 246 
iterations of bootstrap/permutation plus one iteration for the observed r(XY). 247 

 248 

Analyses with simulated communities  249 

To test whether our method is capable of discriminating relevant from non-relevant 250 
traits, we applied it to simulated plant community composition data. We generated data 251 
by modelling metacommunities (sets of plant communities) based on specified 252 
assembly mechanisms in which the underlying environmental factors were known. 253 
Then, we analysed the simulated data with the above-described method to identify the 254 
traits driven by these factors. This way we could check by means of type I error and 255 
power analyses whether the relevant traits for the assembled communities were 256 
correctly revealed.  257 
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We used a stochastic, individual-based model for simulating metacommunities stepwise 258 
from a pool of species and their functional traits (Pillar & Camiz 2020). At each step, the 259 
model predicts the arrival, establishment, and extinction of individuals belonging to 260 
each species, based on probability functions with specific parameters. We then analysed 261 
the metacommunity resulting after a given number of years (iterations). We generated 262 
different simulated metacommunities by specifying different combinations of trait 263 
numbers, environmental filtering parameters and species-level trait correlations 264 
(Appendix S1). The other parameters were set randomly. For each set of model 265 
parameters, we generated and analysed a total of 100 simulated metacommunities.  266 

We explored three sets of simulation scenarios to assess whether the method can 267 
correctly identify the relevant traits in the simulated metacommunities, when 268 
confounding aspects related to correlation among traits and contrasting strengths and 269 
interactions between environmental filtering effects are in play. In the first case, we 270 
generated communities assuming two environmental factors and three functional traits. 271 
The first trait t1 was directly dependent on e1, i.e., e1 -> t1, while t2 related directly to e2, 272 
i.e., e2 -> t2. An additional trait tn was neutral with respect to the environment. We 273 
generated metacommunities under increasing magnitude of e1 -> t1, as given by the 274 
specified linear response parameters for environmental filtering, from 0 to 0.6, while 275 
fixing the effect of e2 -> t2 at 0.3. We used this basic scenario to explore both the effect of 276 
an interaction between environmental factors e1 and e2 on t1 (three levels: 0, 0.3, 0.5) 277 
and to explore the effect of the correlation between traits t1 and t2 (three levels, 0. 0.4, 278 
0.8). 279 

The second set of scenarios was similar to the first one, but we added a third trait t3 280 
directly dependent on factor e1, i.e., e1 -> t3. In this case, both traits t1 and t3 were 281 
affected by the same factor e1, but while the strength of the effect e1 -> t1 varied from 0 282 
to 0.6, the effect e1 -> t3 was fixed at 0.3. As in the first set of scenarios, we also examined 283 
the effect of an interaction between factor e1 and e2 on t1, and of pairwise correlations 284 
between traits t1, t2 and t3. 285 

In the third set of scenarios, we varied the effect e1->t1 from 0 to 0.6, as above, but 286 
progressively included also the effect of additional environmental factors on respective 287 
functional traits (i.e., e2->t2; e3->t3; e4->t4), all with a magnitude of 0.3. In all simulations, 288 
a neutral trait tn was added with the purpose of testing type I error. Factor interaction 289 
effects and pairwise trait correlations were set to zero in these scenarios. 290 

The analysis allowed evaluating the power of the method, i.e., the proportion of 291 
metacommunities in which traits involved in the simulated assembly mechanisms were 292 
correctly identified as being significant, i.e., when the test with the simulated 293 
metacommunity resulted in P(r(X0Y) ≥ r(XY)) ≤ 0.05. It also allowed evaluating type I 294 
error or the accuracy of the method, i.e., the proportion of metacommunities in which 295 
neutral traits (tn and also when the effect e1 -> t1 was set to zero) were incorrectly 296 
identified as relevant. For the simulated data, significance was evaluated for traits 297 
considered individually and for all possible trait combinations. 298 
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 299 

Analyses with real communities  300 

To test whether our method is helpful in highlighting relevant traits in a real-world 301 
dataset, we used data on dry calcareous grasslands vegetation in Germany. Such 302 
grasslands belong to the Festuco-Brometea class (Mucina et al. 2016) and are coded 303 
“E1.2a Semi-dry perennial calcareous grassland” in the European Red List of Habitats 304 
(Dengler et al. 2017). The dataset was previously used in a continental survey (Willner 305 
et al. 2019). Here we analysed a subsample of 565 plots randomly taken from the 306 
original data (see map in Appendix S2), and including 488 species. We combined 307 
compositional data (square-root transformed percentage cover) with species trait 308 
information for 49 traits (Appendix S3) from the BIOLFLOR (Klotz et al. 2002) and TRY 309 
databases (Kattge et al. 2011; Kattge et al. 2020). The TRY data, which included 16 310 
traits, were gap-filled, as described in (Shan et al. 2012; Fazayeli et al. 2014; Schrodt et 311 
al. 2015; Bruelheide et al. 2019). Trait coverage was complete except for pollination, 312 
leaf persistence, sclerophylly, and succulence, for which the species with functional trait 313 
information accounted for an average of at least 96.5% of the plot total cover across the 314 
plots in our sample (Appendix S3). 315 

The r(XY) correlations were calculated for all traits, first trait by trait, and then testing 316 
the traits with highest r(XY) in combination based on the stepwise algorithm described 317 
above. This allowed to identify the optimal trait subset, i.e., the combination of traits 318 
with the maximum relevance for the assembly of these grassland communities. We used 319 
principal components analysis (PCA) based on pairwise trait correlations to identify the 320 
main trends of trait variation at the species level. 321 

To illustrate how well the selected traits reflected community composition, we 322 
calculated a PCA of the dry grassland data based on the covariance of fuzzy-weighted 323 
composition (X matrix). The principal components were then passively projected on 324 
another PCA based on the covariance of Beals’ smoothed composition (Y matrix). Also, 325 
the CWMs of all relevant traits were projected on this ordination space based on their 326 
Pearson correlations with the principal components. In addition, to explore 327 
environmental explanations for the observed community trait composition, we 328 
compiled annual mean temperature and annual mean precipitation from CHELSA, 329 
V1.1(Karger et al. 2017) and assigned these values to the plots with a 30 arcsec 330 
resolution. Also, two soil variables (soil pH and content of soil organic carbon) were 331 
extracted from the SOILGRIDS project (https://soilgrids.org/, licensed by ISRIC—World 332 
Soil Information), downloaded at 250 m resolution and then resampled using the 30 333 
arcsec grid of CHELSA. These environmental data were also projected on the ordination 334 
space based on their Pearson correlations with the principal components of the 335 
community composition. 336 

 337 
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Results 338 

Simulated communities 339 

In the first set of scenarios (Fig. 2, top, leftmost panel), the proportion of simulated 340 
metacommunities with a significant r(XY) correlation taking trait t1 alone expectedly 341 
increased when the factor effect e1 on trait t1 increased beyond zero, and reached 100% 342 
power with the strongest effect. However, as the effect of factor e1 on trait t1 increased, 343 
the power to detect a significant r(XY) for trait t2 alone was suppressed. In addition, the 344 
method correctly indicated that the proportion of simulated metacommunities with 345 
significant r(XY) for tn alone was low and close to the nominal α threshold of 0.05, i.e. 346 
the type I error was not inflated. However, considering combinations of traits showed 347 
that all two-trait combinations involving the neutral trait tn returned significant r(XY) at 348 
similar power to the one obtained when considering traits t1 or t2 alone. This is clearly 349 
misleading considering that tn was not under environmental filtering in community 350 
assembly. We took this result as evidence for the need to only test combinations of 351 
traits which produced a significant r(XY) when taken individually. 352 

Furthermore, as the effect of factor interaction e1 x e2 on trait t1 increased (Fig. 2, top 353 
panels), the relevance of t1 was high irrespective of how low the factor effect e1 was on 354 
the same trait. The power to detect a significant r(XY) for t2 alone was even more 355 
strongly suppressed with increasing interaction e1 x e2 on trait t1 (Fig. 2, mid and right 356 
column of panels). However, when the correlation between traits t1 and t2 increased 357 
(Fig. 2, mid and bottom panels), the suppression of trait t2 by trait t1 was not any longer 358 
evident.  359 

The suppression effect between traits can be better examined in the second set of 360 
scenarios (see results in Appendix S4). Similarly, to what shown in Fig. 2, in the absence 361 
of factor interaction and trait correlation the detection of trait t2 as relevant in 362 
community assembly was progressively suppressed by t1 when the filtering effect of 363 
factor e1 increased. However, trait t3, which in this scenario is filtered by the same factor 364 
e1, was much less suppressed as the filtering effect on trait t1 increased, i.e., became 365 
more limiting for the establishment and the survival of plant individuals. Yet, under 366 
increasing strength of the interaction e1 x e2 on trait t1, the power to detect a significant 367 
r(XY) for t3 alone decreased. Further, similar to the first set of scenarios, increased 368 
pairwise correlation at the species level between traits t1, t2 and t3 reduced such a 369 
suppression effect. As before, the type I error was not inflated regarding the neutral 370 
trait tn taken alone.   371 
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 372 

In the third set of scenarios, we analysed whether the performance of our method is 373 
influenced by the number of traits involved in community assembly (Fig. 3). The 374 
simulations based on three traits generated power graphs with a similar pattern 375 
compared to the ones based on four or five traits. In all cases, trait t1 was filtered under 376 
increasing factor effect e1, trait tn was always neutral and the other traits were under a 377 
fixed, intermediate factor effect. As in Fig. 2, the analysis of the r(XY) using trait 378 
combinations including the neutral trait tn would be as relevant as using the other non-379 
neutral traits alone. 380 

 381 

 382 

Figure 2. Simulated-data power profiles of Rd matrix correlation r(XY) between 383 
community distances based on trait-based fuzzy-weighted (X) and Beals-smoothed (Y) 384 
species composition for metacommunities with increasing strength of factor effect e1 on 385 
trait t1, and varying the magnitude of the e1 x e2 interaction, and the strength of the pair-386 
wise correlations between traits t1 and t2 (Scenario 1). Power (vertical axis) is the 387 
proportion of simulated metacommunities for which the P-value for r(XY) found by 388 
permutation was not larger than a threshold of 0.05. The graphs show traits considered 389 
individually and different trait combinations defining fuzzy-weighted species 390 
composition. Further details on the set parameters for community assembly simulations 391 
are in Appendix S1. 392 
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 393 

Figure 3. Simulated-data power profiles of Rd matrix correlation r(XY) between 394 
community distances based on trait-based fuzzy-weighted (X) and Beals-smoothed (Y) 395 
species composition with increasing strength of factor effect e1 on trait t1, and 396 
increasing the number of traits used in simulating metacommunities (Scenario 3). 397 
Power (vertical axis) is the proportion of simulated metacommunities for which the p-398 
value found by permutation was not larger than a threshold of 0.05. The number of 399 
traits ranged from 3 to 5 (left to right panels), with one trait tn always being neutral. 400 
Traits are either shown individually (top row), or in combinations (from two to five, top 401 
to bottom rows) to improve visualization.   402 

 403 

Real communities 404 

When applying the approach to German dry calcareous grasslands, seven out of the 49 405 
traits returned a significant r(XY) when taken one by one: sclerophylly, plant height, 406 
specific leaf area (SLA), nanophanaerophyte and hemiphanaerophyte growth-forms, 407 
flowering duration, and vegetative propagation through fragmentation. Taken 408 
singularly, sclerophylly was the trait that best explained community assembly (Fig. 4).  409 

Increasing iteratively the number of traits used to calculate the X matrix, resulted in a 410 
progressive increase in r(XY), although the confidence intervals of the regression 411 
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coefficients were mostly overlapping (Fig. 5). When considering pairwise combination 412 
of traits, the combination sclerophylly and flowering duration, returned a significantly 413 
higher r(XY), compared to sclerophylly alone. There were no three- and four-way 414 
combinations of traits significantly improving the r(XY) compared to the sclerophylly-415 
flowering duration couple (for details see Appendix S5). Only when considering five 416 
traits together, the improvement in r(XY) became significant: beside sclerophylly and 417 
flowering duration, the other traits composing this combination of traits were plant 418 
height, SLA, and propagation by fragmentation. We defined this as being the optimal 419 
combination of traits for predicting fuzzy-weighted species composition related to 420 
species co-occurrences, as no additional increase in dimensionality resulted in a 421 
significant improvement in r(XY) (Fig. 5). 422 

The analysis of the trait correlations at the species level (Appendices S6-S7) revealed 423 
two main axes of independent trait variation, one reflecting the leaf economics 424 
spectrum (SLA vs. sclerophylly), which was also associated with hemiphanerophyte 425 
growth form and propagation by fragmentation, and the other the size spectrum (plant 426 
height), which was also associated with nanophanerophyte growth form and flowering 427 
duration. However, uncorrelated traits at the species level were not necessarily also 428 
uncorrelated at the community level. For example, while at the species level plant height 429 
was uncorrelated to sclerophylly (r = -0.06) and fragmented vegetative propagation (r = 430 
-0.07), their corresponding CWM values showed considerable Pearson correlations ( -431 
0.44 and 0.31, respectively Appendix S8).  432 

The five traits that were identified as the most relevant ones (Fig. 5), and the so defined 433 
principal components of fuzzy-weighted composition (FW-PCs, Appendix S9) reflected 434 
different dimensions (PCs) of Beals smoothed community composition, as shown in Fig. 435 
6 (see correlations in Appendix S10). FW-PC2 reflected an increasing representation of 436 
the nanophanerophyte growth form vs. decreasing flowering duration and was mostly 437 
correlated to the first principal component (PC1) of the Beals smoothed community 438 
composition (27.7% of total variation). FW-PC1 reflected the leaf economics spectrum 439 
(SLA vs. sclerophylly) and was correlated also to PC1 but mostly to PC3 of the Beals 440 
smoothed community composition (11.2% of total variation). FW-PC3 was only 441 
(weakly) correlated to PC4 but did not reflect any trait in particular. Yet, the links 442 
between the FW-PCs, the traits and the PCs of the Beals smoothed community 443 
composition become clearer by examining the two-dimensional ordination spaces. In 444 
the space defined by PC1 and PC2, two diagonal axes can be identified, one reflecting 445 
FW-PC1 and the other FW-PC2, both representing different traits. The size spectrum 446 
(height) was captured by both FW-PC1 and FW-PC2. Finally, the available potential 447 
environmental predictors presented weak correlations with the first four principal 448 
components, being highest for mean annual precipitation (-0.386 with PC1, Fig. 6, 449 
Appendix S10). 450 

 451 
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  452 
Figure 4. Rd matrix correlation r(XY) between community distances based on trait-453 
based fuzzy-weighted (X) and Beals-smoothed (Y) species composition, when 454 
considering one trait at the time. The observed r(XY) was deemed significant (at p-value 455 
≤ 0.05, one-sided) when it was greater than the respective correlation coefficient 456 
calculated using permuted species traits in at least 97.5% of the bootstrap samples. The 457 
segments represent 95% bootstrap confidence intervals of the observed r(XY); in red 458 
are the traits with significant r(XY), in blue are the non-significant ones.  459 
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 460 

Figure 5. Rd matrix correlation r(XY) (black squares) and confidence interval (red lines) 461 
between community distances based on trait-based fuzzy-weighted (X) and Beals-462 
smoothed (Y) species composition, when progressing in tiers (bottom to top) based on a 463 
selected subset of traits. Only the seven significant traits defining fuzzy-weighting alone 464 
(see Fig. 4) were considered. At each tier, we tested the effect of adding a new trait to 465 
the best combination of the previous tier, and only show the best result. We used thick 466 
lines for traits or trait combinations providing a significant (p<0.05) improvement with 467 
respect to the best solution at the previous tier(s). Detailed results are shown in 468 
Appendix S5. 469 

 470 

Figure 6. Principal component analysis of German dry grassland plots based on the 471 
species variance-covariance matrix of Beals’ smoothed composition (Y matrix), shown 472 
as cross symbols. The CWMs for the traits with a significant Rd matrix correlation r(XY) 473 
in Fig. 4, in green, the principal components based on the fuzzy-weighted composition 474 
defined by these traits (FW-PC1, -PC2, -PC3, Appendix S9), in purple, and four 475 
environmental variables, in orange, are projected on the ordination space according to 476 
their Pearson correlations with the PCA axes (see correlations in Appendix S10). The 477 
five traits identified in Fig. 5 as the best combination of traits are shown in bold green 478 
fonts. See Appendix S11 for the scatterplots with the species. 479 
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 480 

Discussion 481 

How to identify those functional traits driving community assembly when relevant 482 
environmental factors are unknown? Answering this question is crucial to improve our 483 
predictions on how ecological assemblages will change in the face of global change 484 
(Newbold 2018). Here, we developed a method to identify the functional traits 485 
mediating community assembly, which does not rely on measuring the actual the 486 
environmental gradients ultimately driving it. Our approach relies on the comparison of 487 
two alternative ways of predicting how species are likely to occur in a given community: 488 
Beals’ smoothing of species co-occurrences probability (Beals 1984) and fuzzy-489 
weighting of functional traits (Pillar et al. 2009). The method comes with an 490 
optimization algorithm able to efficiently explore the trait combination space, and 491 
derives unbiased significance values and confidence intervals using permutation.  492 

The results with the simulated data show that our method proved capable of identifying 493 
the most relevant trait combinations mediating the assembly of biological communities 494 
along gradients. The power of our analysis quickly increased to 100%, when the 495 
magnitude of the main environmental filtering effect, specified as a linear parameter 496 
relating the factor to the expected trait values at the community level in the 497 
metacommunity model that generated the data, was greater than 0.3. This suggests that 498 
the method might be sensitive enough to detect the most important traits related to 499 
discriminant environmental factors in real-world situations. Furthermore, our approach 500 
proved sufficiently robust against the inclusion of non-relevant traits, being the type I 501 
error always close to the nominal levels, as well as against confounding factors related 502 
to interactions between environmental gradients, and correlation among traits. 503 

The results with the simulated data, however, also indicated that only those traits found 504 
relevant when taken individually should be retained in the analysis and tested in 505 
combination with other equally relevant traits. In other words, considering correlation 506 
and p-values per se, was not sufficient to discriminate trait combinations which include 507 
irrelevant traits. For the real data, we solved this problem by using bootstrap to 508 
calculate the confidence intervals of our matrix correlation coefficients, and by adopting 509 
a partial stepwise algorithm only considering combinations of traits that were relevant 510 
when taken individually. This way, we could reliably ascertain that a combination of, 511 
e.g., two traits, was significantly better than any of the two traits taken singularly. And 512 
yet, our optimization algorithm remained sufficiently flexible to be adapted to situations 513 
in which the examination of every combination of relevant traits would be unfeasible.  514 

Our results using simulated metacommunity data demonstrated a suppression effect 515 
among traits in their role in community assembly, suggesting that traits under stronger 516 
filtering effects tend to mask traits that are weakly filtered. Suppression may arise from 517 
the obvious fact that the units being filtered are not traits but whole organisms, whose 518 
traits cannot be physically disentangled according to trait responses to different factors. 519 
Under such filtering effect, the most limiting trait (Sih & Gleeson 1995; Gorban et al. 520 
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2011) likely suppresses less limiting traits. However, suppression is stronger between 521 
traits that are filtered by different, independent environmental factors than between 522 
traits that are filtered by the same factor. Correlation among traits, on the other hand, 523 
reduces such suppression effects.  524 

Models are useful but offer simplified representations of real systems. Thus, models 525 
should always be confronted with or complemented by the analysis of real data (Noy-526 
Meir & van der Maarel 1987). We believe this approach was successful here. While there 527 
is no way to disentangle all the environmental factors that drive the community 528 
composition of the whole range of dry calcareous grasslands in our study system, the 529 
identification of the five most relevant traits allows some conclusions on the underlying 530 
processes. Three of the five traits are part of the two main spectra of global plant forms 531 
and functions at the species level (Díaz et al. 2016). While plant height reflect the size 532 
spectrum, SLA and sclerophylly represent the leaf economics spectrum (Wright et al. 533 
(2004).  534 

Plant height, on the one hand, points to succession as a key factor in community 535 
assembly of dry grasslands. Indeed, abandonment of grazing and mowing favours tall 536 
grasses, shrubs and trees, i.e. plants of higher stature. Taller species indicate ongoing 537 
secondary succession, which is a major threat for dry grasslands (Kahmen & Poschlod 538 
2004; Burrascano et al. 2016). We found that the successional gradient is reflected by 539 
the first and second dimensions of the fuzzy-weighted composition based on the five 540 
key traits, which supports the result from experiments that revealed land use intensity 541 
and time since abandonment as main drivers of trait composition of dry grasslands 542 
(Moog et al. 2002). On the other hand, the leaf economics spectrum, characterized by 543 
specific leaf area (SLA) versus sclerophylly (Wright et al. 2004), forms a second 544 
gradient, yet not completely independent of the successional one. In our communities, 545 
the ability to propagate through fragmentation coincides with the leaf economics 546 
spectrum gradient because this trait is represented in slow-growing perennial species 547 
that fragment with age. In dry grasslands, the leaf economics spectrum reflects the 548 
gradient in both nutrient and water supply, along which different communities, 549 
alliances and orders are distinguished (Royer 1991; Jandt 1999; Willner et al. 2019). 550 
However, the overall nutrient availability, especially of N and P supply in these 551 
grasslands is low, making them rather stressful habitats, home to many specialist 552 
species adapted to these specific conditions (Gilbert et al. 2009; Ceulemans et al. 2011). 553 
These conditions also favour the hemiphanerophytic life form, (i.e. resting buds are 554 
situated on woody shoots). 555 

These explanations might give the impression that the five key traits follow clear 556 
environmental gradients of easily measurable variables, yet the real-world situation is 557 
much more complex. While to some degree the plant height and leaf economics spectra 558 
follow macroclimatic gradients and result in different species pools of dry grasslands 559 
(see the map of the species pools in Bruelheide et al. (2020)), microclimate might 560 
strongly deviate from macroclimate (Bruelheide & Jandt 2007; Burrascano et al. 2013). 561 
Similarly, topographical conditions and soil depth have strong impacts on water 562 
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availability, resulting in small-scale variation of communities (Leuschner 1989). This is 563 
illustrated by one of our five traits of the optimal combination, that is flowering period 564 
duration. The CWM of this trait was correlated with neither the community trends 565 
related to height nor to the leaf economics spectrum. This is consistent with the results 566 
reported by Bouchet et al. (2017): while flowering period duration showed a strong 567 
relationship to community trait composition, was not related to successional age. We 568 
would assume that flower duration indicates a combination of environmental factors 569 
that are usually hidden behind the main effects of these factors. Flower production 570 
depends on availability of resources and is supported by warm and wet conditions 571 
(Craine et al. 2012). These conditions occur in early successional stages with an open 572 
vegetation structure where deeper soils provide an above-average resource supply. In 573 
trait space, these particular micro-environmental conditions would promote a 574 
combination of low-stature growth close to the ground (small height) with acquisitive 575 
leaf traits (high SLA), to both of which flower period duration was moderately related. 576 

While microclimate and soil depth are measurable, other additional factors adding to 577 
the complexity of dry grassland community assembly are not. In particular, historical 578 
factors are hidden in the present-day community assembly. For example, traditional 579 
shepherding between the 15th and 20th century has strongly affected species 580 
composition of calcareous grasslands (Poschlod & WallisDeVries 2002). There might be 581 
further hidden factors driving community trait composition, about which we can only 582 
speculate. For example, resource supply of dry calcareous grasslands can vary at very 583 
fine scales (Regan et al. 2014). This is both caused by a large variation of microsite soil 584 
conditions at small distances but also by heterogeneous effects of grazing. Overall, it 585 
becomes apparent that in real-world situations community composition is not driven by 586 
a single trait-environment relation, but a complex of different traits that are only partly 587 
related to known environmental factors. 588 

Although trait divergence patterns may also arise in community assembly (Mason & 589 
Wilson 2006; Wilson 2007; Pillar et al. 2009), we did not examine the ability of our 590 
method to faithfully reveal relevant traits linked to biotic and/or abiotic factors causing 591 
trait divergence in the simulated community assembly. Yet, as the fuzzy-weighting 592 
adopted in our method integrates trait similarities at the species level fully into species 593 
composition matrix X at the community level (Pillar et al. 2009), we expected that 594 
relevant traits would be revealed irrespective of the actual mechanism, whether it 595 
generated trait convergence, trait divergence or both. 596 

The method we proposed here successfully identified the relevant traits mediating 597 
community assembly, without relying on the measurement of the environmental factors 598 
responsible for the restrictions imposed on the species co-occurrence patterns. Trait-599 
environment relations affecting community assembly (Keddy 1992; Wilson et al. 1999; 600 
Götzenberger et al. 2012) leave persisting marks in the patterns of species co-601 
occurrences. These marks are revealed by our approach. Considering that individuals 602 
within species tend to be more similar to each other than between species (Kazakou et 603 
al. 2014; Siefert et al. 2015), by relating species traits to species co-occurrence in 604 
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communities, our method is able to identify the traits most likely affected by those trait-605 
environment relations, even when the environmental factors are hidden, unknown, or 606 
not easily measurable. Going beyond the reliance on measured environmental factors, 607 
our method is particularly promising in those domains where obtaining a set of 608 
consistent and comprehensive environmental measurements is unfeasible. We think 609 
specifically to analyse large biodiversity databases of co-occurrence data (Bruelheide et 610 
al. 2018; Bruelheide et al. 2019), where the use of our method might be instrumental to 611 
reveal the key traits underlying the geographical distribution of ecological communities, 612 
so to better infer the key ecological gradients behind these patterns.  613 
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