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ABSTRACT 1 

 2 

Background: Cis-regulatory elements such as enhancers and promoters are crucial for 3 

directing gene expression in the human heart. Dysregulation of these elements can result 4 

in many cardiovascular diseases that are major leading causes of morbidity and mortality 5 

worldwide. In addition, genetic variants associated with cardiovascular disease risk are 6 

enriched within cis-regulatory elements. However, the location and activity of these cis-7 

regulatory elements in individual cardiac cell types remains to be fully defined. 8 

 9 

Methods: We performed single nucleus ATAC-seq and single nucleus RNA-seq to define 10 

a comprehensive catalogue of candidate cis-regulatory elements (cCREs) and gene 11 

expression patterns for the distinct cell types comprising each chamber of four non-failing 12 

human hearts. We used this catalogue to computationally deconvolute dynamic 13 

enhancers in failing hearts and to assign cardiovascular disease risk variants to cCREs 14 

in individual cardiac cell types. Finally, we applied reporter assays, genome editing and 15 

electrophysiogical measurements in in vitro differentiated human cardiomyocytes to 16 

validate the molecular mechanisms of cardiovascular disease risk variants. 17 

 18 

Results: We defined >287,000 candidate cis-regulatory elements (cCREs) in human 19 

hearts at single-cell resolution, which notably revealed gene regulatory programs 20 

controlling specific cell types in a cardiac region/structure-dependent manner and during 21 

heart failure. We further report enrichment of cardiovascular disease risk variants in 22 

cCREs of distinct cardiac cell types, including a strong enrichment of atrial fibrillation 23 

variants in cardiomyocyte cCREs, and reveal 38 candidate causal atrial fibrillation 24 

variants localized to cardiomyocyte cCREs. Two such risk variants residing within a 25 

cardiomyocyte-specific cCRE at the KCNH2/HERG locus resulted in reduced enhancer 26 

activity compared to the non-risk allele. Finally, we found that deletion of the cCRE 27 

containing these variants decreased KCNH2 expression and prolonged action potential 28 

repolarization in an enhancer dosage-dependent manner. 29 

 30 
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Conclusions: This comprehensive atlas of human cardiac cCREs provides the 31 

foundation for not only illuminating cell type-specific gene regulatory programs controlling 32 

human hearts during health and disease, but also interpreting genetic risk loci for a wide 33 

spectrum of cardiovascular diseases.  34 
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INTRODUCTION 35 

 36 

Disruption of gene regulation is an important contributor to cardiovascular disease, the 37 

leading cause of morbidity and mortality worldwide1. Cis-regulatory elements such as 38 

enhancers and promoters are crucial for regulating gene expression2-4. Mutations in 39 

transcription factors and chromatin regulators can result in heart disease5,6, and genetic 40 

variants associated with risk of cardiovascular disease are enriched within annotated 41 

candidate cis-regulatory elements (cCREs) in the human genome7. However, a major 42 

barrier to understanding the genetic and molecular basis of cardiovascular diseases is 43 

the paucity of maps and tools to interrogate gene regulatory programs in the distinct cell 44 

types of the human heart. Recent single cell/nucleus RNA-seq8-10 and spatial 45 

transcriptomic11 studies have revealed gene expression patterns in distinct cardiac cell 46 

types across developmental and adulthood stages in the human heart, including some 47 

which display gene expression patterns that are cardiac chamber/region-specific9,10. 48 

However, the transcriptional regulatory programs responsible for cell type-specific and 49 

chamber-specific gene expression, and their potential links to non-coding risk variants for 50 

cardiovascular diseases and traits, remain to be fully defined.  51 

 52 

Candidate cis-regulatory elements (cCREs) have been annotated in the human genome 53 

with the use of ChIP-seq, DNase-Seq, ATAC-seq, GRO-seq, etc. in a broad spectrum of 54 

human tissues including in bulk heart tissues and in purified cardiomyocytes2-4,12-15. These 55 

maps have provided important insights into dynamic gene regulation during heart failure14-56 
16 and begun to shed light on the function of non-coding cardiovascular disease 57 

variants7,12,15. However, major limitations of these studies including their focus on 58 

particular chambers/regions of the heart and failure to interrogate cis-regulatory elements 59 

across all distinct cardiac cell types, have restricted their utility in understanding how 60 

specific gene regulatory mechanisms may impact distinct cell types and regions of human 61 

hearts in health and disease. Although recent single cell genomic tools provide the 62 

opportunity to interrogate cis-regulatory elements at single cell resolution16-20, their 63 

application to mammalian hearts has been limited to a few adult and fetal mouse 64 

hearts20,21. Thus, to comprehensively investigate cis-regulatory elements in the specific 65 
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cell types of the human heart, we profiled chromatin accessibility in ~80,000 heart cells 66 

using single nucleus ATAC-seq (snATAC-seq)17,18 and created a comprehensive cardiac 67 

cell atlas of cCREs annotated by cell type and putative target genes. Integration of these 68 

data with single nucleus RNA-seq datasets from matched specimens revealed gene 69 

regulatory programs in nine major cardiac cell types. Using this human cardiac cCRE 70 

atlas, we further observed the remodeling of cell type-specific candidate enhancers during 71 

heart failure and the enrichment of cardiovascular disease-associated genetic variants in 72 

cCREs of specific cell types. Finally, we showed that a cardiomyocyte-specific enhancer 73 

harboring risk variants for atrial fibrillation is necessary for cardiomyocyte KCNH2 74 

expression and regulation of cardiac action potential repolarization. 75 

 76 

RESULTS 77 

 78 

Single nucleus analysis of chromatin accessibility and transcriptome in adult 79 

human hearts 80 

 81 

To assess the accessible chromatin landscape of distinct cardiovascular cell types, we 82 

performed snATAC-seq17, also known as sciATAC-seq18, on all cardiac chambers from 83 

four adult human hearts without known cardiovascular disease (Supplemental Table I). 84 

We obtained accessible chromatin profiles for 79,515 nuclei, with a median of 2,682 85 

fragments mapped per nucleus (Figure 1A, B, Supplemental Figure I, Supplemental Table 86 

II). We also performed single nucleus RNA-seq (snRNA-seq) for a subset of the above 87 

heart samples to complement the accessible chromatin data and obtained 35,936 nuclear 88 

transcriptomes, with a median of 2,184 unique molecular identifiers (UMIs) and 1,286 89 

genes detected per nucleus (Figure 1A, C, Supplemental Figure II-A-F, Supplemental 90 

Table III). Using SnapATAC22 and Seurat23, we identified nine clusters from snATAC-seq 91 

(Figure 1B) and twelve major clusters from snRNA-seq (Figure 1C, Supplemental Figure 92 

II-G, H), which were annotated based on chromatin accessibility at promoter regions or 93 

expression of known lineage-specific marker genes, respectively9,10 (Figure 1D, E, 94 

Supplemental Table IV). For example, chromatin accessibility and gene expression of 95 

atrial and ventricular cardiomyocyte markers such as NPPA and MYH724 were used to 96 
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classify these two cardiomyocyte subtypes (Figure 1D, E). Although gene expression 97 

patterns of lineage markers strongly correlated with accessibility at promoter regions 98 

across annotated cell types (Figure 1F) and single cell integration analysis23 revealed 99 

93% concordance in annotation between snATAC-seq and snRNA-seq datasets 100 

(Supplemental Figure III, Supplemental Table III), some cellular sub-types identified from 101 

snRNA-seq including endocardial cells and myofibroblasts were not detected by snATAC-102 

seq (Figure 1F). Additionally, atrial and ventricular cardiomyocyte nuclei from the left and 103 

right regions of the heart could be further clustered by transcriptome but not chromatin 104 

accessibility (Supplemental Figure II-I, J). We noted that cell type composition varied 105 

significantly between biospecimens and donors, highlighting the importance of single cell 106 

approaches to limit biases due to cell proportion differences in bulk assays (Supplemental 107 

Figure IV, Supplemental Tables II and III). In summary, we identified and annotated 108 

cardiac cell types using both chromatin accessibility and nuclear transcriptome profiles.  109 

 110 

Identification of candidate cis-regulatory elements (cCREs) in distinct cell types of 111 

the human heart 112 

 113 

To discover the cCREs in each cell type of the human heart, we aggregated snATAC-seq 114 

data from nuclei comprising each cell cluster individually and determined accessible 115 

chromatin regions with MACS225. We then merged the peaks from all nine cell clusters 116 

into a union of 287,415 cCREs, which covered 4.7% of the human genome (Figure 2A, 117 

Supplemental Table V). 67.0% of the cCREs identified in the current study overlapped 118 

previously annotated cCREs from a broad spectrum of human tissues and cell lines26,27 119 

(Supplemental Figure V-A), and the union of heart cCREs captured 98.6% and 95.4% of 120 

candidate human heart enhancers reported in two previous bulk studies12,14 121 

(Supplemental Figure V-B, C). Furthermore, 75% of cCREs in the union were at least 2 122 

kbp away from annotated promoter regions, and 19,447 displayed high levels of cell type-123 

specificity (Figure 2B, Supplemental Table VI). Gene ontology analysis28 revealed that 124 

these cell type-specific cCREs were proximal to genes involved in relevant biological 125 

processes, including collagen fibril organization for cardiac fibroblast-specific cCREs 126 

(K1), and myofibril organization for ventricular cardiomyocyte-specific cCREs (K2, Figure 127 
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2C, Supplemental Table VII). Employing chromVAR29 (Supplemental Table VIII) and 128 

HOMER30 (Supplemental Table IX), we detected cell type-dependent enrichment for 231 129 

transcription factor binding signatures, such as MEF2A/B, NKX2.5, and THR-β sequence 130 

motifs in cardiomyocyte-specific cCREs and TCF21 motifs in cardiac fibroblast-specific 131 

cCREs (Figure 2D, E). To discover the transcription factors that may bind to these sites, 132 

we combined corresponding snRNA-seq data with sequence motif enrichments to 133 

correlate expression of these transcription factors with motif enrichment patterns across 134 

cell types (Figure 2F). As an example, we found strong enrichment of the binding motif 135 

for the macrophage transcription factor SPI1/PU.131 in macrophage-specific cCREs, and 136 

SPI1 was exclusively expressed in macrophages (Figure 2F, Supplemental Tables IV and 137 

X). In addition, we observed that transcription factor family members were expressed in 138 

cell type-specific combinations. For instance, while GATA family members displayed 139 

similar motif enrichment patterns across sets of cell type-specific cCREs, we discovered 140 

that endothelial cells and cardiac fibroblasts expressed GATA2 and GATA6, respectively, 141 

whereas cardiomyocytes expressed both GATA4 and GATA6, and endocardial cells 142 

expressed GATA2, GATA4, and GATA6 (Figure 2F, Supplemental Tables IV and X). In 143 

summary, these results establish a resource of candidate cis-regulatory elements for 144 

interrogation of cardiac cell type-specific gene regulatory programs. 145 

 146 

Cardiac cell type-specific gene regulatory programs implicated in chamber-147 

specific structure and function  148 

 149 

Each cardiac chamber performs a unique role that is crucial to system-level heart 150 

function32. To investigate the gene regulatory programs underlying chamber-specific 151 

gene expression and cellular functions in distinct cardiac cell types, we tested cCREs for 152 

differential accessibility across five of the most abundant cell types of the heart: 153 

cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and 154 

macrophages. We discovered 16,451 differentially accessible (DA) cCREs between 155 

pooled atria and ventricles, the majority of which were detected in cardiomyocytes (Figure 156 

3A-C, Supplemental Table X). Specifically, 11,159 cCREs displayed differential 157 

accessibility between right atrium and right ventricle and 12,962 cCREs exhibited 158 
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differential accessibility between left atrium and left ventricle (Supplemental Figure VI-A-159 

C, Supplemental Table X). Comparing the left and right sides of the heart, we identified 160 

101 DA cCREs between the right and left ventricle (Supplemental Figure VI-D), and 2,687 161 

DA cCREs between left and right atria, which in contrast to comparisons between atria 162 

and ventricles were found primarily in cardiac fibroblasts (Supplemental Figure VI-E, 163 

Supplemental Table X).  164 

 165 

Utilizing co-accessibility analysis33 to link distal DA cCREs (~88% of all DA cCREs) to 166 

their putative target genes (Supplemental Table XI, median distance: 88.7 kbp), we 167 

observed that distal DA cCREs in cardiomyocytes between atria and ventricles were 168 

associated with chamber-specific gene expression of their putative target genes (Figure 169 

3D, Supplemental Figure VI-B-E, Supplemental Table XII), and genes near these DA 170 

cCREs were enriched for chamber-specific biological processes (Figure 3E, 171 

Supplemental Figure VI-B-E, Supplemental Table XIII). Specifically, distal DA cCREs with 172 

higher accessibility in atrial cardiomyocytes were associated with genes such as PITX2, 173 

a transcriptional regulator of cardiac atrial development, as well as the ion channel subunit 174 

SCN5A which regulates cardiomyocyte action potential (Figure 3E, Supplemental Table 175 

XIII). Furthermore, we found distal DA cCREs with higher accessibility in atrial 176 

cardiomyocytes at the HAMP gene locus, which encodes a key regulator of ion 177 

homeostasis and was recently described as a potential novel cardiac gene in the right 178 

atrium by single nucleus transcriptomic analysis9,10. Conversely, genes near distal DA 179 

cCREs with higher accessibility in ventricular cardiomyocytes were enriched for biological 180 

processes such as trabecula formation and ventricular cardiac muscle cell differentiation. 181 

For example, several distal DA cCREs with increased accessibility in ventricular 182 

cardiomyocytes compared to atrial cardiomyocytes were linked to the promoter region of 183 

MYL2, which encodes the ventricular isoform of myosin light chain 234 (Figure 3F, 184 

Supplemental Table IV), a regulator of ventricular cardiomyocyte sarcomere function.  185 

 186 

Additionally, analysis of distal DA cCREs in cardiac fibroblasts revealed that putative 187 

target genes were involved in distinct biological processes between right and left atria. In 188 

particular, we found that DA cCREs with higher accessibility in right atrial cardiac 189 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.291724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.291724


 

 
8 

 

fibroblasts were proximal to genes involved in heart development, heart growth, and tube 190 

development, whereas DA cCREs with higher accessibility in left atrial cardiac fibroblasts 191 

were adjacent to genes involved in biological processes such as wound healing and 192 

vasculature development (Supplemental Figure VI-E, Supplemental Table XIII). We 193 

further found a cardiac fibroblast-specific DA cCRE with higher accessibility in left atria at 194 

the fibrinogen FN1 gene locus, potentially indicating a more activated fibroblast state9,35. 195 

Supporting these findings, we identified several other DA cCREs with higher accessibility 196 

in left atrial cardiac fibroblasts adjacent to genes involved in generation of extracellular 197 

matrix (ECM) such as MMP2 and FBLN2 (Supplemental Table XIII). These observations 198 

are consistent with previous findings that a higher fraction of ECM is produced in 199 

fibroblasts of the left atrium9.  200 

 201 

Using motif enrichment analysis, we inferred candidate transcriptional regulators involved 202 

in chamber-specific cellular specialization, including TBX5, GATA4, and TGIF1 for atrial 203 

cardiomyocytes, and NFAT, ERRG, HAND1, and HAND2 for ventricular cardiomyocytes 204 

(Figure 3G, Supplemental Table XIV). While the TBX5 DNA binding motif was strongly 205 

enriched in both right and left atrial cardiomyocyte DA cCREs, the NFAT5 motif ranked 206 

highest in left ventricular cardiomyocyte DA cCREs and the TBX20 motif was strongly 207 

enriched in right ventricular cardiomyocyte DA cCREs (Supplemental Figure VI-B, C, 208 

Supplemental Table XIV). Furthermore, cardiac fibroblast DA cCREs with higher 209 

accessibility in the right atrium were enriched for the binding motif of forkhead 210 

transcription factors (Supplemental Figure VI-E), whereas cardiac fibroblast DA cCREs 211 

with higher accessibility in the left atrium were enriched for the homeobox transcription 212 

factor CUX1 motif (Supplemental Figure VI-E, Supplemental Table XIV). Altogether, we 213 

identified cCREs and candidate transcription factors associated with specific cardiac 214 

chambers, particularly within cardiomyocytes and cardiac fibroblasts. 215 

 216 

Cell type specificity of candidate enhancers associated with heart failure  217 

 218 

Recent large-scale studies profiling the H3K27ac histone modification in human hearts 219 

have uncovered candidate enhancers associated with heart failure14,16. However, 220 
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because these studies either examined heterogeneous bulk heart tissue14,16 or focused 221 

solely on enriched cardiomyocytes15, it remains unclear what role, if any, additional 222 

cardiac cell types and cCREs may contribute to heart failure pathogenesis. Using our cell 223 

atlas of cardiac cCREs, we revealed the cell type specificity of candidate enhancers 224 

showing differential H3K27ac signal strength between human hearts from healthy donors 225 

and donors with dilated cardiomyopathy (heart failure)14 (Figure 4, Supplemental Figure 226 

VII). We observed that a large fraction of candidate enhancers that displayed increased 227 

activity (45%) during heart failure were accessible primarily in cardiac fibroblasts (Figure 228 

4A, K2-4up, Supplemental Table XV), whereas a majority of those exhibiting decreased 229 

activity (67%) were accessible primarily in cardiomyocytes (Figure 4B, K1-3down, 230 

Supplemental Table XV). Candidate enhancers with increased activity in cardiac 231 

fibroblasts were proximal to genes involved in extracellular matrix organization and 232 

connective tissue development (Figure 4A, K2-4up, Supplemental Table XVI), whereas 233 

those exhibiting decreased activity in cardiomyocytes were proximal to genes involved in 234 

regulation of heart contraction and cation transport (Figure 4B, K1-3down, Supplemental 235 

Table XVI). For example, several of these cardiac fibroblast candidate enhancers were 236 

present at loci encoding the extracellular matrix proteins lumican (LUM) and decorin 237 

(DCN) and co-accessible with the promoters of these genes (Figure 4C). Consistent with 238 

these findings, both genes were primarily expressed in cardiac fibroblasts (Supplemental 239 

Table IV), and LUM has been reported to exhibit increased expression in failing hearts 240 

compared to control hearts14. On the other hand, several cardiomyocyte candidate 241 

enhancers displaying decreased activity in heart failure were co-accessible with the 242 

promoter region of IRX4 (Figure 4D), which encodes a ventricle-specific transcription 243 

factor36 and is specifically expressed in cardiomyocytes of the left ventricle (Supplemental 244 

Table IV).  245 

 246 

To identify potential transcription factors regulating these pathologic responses during 247 

heart failure, we performed motif enrichment analysis in cell type-specific subsets of 248 

disease-associated candidate enhancers (Supplemental Table XVII). For candidate 249 

enhancers exhibiting increased activity in heart failure, we identified enrichment of not 250 

only bHLH motifs such as AP4 in cardiac fibroblast candidate enhancers which matched 251 
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previous bulk analysis14 (Figure 4E, K2-4up), but also TEAD3 and MYF6 motifs in 252 

cardiomyocyte candidate enhancers (Figure 4E, K1up). Conversely, for candidate 253 

enhancers displaying decreased activity in heart failure, we observed enrichment of 254 

nuclear receptor motifs such as glucocorticoid response element (GRE) in cardiomyocyte 255 

candidate enhancers, which is consistent with previous findings14 (Figure 4F, K1-3down), 256 

as well as other motifs which were not detected in bulk analyses, such as the bZIP 257 

transcription factor CEBPA for cardiac fibroblast candidate enhancers (Figure 4F, K4down). 258 

Thus, these results show that this cardiac cell atlas of cCREs may be used to assign 259 

disease-associated candidate enhancers from bulk assays to their affected cell types and 260 

infer transcriptional regulators involved in lineage-specific disease pathogenesis.  261 

 262 

Interpreting non-coding risk variants of cardiac diseases and traits 263 

 264 

Non-coding genetic variants contributing to risk of complex diseases are enriched within 265 

cCREs in a cell type-specific fashion20,37-40. To examine the enrichment of cardiovascular 266 

disease variants within cCREs active in specific cardiac cell types, we performed cell 267 

type-stratified LD (Linkage disequilibrium) score regression analysis41 using GWAS 268 

summary statistics for cardiovascular diseases42-46 (Figure 5A) and control traits 269 

(Supplemental Figure VIII, Supplemental Table XVIII). This analysis revealed significant 270 

enrichment of atrial fibrillation (AF)-associated variants in both atrial (Z = 3.25, FDR = 271 

0.02) and ventricular cardiomyocyte cCREs (Z = 3.77, FDR = 0.01), varicose vein-272 

associated variants in endothelial cell cCREs (Z = 3.44, FDR = 0.01), and nominal 273 

enrichment of coronary artery disease-associated variants in cardiac fibroblast cCREs (Z 274 

= 2.19, FDR = 0.20, Figure 5A).  275 

 276 

Next, to identify likely causal AF risk variants in cardiomyocyte cCREs, we first determined 277 

the probability that variants were causal for AF (Posterior probability of association, PPA) 278 

at 111 known loci using Bayesian fine-mapping47. We then intersected fine-mapped AF 279 

variants with cCREs and identified 38 variants with PPA > 10% in cardiomyocyte cCREs 280 

including previously reported variants at the HCN412 and SCN10A/SCN5A48 loci 281 

(Supplemental Table XIX). We further prioritized AF variants for molecular 282 
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characterization based on their overlap with cCREs that were primarily accessible in 283 

cardiomyocytes, evolutionarily conserved, co-accessible with promoters of genes 284 

expressed in cardiomyocytes and marked by H3K27ac in human pluripotent stem cell 285 

(hPSC)-derived cardiomyocytes49 during in vitro differentiation (Figure 5B). From this 286 

analysis, we discovered a cCRE in the second intron of the potassium channel gene 287 

KCNH2 (HERG) which was co-accessible with the KCNH2 promoter (Figure 5C) and 288 

harbored two variants, rs7789146 and rs7789585, with a combined PPA of 28% (Figure 289 

5C, Supplemental Figure IX-A). This cCRE appeared to be activated during hPSC-290 

cardiomyocyte differentiation as evidenced by an increase in H3K27ac signal that 291 

correlated with KCNH2 expression (Figure 5C). Supporting its in vivo role in regulating 292 

gene expression in mammalian hearts, a genomic region (hs2192)50 containing this cCRE 293 

was previously shown to drive LacZ reporter expression in mouse embryonic hearts50 294 

(Figure 5D).  295 

 296 

A cardiomyocyte enhancer of KCNH2 is affected by non-coding risk variants 297 

associated with atrial fibrillation 298 

 299 

To investigate whether these AF variants may affect enhancer activity and thereby 300 

regulate KCNH2 expression and cardiomyocyte electrophysiologic function, we initially 301 

carried out reporter assays using a hPSC cardiomyocyte model system. Results from 302 

these studies confirmed that in D15 hPSC-cardiomyocytes, the KCNH2 enhancer 303 

carrying the homozygous rs7789146-G/rs7789585-G AF risk allele displayed significantly 304 

weaker enhancer activity than when containing the non-risk variants (Figure 5E, 305 

Supplemental Figure IX-B), thus supporting the functional significance of these AF 306 

variants. We next used CRISPR/Cas9 genome editing strategies to remove the enhancer 307 

and performed qPCR and electrophysiologic assays to examine its role in KCNH2 308 

expression and function. Supporting the aforementioned findings, CRISPR/Cas9 genome 309 

deletion of this cCRE in hPSC-cardiomyocytes resulted in decreased KCNH2 expression 310 

in an enhancer dosage-dependent manner (Figure 5F, Supplemental Figure IX-C). 311 

Similar to human cardiomyocytes with loss of KCNH2 function due to mutations in the 312 

KCNH2 coding sequence51 or gene knockdown52, cellular electrophysiologic studies 313 
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demonstrated that these cCRE-deleted hPSC cardiomyocytes displayed a significantly 314 

prolonged action potential duration (Figure 5G, H), thus suggesting that cardiac 315 

repolarization abnormalities in atrial cardiomyocytes may lead to AF in an analogous 316 

manner to ventricular arrhythmias due to long QT syndrome52. Taken together, these 317 

results highlight the utility of this single cell atlas for assigning non-coding cardiovascular 318 

disease risk variants to distinct cell types and affected cCREs, and functionally 319 

interrogating how these variants may contribute to cardiovascular disease risk.   320 
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DISCUSSION 321 

 322 

The limited ability to interrogate cell type-specific gene regulatory programs in the human 323 

heart has been a major barrier for understanding molecular mechanisms of 324 

cardiovascular traits and diseases. Here, we report a cell type-resolved atlas of cCREs in 325 

the human heart, which was ascertained by profiling accessible chromatin in individual 326 

nuclei from all four chambers of multiple human hearts and includes both cell type-specific 327 

and heart chamber-specific cCREs. Furthermore, we characterized candidate cis-328 

regulatory elements in different cardiac cell types in the human heart and delineated 329 

differences of gene regulatory programs underlying different regions/structures of the 330 

heart. In particular, we observed chamber-specific differences in chromatin accessibility 331 

between ventricles and atria as well as left and right atria but notably detected few 332 

differences between left and right ventricles. This finding is consistent with a recent single 333 

nucleus RNA-seq study in human hearts which found few differentially expressed genes 334 

between left and right ventricles10.  335 

 336 

We further highlight the utility of this atlas of heart cCREs to provide new insight into 337 

aberrant gene regulation during cardiovascular pathology. To this end, we delineated the 338 

cell type-specificity of enhancers which were differentially active between healthy and 339 

failing heart tissue14 and identified additional transcription factors that may be involved in 340 

the pathogenesis of specific cell types during heart failure. Such cell type-specific analysis 341 

is particularly important in the context of heart failure because cellular composition can 342 

differ between diseased and control hearts15,53. This change in cellular composition may 343 

in part explain the cell type bias that we observed between candidate enhancers 344 

exhibiting increased and decreased activity during heart failure (i.e. cardiac fibroblasts 345 

and cardiomyocytes, respectively). However, due to the large differences in H3K27ac 346 

signal, we suspect that measured changes in candidate enhancer activity could be due 347 

to a combination of both enhancer remodeling and shift in cell type composition. Thus, 348 

future studies profiling snATAC-seq and H3K27ac in parallel from the same cardiac 349 

sample or novel approaches to profile histone modifications in single nuclei54,55 will 350 
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provide greater insight into the extent of changes in chromatin accessibility and enhancer 351 

activity in individual cardiac cell types from diseased hearts. 352 

 353 

Finally, we show how this atlas can be used to not only assign non-coding genetic variants 354 

associated with cardiovascular disease risk to cCREs in specific cardiac cell types, but 355 

also illuminate their cellular and molecular consequences. In particular, we discovered 356 

significant enrichment of AF-associated variants within cardiomyocyte cCREs and 357 

functionally interrogated one of these cCREs by demonstrating its role in regulating 358 

KCNH2 expression and cardiomyocyte repolarization. Similar to electrophysiologic 359 

phenotypes of human cardiomyocytes exhibiting KCNH2 loss of function51,52, hPSC-360 

cardiomyocytes harboring deletions of this cCRE displayed action potential prolongation, 361 

suggesting that cardiac repolarization abnormalities may contribute to atrial fibrillation, 362 

possibly through similar mechanisms as to how they may contribute ventricular 363 

arrhythmias51. On the other hand, we found only nominal enrichment of variants 364 

associated with coronary artery disease in fibroblasts and no enrichment of variants 365 

associated with heart failure in any cardiac cell type. These findings may reflect the 366 

heterogeneous etiologies of cardiovascular diseases and, in the case of heart failure, the 367 

limited number of currently known risk loci42. Future GWAS in large cohorts with detailed 368 

phenotyping, including biobanks such as the UK Biobank56 and the BioBank Japan 369 

Project57 and whole genome sequencing efforts such as the NHLBI Trans-Omics for 370 

Precision Medicine (TOPMed) program58, will help identify and refine disease association 371 

signals. Therefore, this atlas of cardiac cCREs will be a valuable resource for continued 372 

discovery of regulatory elements, target genes, and specific cell types that may be 373 

affected by non-coding cardiovascular genetic variants. 374 

In summary, we created a human heart cell atlas of >287,000 cCREs, which may serve 375 

as a reference to further expand our knowledge of gene regulatory mechanisms 376 

underlying cardiovascular disease. To facilitate distribution of these data, we created a 377 

web portal at: http://catlas.org/humanheart. Integrating this resource with genomic and 378 

epigenomic clinical cardiac datasets, we built a systematic framework to interrogate how 379 

cis-regulatory elements and genetic variants might contribute to cardiovascular diseases 380 

such as heart failure or atrial fibrillation. Overall, such information will have great potential 381 
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to provide new insight into the development of future cardiac therapies that are tailored 382 

to affected cell types and thus optimized for treating specific cardiovascular diseases.  383 
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FIGURES 412 

 413 
 414 

Figure 1: Single nucleus chromatin accessibility and transcriptome profiling of 415 

human hearts. A) snATAC-seq and snRNA-seq were performed on nuclei isolated from 416 

cardiac chambers from four human donors without cardiovascular pathology. snATAC-417 

seq: n = 4 (left ventricle), n = 4 (right ventricle), n = 3 (left atrium), n = 2 (right atrium), 418 

snRNA-seq: n = 2 (left ventricle), n = 2 (right ventricle), n = 2 (left atrium), n = 1 (right 419 

atrium). B) Uniform manifold approximation and projection (UMAP)59 and clustering 420 

analysis of snATAC-seq data reveals nine clusters. Each dot represents a nucleus 421 

colored by cluster identity. C) Uniform manifold approximation and projection (UMAP)59 422 

and clustering analysis of snRNA-seq data reveals 12 major clusters. Each dot represents 423 

a nucleus colored by cluster identity. Nerv. = Nervous. Art. sm. musc. = arterial smooth 424 

muscle. D) Genome browser tracks60 of aggregate chromatin accessibility profiles at 425 

selected representative marker gene examples for individual clusters and for all nuclei 426 

pooled together into an aggregated heart dataset (top track, grey). Black genes below 427 

tracks represent the indicated marker genes, non-marker genes are greyed. E) Dot plot 428 

illustrating expression of representative marker gene examples in individual snRNA-seq 429 
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clusters. F) Heatmap illustrating the correlation between clusters defined by chromatin 430 

accessibility and transcriptomes. Pearson correlation coefficients were calculated 431 

between chromatin accessibility at cCREs within 2 kbp of annotated promoter regions61 432 

and expression of the corresponding genes for each cluster.  433 
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 434 
 435 

Figure 2: Characterization of gene regulatory programs in cardiac cell types. A) 436 

Heatmap illustrating row-normalized chromatin accessibility values for the union of 437 

287,415 cCREs. K-means clustering was performed to group cCREs based on relative 438 

accessibility patterns. B) Heatmap showing row-normalized chromatin accessibility of 439 

19,447 cell type-specific cCREs (FDR < 0.01 after Benjamini-Hochberg correction; 440 

log2(fold change) > 0). K-means clustering was performed to group cCREs based on 441 

relative accessibility patterns. Number of cCREs per K can be found in brackets. C) 442 

GREAT ontology analysis28 of cell type-specific cCREs. Q-value for enrichment indicates 443 

Bonferroni adjusted p-value. D, E) Transcription factor motif enrichment30 for known (D) 444 

and de novo motifs (E) within cell type-specific cCREs. The heatmap in (D) shows motifs 445 

with enrichment p-value <10-5 in at least one cluster. For de novo transcription factor 446 

motifs (E) the best matches for the top motifs are displayed. Statistical test for motif 447 

enrichment: hypergeometric test. P-values were not corrected for multiple testing. F) 448 
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Combination of transcription factor motif enrichment and gene expression shows cell 449 

type-specific roles for members of transcription factor families. Displayed are heatmaps 450 

for known motif enrichment in cell type-specific cCREs (left) and gene expression across 451 

clusters (right). (Fb. = Fibroblast, vCm. = Ventricular Cardiomyocyte, aCm. = Atrial 452 

Cardiomyocyte, Ec. = Endothelial, Sm. = Smooth Muscle, Mac. = Macrophage, Lc. = 453 

Lymphocyte, Ad. = Adipocyte, Nr. = Nervous).  454 
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 455 
 456 

Figure 3: Cardiomyocyte cCREs display chamber-dependent differences in 457 

chromatin accessibility. A) Scheme for comparison of major cell types across heart 458 

chambers. All atrial as well as all ventricular datasets were combined, and corresponding 459 

cell types compared. B) Volcano plot showing differentially accessible (DA) candidate cis-460 

regulatory elements (cCREs) in each cell type between atria and ventricles. Each dot 461 

represents a cCRE and the color indicates the cell type. cCREs with log2(fold change) > 462 

1 and FDR < 0.05 after Benjamini-Hochberg correction (outside the shaded area) were 463 

considered as DA. C) DA cCREs between atria and ventricles were detected almost 464 

exclusively in cardiomyocytes and fibroblasts. The numbers of DA cCREs are listed in 465 

brackets. D) Heatmaps showing normalized gene expression levels of differentially 466 

expressed genes between atrial (aCM) and ventricular cardiomyocytes (vCM) that were 467 

linked by co-accessibility to distal DA cCREs that were more accessible in atrial 468 

cardiomyocytes (Atrial CMDA) or ventricular cardiomyocytes (Ventr. CMDA), respectively. 469 

E) GREAT ontology analysis28 of DA cCREs between atrial and ventricular 470 

cardiomyocytes. P-values shown are Bonferroni adjusted (n.d.: not detected). F) Genome 471 

browser tracks60 showing chromatin accessibility and gene expression in atrial and 472 
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ventricular cardiomyocytes as well as DA cCREs that were co-accessible with the 473 

promoter of MYL2. Grey dotted line indicates co-accessibility threshold (> 0.1). Co-474 

accessible DA cCREs are indicated by a red shaded box and the promoter region of 475 

MYL2 is indicated by a grey shaded box. G) Transcription factor motif enrichment 476 

analysis30 of DA cCREs between atrial and ventricular cardiomyocytes. The best matches 477 

for the top de novo motifs (score > 0.7) are shown. Statistical test for motif enrichment: 478 

hypergeometric test. P-values were not corrected for multiple testing (n.d.: not detected).  479 
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 480 
 481 

Figure 4: Cell type specificity of candidate enhancers associated with heart failure. 482 

A) Cell type-specificity of 4,406 candidate enhancers with increased H3K27ac signal in 483 

failing left ventricles14. Heatmap displays cell type-resolved chromatin accessibility RPKM 484 

(reads per kilobase per million mapped reads) values for cell types from left ventricular 485 
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snATAC-seq datasets. Candidate enhancers were grouped based on chromatin 486 

accessibility patterns across cell clusters using K-means. B) Cell type-specificity of 3,101 487 

candidate enhancers with decreased H3K27ac signal in failing left ventricles14. C) 488 

Genome browser tracks60 showing several candidate enhancers with increased activity 489 

during heart failure (HF) that were primarily accessible in fibroblasts and co-accessible 490 

with the promoters of LUM and/or DCN. For visualization, linkages between cCREs within 491 

candidate enhancers and all gene promoters are shown (co-accessibility > 0.1, grey 492 

dotted line). Candidate enhancers co-accessible with gene promoters are indicated by 493 

red shaded boxes and promoter regions are indicated by grey shaded boxes. D) Genome 494 

browser tracks60 showing several bulk candidate enhancers with decreased activity in 495 

heart failure that were primarily accessible in cardiomyocytes and co-accessible with the 496 

promoter of IRX4. E, F) Transcription factor motif enrichment30 in the candidate 497 

enhancers with (E) increased and (F) decreased activity in failing left ventricles. Analysis 498 

was performed on the indicated K cluster(s) from panels (A) and (B) respectively. The 499 

best matches for selected de novo motifs (score > 0.7) are shown. Statistical test for motif 500 

enrichment: hypergeometric test. P-values were not corrected for multiple testing.  501 
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 502 
 503 

Figure 5: Identification and characterization of atrial fibrillation-associated variants 504 

at the KCNH2 locus. A) Enrichment of risk variants associated with cardiovascular 505 

disease traits in genome wide association studies (GWAS) within cardiac cell type-506 

resolved cCREs. Displayed are z-scores, and these scores were also used to compute 507 

one-sided p-values for enrichments that were corrected using the Benjamini Hochberg 508 

procedure for multiple tests. * = FDR < 0.05. B) Schematic of a cardiomyocyte 509 

differentiation model used to profile candidate enhancer dynamics, gene expression, and 510 

electrophysiologic phenotypes. hPSC = human pluripotent stem cell. C) Fine mapping47 511 

and molecular characterization of two variants associated with atrial fibrillation (AF) in a 512 

cardiomyocyte cCRE co-accessible with promoter regions of KCNH2. Genome browser 513 

tracks60 display cell type-resolved chromatin accessibility and co-accessibility from 514 

snATAC-seq, as well as chromatin accessibility, H3K27ac signal, and gene expression 515 

during hPSC-cardiomyocyte differentiation timepoints. D0 = day 0, D5 = day 5, D15 = 516 
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day15. For illustration, the co-accessibility track shows linkages between the AF variant-517 

containing cCRE and annotated gene promoters (cutoff > 0.1, grey dotted line). The grey 518 

arc represents links to the promoter of AOC1 which was not expressed. For the full locus 519 

see Supplemental Figure IX-A. PPA: Posterior probability of association47. D) 520 

Representative image of a transgenic mouse embryo showing LacZ reporter gene 521 

expression under control of a genomic region (hs2192, image downloaded from Vista 522 

database50, https://enhancer.lbl.gov/) that overlaps the variant-cCRE pair at the KCNH2 523 

locus. The picture for hs2192 was downloaded from the VISTA50 database. E) Dot plot 524 

illustrating results of a dual luciferase reporter assay for the AF variant-harboring cCRE 525 

at the KCNH2 locus in D15 cardiomyocytes. The genotype for both rs7789146 and 526 

rs7789585 was either G (homozygous rs7789146-G / rs7789585-G; risk) or A 527 

(homozygous rs7789146-A / rs7789585-A; non-risk). Each dot represents one 528 

transfection (three independent experiments). Data are displayed as mean +/- SD. *** p 529 

< 0.001, ** p < 0.01 (one-way ANOVA and Tukey post hoc test). MinP: minimal promoter. 530 

F) Bar chart showing fold changes in KCNH2 and TNNT2 expression for D25 531 

cardiomyocytes measured by qPCR after CRIPSR/Cas9-mediated deletion of the variant-532 

cCRE pair at the KCNH2 locus. Each dot represents one independent cardiomyocyte 533 

differentiation. Data are displayed as mean +/- SD. *** p < 0.001, ** p < 0.01, * p < 0.05, 534 

(one-way ANOVA and Tukey post hoc test); WT = unperturbed control, KCNH2 cCRE +/+ 535 

#1 & #2 = no guide RNA control clones #1 and #2; KCNH2 cCRE +/- #1 & #2 = 536 

Heterozygous enhancer deletion clones #1 & #2; KCNH2 cCRE -/- #1 & #2 = 537 

Homozygous enhancer deletion clones #1 & #2. G) Exemplary traces of action potential 538 

recordings in hPSC-derived cardiomyocytes at D25-35 for a control clone (KCNH2 cCRE 539 

+/+ #1, left) and a clone with enhancer deletion (KCNH2 cCRE -/- #1, right). H) Dot blot 540 

showing the quantification of APD90 at 1 Hz pacing for 4 independent hPSC derived 541 

cardiomyocytes at D25-35 from a control clone (KCNH2 cCRE +/+ #1) and an enhancer 542 

deletion clone (KCNH2 cCRE -/- #1). ** p < 0.01 (unpaired two-sided t-test). APD90: action 543 

potential duration at 90% depolarization.  544 
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SUPPLEMENTAL FIGURES 545 

 546 
 547 

Supplemental Figure I: Quality control for snATAC-seq datasets. A) Density plots 548 

showing enrichment of fragments at transcription start sites (TSS enrichment) versus 549 
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number of fragments per nucleus for each dataset. B) Density plot of TSS enrichment 550 

versus number of fragments for all datasets combined. C) Percentage of barcode 551 

collisions identified as heterotypic cell type collisions by Scrublet62 (top row), TSS 552 

enrichment (second row), fragments per nucleus (third row), duplicate read percentage 553 

(fourth row), and number of nuclei passing quality control (bottom row) for each snATAC-554 

seq dataset.   555 
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 556 
 557 

Supplemental Figure II: Quality control for snRNA-seq datasets and annotation of 558 

snRNA-seq clusters. A) Distribution of barcodes by unique molecular identifier (UMI) 559 
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counts for nuclei (red; passing quality control) and background (black; not passing quality 560 

control) barcodes. B) Distribution of doublet scores for all snRNA-seq nuclei that passed 561 

initial Cell Ranger (10x Genomics) and Seurat23 quality control. C) Median genes detected 562 

per nucleus for each snRNA-seq dataset. D) Median UMIs detected per nucleus for each 563 

snRNA-seq dataset. E) Distribution of genes per nucleus on final snRNA-seq UMAP59. F) 564 

Distribution of UMIs per nucleus on final snRNA-seq UMAP59. G) Initial Seurat23 clustering 565 

result of snRNA-seq data showing 18 clusters, and dashed lines indicating final 12 major 566 

cell cluster annotations based on shared expression patterns (H). H) Differential gene 567 

expression heatmap showing top 10 differentially expressed genes for each initial cluster 568 

by Seurat23. Initial clusters were merged into major cell clusters based on shared gene 569 

expression patterns as indicated above the heatmap. I, J) UMAPs59 showing chamber-570 

of-origin for nuclei included in the final (I) snRNA-seq and (J) snATAC-seq datasets.  571 
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 572 
 573 

Supplemental Figure III: Integration of snRNA-seq and snATAC-seq datasets. A, B) 574 

Seurat23 was used to perform integration of chromatin accessibility and transcriptomes at 575 

the single cell level. A) UMAP59 showing nuclei colored based on original snATAC-seq 576 

cluster annotation (same as in Figure 1B). B) UMAP59 showing nuclei colored with cluster 577 

labels transferred from snRNA-seq. C) Histogram showing the prediction score 578 

distribution by original snATAC-seq cluster annotation. 93% of nuclei showed a prediction 579 

score >0.5 indicating a match between chromatin accessibility and transcriptome.  580 
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 581 
 582 

Supplemental Figure IV: Cellular composition of snATAC-seq and snRNA-seq 583 

datasets. A) Dot plot showing number of nuclei passing quality control per cluster for 584 

each snATAC-seq dataset. B) Bar plot showing cell type composition of each snATAC-585 

seq dataset as percentage of cell types. C) Dot plot showing number of nuclei passing 586 

quality control per cluster for each snRNA-seq dataset. D) Bar plot showing cell type 587 

composition of each snRNA-seq dataset as percentage of cell types.   588 
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 589 
 590 

Supplemental Figure V: Overlap of union of heart candidate cis regulatory elements 591 

(cCREs) with several reference datasets. A) Overlap of the union of 287,415 heart 592 

cCREs from snATAC-seq with annotated cCREs in the human genome from the 593 
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SCREEN database26,27. B) Overlap of union with healthy left ventricular candidate 594 

enhancers from 18 human donors14. Arrows pointing from Venn diagram indicate number 595 

of overlapping (by at least one base pair) and non-overlapping genomic regions. 596 

Histograms display the number of donors harboring reported healthy heart enhancers 597 

(out of 18) for candidate enhancers that overlap union cCREs (left) and candidate 598 

enhancers that do not overlap union cCREs (right). C) Overlap of heart cCREs with post-599 

natal heart candidate enhancers (reported post-natal score > 0.2) from a meta-analysis 600 

of epigenomic data from human and mouse heart tissues12. Venn diagrams are not to 601 

scale.  602 
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 603 
Supplemental Figure VI: cCREs in cardiomyocytes and cardiac fibroblasts display 604 

chamber-dependent differences in accessibility. A) Scheme for comparison of major 605 
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cell types across individual heart chambers to identify differential accessible (DA) cCREs. 606 

(B-E) Comparisons were performed between (B) right atrium (RA) and right ventricle 607 

(RV), (C) left atrium (LA) and left ventricle (LV), (D) right ventricle (RV) and left ventricle 608 

(LV) and (E) right atrium (RA) and left atrium (LA). For each comparison the following 609 

data are displayed. Left: Volcano plots showing identification of differentially accessible 610 

(DA) cCREs in each cell type between indicated chambers. cCREs with log2(fold change) 611 

> 1 and FDR < 0.05 after Benjamini-Hochberg correction (outside the shaded area) were 612 

considered DA. Each dot represents a cCRE and the color indicates the cell type. Second 613 

from the left: Bar plots showing number of DA cCREs per cell type. Number of DA cCREs 614 

listed in brackets. Second from the right: GREAT ontology analysis28 and transcription 615 

factor motif enrichment analysis result30 for the indicated DA cCREs. The best matches 616 

for selected de novo motifs (score > 0.7) are displayed. Statistical test for motif 617 

enrichment: hypergeometric test. P-values were not corrected for multiple testing. 618 

Ontology p-values were adjusted using Bonferroni correction. Right: Heatmaps showing 619 

normalized gene expression levels of differentially expressed genes linked to distal DA 620 

cCREs. Displayed are expression levels for putative target genes of distal DA cCREs for 621 

the cell type with most DA cCREs for the indicated chamber comparisons. Number of 622 

genes is shown in brackets. For lists of differentially expressed genes linked to distal DA 623 

cCREs for all comparisons in cardiomyocytes and fibroblasts see Supplemental Table XII 624 

(Cm. = cardiomyocyte, Fb. = fibroblast, ns. = no significant enrichment).  625 
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 626 
 627 

Supplemental Figure VII: Deconvolution of candidate heart enhancers identified 628 

from bulk assays. A) H3K27ac peaks from bulk healthy heart tissue samples14 were 629 

deconvoluted into major cardiac cell types using cell type-resolved chromatin accessibility 630 

data. Heatmap displays cell type-resolved chromatin accessibility RPKM (reads per 631 

kilobase per million mapped reads) values from left ventricular snATAC-seq datasets. 632 

Candidate enhancers were grouped based on chromatin accessibility pattern across cell 633 

clusters using K-means. B) Heatmap displays cell-type resolved gene expression of 634 

putative enhancer target genes from left ventricular snRNA-seq datasets. C) Genome 635 

browser tracks60 of H3K27ac in left ventricle tissue and cell type-resolved gene 636 

expression (snRNA-seq) and chromatin accessibility (snATAC-seq) for several candidate 637 

heart enhancers (indicated by shaded red boxes) attributed to macrophages (K6 in panel 638 
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A). The co-accessibility track shows linkages between the deconvoluted candidate 639 

enhancers and the promoter of CD163 (cutoff > 0.1, grey dotted line). D GREAT 640 

analysis28 of deconvoluted candidate enhancers. Gene ontology enrichments are shown 641 

as Bonferroni-adjusted p-values. E Pileup tracks showing H3K27ac signal in bulk left 642 

ventricle datasets14 (left) and from purified cardiomyocyte nuclei15 (right) from non-failing 643 

(NF) hearts in distinct groups of enhancers which were either associated with a cell type 644 

(K1-6 in panel A) or broadly accessible across cell types (K7 in panel A). H3K27ac signal 645 

in cardiomyocyte nuclei data was highest in the cardiomyocyte-attributed candidate 646 

enhancers as well as the widely accessible candidate enhancers (K1,2,7), whereas signal 647 

strength in left ventricular tissue was highest in widely accessible enhancers and 648 

comparable between groups of cell type-specific candidate enhancers.    649 
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 650 
 651 

Supplemental Figure VIII: Risk variant enrichment analysis for non-cardiovascular 652 

diseases and non-disease traits. A, B) Enrichment of risk variants associated with (A) 653 

non-cardiovascular diseases and (B) non-disease traits from GWAS in cardiac cell type-654 

resolved cCREs. Displayed are z-scores, and these scores were also used to compute 655 

one-sided p-values for enrichment that were corrected using the Benjamini Hochberg 656 

procedure for multiple testing (* = FDR < 0.05, *** = FDR < 0.001).   657 
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 658 
 659 

Supplemental Figure IX: Validation of KCNH2-associated candidate enhancer. A) 660 

Genome browser tracks60 displaying cell type-resolved chromatin accessibility and co-661 
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accessibility from snATAC-seq as well as chromatin accessibility, H3K27ac signal, and 662 

gene expression during hPSC-cardiomyocyte differentiation. For illustration purposes, the 663 

co-accessibility track shows linkages between the AF variant-containing cCRE and 664 

annotated gene promoters (co-accessibility > 0.1, grey dotted line). The grey arc 665 

represents links to the promoter of AOC1 which was not expressed. Figure 5C shows a 666 

zoom into this locus. B) Representative Sanger sequencing peak map at KCNH2 intronic 667 

cCRE showing the risk allele for AF (top row, homozygous rs7789146-G / rs7789585-G) 668 

and the non-risk allele for AF (bottom row, homozygous rs7789146-A / rs7789585-A) 669 

used for luciferase assay. Blue highlighted regions indicate positions of variants. C) 670 

Schematic representation of the strategy for deletion of the KCNH2 enhancer. The paired 671 

gRNAs (gRNA-1 and gRNA-2) were designed to target upstream and downstream of the 672 

KCNH2 enhancer. Bottom panels show genomic DNA PCR verification of deletion in the 673 

H9-hTnnTZ-pGZ-D2 cell line. The red asterisk indicates specific bands.  674 
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SUPPLEMENTAL TABLES 675 

Supplemental Table I. Clinical metadata for heart samples. 676 

Supplemental Table II. Quality control and cell type composition data for each snATAC 677 

dataset. 678 

Supplemental Table III. Quality control, cell type composition, and integration with 679 

snATAC-seq results for snRNA-seq datasets. 680 

Supplemental Table IV. snRNA-seq gene expression by major cluster and major cluster-681 

specific genes. Included are genes that are expressed at higher (positive fold change) 682 

and lower levels (negative fold change) in a given cluster relative to the other clusters.  683 

Supplemental Table V. Union of 287,415 cCREs in the cell types of the human heart. 684 

Supplemental Table VI. List of 19,447 cell type-specific cCREs. 685 

Supplemental Table VII. GREAT28 analysis for cell type-specific cCREs. Listed are 686 

biological processes with Bonferroni corrected p value <0.05. 687 

Supplemental Table VIII. ChromVAR29 motif enrichment results in snATAC-seq cell 688 

clusters. 689 

Supplemental Table IX. HOMER30 motif enrichment results for cell type-specific cCREs. 690 

Both de novo (p value < 10-11) and known motif (q value < 0.05) enrichments are reported. 691 

Supplemental Table X. Differentially accessible cCREs between heart chambers. 692 

Supplemental Table XI. Co-accessible cCRE pairs (score > 0.1) from Cicero33. 693 

Supplemental Table XII. Lists of differentially accessible (DA) cCREs linked to 694 

differentially expressed genes. 695 

Supplemental Table XIII. GREAT28 analysis for differentially accessible (DA) cCREs 696 

between heart chambers in cardiomocytes and fibroblasts. Listed are biological 697 

processes with Bonferroni corrected p value < 0.05. 698 

Supplemental Table XIV. HOMER30 motif enrichments for differentially accessible (DA) 699 

cCREs between heart chambers in cardiomyocytes and fibroblasts. Both de novo (p value 700 

< 10-11) and known motif (q value < 0.05) enrichments are reported. CM: cardiomyocytes, 701 

FB: fibroblasts, LV: left ventricle, RV: right ventricle, LA: left atrium, RA: right atrium. For 702 

example, RA-vs-RV_CM-RV-DA_denovo denotes de novo motif enrichment in 703 

cardiomyocytes (CM) with higher accessibility (DA) in the right ventricle (RV) as 704 

compared to the right atrium (RA). 705 
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Supplemental Table XV. RPKM values and cluster membership for deconvoluted 706 

healthy and disease-associated candidate heart enhancers. 707 

Supplemental Table XVI. GREAT28 analysis for distinct groups of deconvoluted 708 

candidate heart enhancers. Listed are biological processes with Bonferroni corrected p 709 

value < 0.05. 710 

Supplemental Table XVII. HOMER30 motif enrichment results for distinct groups of 711 

deconvoluted candidate heart enhancers. Both de novo (p value < 10-11) and known motif 712 

(q value < 0.05) enrichments are reported. 713 

Supplemental Table XVIII. Studies for non-cardiovascular disease and non-disease trait 714 

GWAS used for LD score regression. 715 

Supplemental Table XIX. 38 fine mapped risk variants associated with atrial fibrillation 716 

within cardiomyocyte cCREs. 717 

Supplemental Table XX. Primer sequences with indexes for snATAC-seq libraries. 718 

Supplemental Table XXI. Primer sets used in qPCR assays.  719 
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ONLINE METHODS 720 

 721 

Human Tissues 722 

Adult human heart tissues were procured at the time of organ donation using an 723 

Institutional Review Board protocol (No. 101021) approved by the University of California, 724 

San Diego. Donated hearts were perfused with cold cardioplegia prior to cardiectomy and 725 

then explanted immediately into an ice-cold physiologic solution as we previously 726 

described63. Full-thickness samples from each chamber were obtained and epicardial fat 727 

rapidly removed before immediately flash freezing samples in liquid nitrogen. Samples 728 

were received from the United Network for Organ Sharing. Limited clinical data was 729 

obtained for each heart per approved Institutional Review Board protocol (Supplemental 730 

Table I). All samples were stored at -80˚C until processing. 731 

 732 

Single nucleus ATAC-seq 733 

Combinatorial barcoding single nucleus ATAC-seq was performed as described 734 

previously17,18,22 with slight modifications and using new sets of oligos for tagmentation 735 

and PCR (Supplemental Table XX). Nuclei were isolated in gentleMACS M-tubes 736 

(Miltenyi) on a gentleMACS Octo Dissociator (Miltenyi) using the “Protein_01_01” 737 

protocol in MACS buffer (5 mM CaCl2, 2 mM EDTA, 1X protease inhibitor (Roche, 05-738 

892-970-001), 300 mM MgAc, 10 mM Tris-HCL pH 8, 0.6 mM DTT). Nuclei were pelleted 739 

with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf) and 740 

resuspended in 1 mL Nuclear Permeabilization Buffer (1X PBS, 5% Bovine Serum 741 

Albumin, 0.2% IGEPAL CA-630 (Sigma), 1 mM DTT, 1X Protease inhibitor). Nuclei were 742 

rotated at 4 ̊ C for 5 minutes before being pelleted again with a swinging bucket centrifuge 743 

(500 x g, 5 min, 4°C; 5920R, Eppendorf). After centrifugation, permeabilized nuclei were 744 

resuspended in 500 μL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 745 

72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a 746 

hemocytometer. Concentration was adjusted to 2,000 nuclei/9 μl, and 2,000 nuclei were 747 

dispensed into each well of a 96-well plate per sample (96 tagmentation wells/sample, 748 

samples were processed in batches of 2-4 samples). For tagmentation, 1 μL barcoded 749 

Tn5 transposomes (Supplemental Table XX) were added using a BenchSmart™ 96 750 
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(Mettler Toledo), mixed five times, and incubated for 60 min at 37 °C with shaking (500 751 

rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA (final 20mM) were added to each 752 

well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 753 

15 min with shaking (500 rpm). Next, 20 µL of 2x sort buffer (2 % BSA, 2 mM EDTA in 754 

PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells were combined 755 

into a separate FACS tube for each sample, and stained with Draq7 at 1:150 dilution (Cell 756 

Signaling). Using a SH800 (Sony), 20 nuclei per sample were sorted per well into eight 757 

96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol 758 

primer i5, 200 ng BSA (Sigma)). During the sort, nuclei with 2-8 copies of DNA (2-8n) 759 

were included since cardiomyocyte nuclei in human hearts are often polyploid15. 760 

Preparation of sort plates and all downstream pipetting steps were performed on a 761 

Biomek i7 Automated Workstation (Beckman Coulter). After addition of 1 µL 0.2% SDS, 762 

samples were incubated at 55 °C for 7 min with shaking (500 rpm). 1 µL 12.5% Triton-X 763 

was added to each well to quench the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× PCR 764 

Master Mix (NEB) were added and samples were PCR-amplified (72 °C 5 min, 98 °C 30 765 

s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells 766 

were combined. Libraries were purified according to the MinElute PCR Purification Kit 767 

manual (Qiagen) using a vacuum manifold (QIAvac 24 plus, Qiagen) and size selection 768 

was performed with SPRISelect reagent (Beckmann Coulter, 0.55x and 1.5x). Libraries 769 

were purified one more time with SPRISelect reagent (Beckman Coulter, 1.5x). Libraries 770 

were quantified using a Qubit fluorimeter (Life technologies) and a nucleosomal pattern 771 

of fragment size distribution was verified using a Tapestation (High Sensitivity D1000, 772 

Agilent). Libraries were sequenced on a NextSeq500 sequencer (Illumina) using custom 773 

sequencing primers with following read lengths: 50 + 10 + 12 + 50 (Read1 + Index1 + 774 

Index2 + Read2). Primer and index sequences are listed in Supplemental Table XX. 775 

 776 

Single nucleus RNA-seq 777 

Nuclei were isolated from heart tissue using a gentleMACS (Miltenyi) dissociator. ~40 mg 778 

of frozen heart tissue was suspended in 2 ml of MACS dissociation buffer (5 mM CaCl2 779 

(G-Biosciences, R040), 2 mM EDTA (Invitrogen, 15575-038), 1X protease inhibitor 780 

(Roche, 05-892-970-001), 3 mM MgAc (Grow Cells, MRGF-B40), 10 mM Tris-HCl pH 8 781 
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(Invitrogen, 15568-075), 0.6 mM DTT (Sigma-Aldrich, D9779), and 0.2 U/µL of RNase 782 

inhibitor (Promega, N251B) in water (Corning, 46-000-CV)) and placed on wet ice. Next, 783 

samples were homogenized using gentleMACS dissociator (Miltenyi) with gentleMACS 784 

M tubes (Miltenyi, 130-096-335)) and the “Protein_01_01” protocol. Suspension was 785 

filtered through a 30 µM CellTrics filter (Sysmex, 04-0042-2316). M tube and filter were 786 

washed with 3 mL of MACS dissociation buffer and combined with the suspension. 787 

Suspension was centrifuged in a swinging bucket centrifuge (Eppendorf, 5920R) at 500 788 

g for 5 minutes (4°C, ramp speed 3/3). Supernatant was carefully removed and pellet was 789 

resuspended in 500 µL of nuclei permeabilization buffer (0.1% Triton X-100 (Sigma-790 

Aldrich, T8787), 1X protease inhibitor (Roche, 05-892-970-001), 1 mM DTT (Sigma-791 

Aldrich, D9779), 0.2 U/µL RNase inhibitor (Promega, N251B), and 2% BSA (Sigma-792 

Aldrich, SRE0036) in PBS). Sample was incubated on a rotator for 5 minutes at 4°C and 793 

then centrifuged at 500 g for 5 minutes (Eppendorf, 5920R; 4°C, ramp speed 3/3). 794 

Supernatant was removed and pellet was resuspended in 600-1000 µl of sort buffer (1 795 

mM EDTA and 0.2 U/µL RNase inhibitor in 2% BSA (Sigma-Aldrich, SRE0036) in PBS) 796 

and stained with DRAQ7 (1:100, Cell Signaling, 7406). 75,000 nuclei were sorted using 797 

a SH800 sorter (Sony) into 50 µL of collection buffer (1 U/ µL RNase inhibitor, 5% BSA 798 

(Sigma-Aldrich, SRE0036) in PBS); Sorted nuclei were then centrifuged at 1000 g for 15 799 

minutes (Eppendorf, 5920R; 4°C, ramp speed 3/3) and supernatant was removed. Nuclei 800 

were resuspended in 18-25 ul of reaction buffer (0.2 U/µL RNase inhibitor, 1% BSA 801 

(Sigma-Aldrich, SRE0036) in PBS) and counted using a hemocytometer. 12,000 nuclei 802 

were loaded onto a Chromium controller (10x Genomics). Libraries were generated using 803 

the Chromium Single Cell 3′ Library Construction Kit v3 (10x Genomics, 1000078) 804 

according to manufacturer specifications. cDNA was amplified for 12 PCR cycles. 805 

SPRISelect reagent (Beckman Coulter) was used for size selection and clean-up steps. 806 

Final library concentration was assessed by Qubit dsDNA HS Assay Kit (Thermo-Fischer 807 

Scientific) and fragment size was checked using Tapestation High Sensitivity D1000 808 

(Agilent) to ensure that fragment sizes were distributed normally around 500 bp. Libraries 809 

were sequenced using a NextSeq500 or HiSeq4000 (Illumina) using these read lengths: 810 

Read 1: 28 cycles, Read 2: 91 cycles, Index 1: 8 cycles.  811 

 812 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.291724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.291724


 

 
47 

 

Human pluripotent stem cell culture 813 

An engineered H9-hTnnTZ-pGZ-D2 human pluripotent stem cell transgenic reporter line 814 

was purchased from WiCell and maintained on Geltrex (Gibco) pre-coated tissue culture 815 

plates in E8 medium64 containing DMEM/F12, L-ascorbic acid-2-phosphate magnesium 816 

(64 mg/L), sodium selenium (14 µg/L), FGF2 (100 µg/L), insulin (19.4 mg/L), NaHCO3 817 

(543 mg/L) transferrin (10.7 mg/L), and TGFβ1(2 µg/L). Cells were passaged every 3 to 818 

5 days upon reaching ~80% confluency. For single cell passaging experiments, cells were 819 

incubated with pre-warmed TrypLE™ Select Enzyme, no phenol red (1 mL per well of a 820 

6-well plate) for 2-3 minutes in a 37°C, 5% CO2 incubator. Following incubation, cells 821 

were triturated to create a single cell suspension and cultured in E8 Medium supplied with 822 

Rock inhibitor65 for 18-24 hours post-split, followed by daily feeding with E8 medium. 823 

 824 

In vitro cardiomyocyte differentiation 825 

The H9-hTnnTZ-pGZ-D2 cell line was differentiated into beating cardiomyocytes utilizing 826 

a previously reported Wnt-based monolayer differentiation protocol66. Briefly, the H9-827 

hTnnTZ-pGZ-D2 cell line was cultured in E8 medium for 3-10 passages. Prior to 828 

differentiation, human pluripotent stem cells were seeded at a density of 350,000-400,000 829 

cells per well of a 12-well plate and cultured for two days. For direct differentiation, cells 830 

were treated with 10 µM CHIR99021 (Fisher, #442350) in RPMI/B-27 without insulin. 831 

Fresh RPMI/B-27 without insulin media was replaced at post 24hr and cells were then 832 

cultured two days. At day 3, cells were treated with 5 µM IWP2 (TOCRIS, #353310) in 833 

conditional medium and RPMI/B-27 without insulin 1:1 mix medium for another two days. 834 

At day 5, cells were exposed to fresh RPMI/B-27 without insulin media again for two days. 835 

Then, fresh RPMI/B-27 with insulin media was used and replenished every two days. 836 

Contracting cardiomyocytes were usually observed at day 7-8. D25 in vitro 837 

cardiomyocytes were purified utilizing PSC-derived cardiomyocyte isolation kit, human 838 

(Miltenyi Biotec, 130-110-188) and used for Real-time quantitative PCR (RT-qPCR). 839 

 840 

Luciferase reporter assay 841 

A genomic region harboring the KCNH2 intronic enhancer (containing the risk allele: 842 

homozygous rs7789146-G / rs7789585-G) was amplified by nested-PCR using genomic 843 
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DNA of H9-hTnnTZ-pGZ-D2 transgenic cells as a template and cloned into pGL4.23 844 

[luc2/minP] (Promega, Cat#E8411) luciferase reporter vector. Synthetic DNA containing 845 

the KCNH2 intronic enhancer with the non-risk allele (homozygous rs7789146-A / 846 

rs7789585-A) was purchased from integrated DNA technologies and cloned into pGL4.23 847 

[luc2/minP] luciferase vector. One day prior to transfection, 3×105 of D15 in vitro 848 

differentiated cardiomyocytes were plated in a Geltrex-coated 24-well plate. 849 

Cardiomyocytes were transfected with 500 ng of pGL4.23 plasmid (either empty, KCNH2 850 

enhancer with G/G allele, or A/A allele) and 10 ng TK:Renilla-luc as internal control using 851 

Lipofectamine Stem Transfection Reagent (Invitrogen, #STEM00003). Media was 852 

replaced with fresh media at 24 hrs post-transfection. At 72 hrs post-transfection, media 853 

was removed and the cells were washed with PBS. Luminescence was measured using 854 

a Dual-Luciferase Reporter Assay System (Promega, #E2920) according to the 855 

manufacturer’s protocol. 856 

 857 

CRISPR mediated genome editing experiments 858 

To interrogate the functional significance of the atrial fibrillation-associated risk variant-859 

containing cCRE at the KCNH2 locus, the cCRE sequence was genetically deleted in H9-860 

hTnnTZ-pGZ-D2 transgenic hPSCs using an efficient CRISPR/Cas9-mediated knockout 861 

system49,67. Two adjacent gRNAs (KCNH2-enh gRNA-1, 862 

CTCATTTACGGAGGAGCGCA; KCNH2-enh gRNA-2, TACAGTGGCCTTCTAGACGA) 863 

targeting the cCRE were designed using a web-based software tool CRISPOR68, based 864 

on targeting region of interest and minimizing potential off-target effects. The identified 865 

gRNAs were then synthesized in vitro using the GeneArt Precision gRNA Synthesis kit 866 

(Invitrogen) according to the manufacturer’s protocol. One day prior to transfection, 867 

1.5×105 H9-hTnnTZ-pGZ-D2 hPSCs were seeded in 12-well plates. A pair of RNP 868 

complexes containing 1.2 µg of Cas9 protein (NEB) and 400 ng of in vitro transcribed 869 

gRNA were then transfected69,70 using Lipofectamine stem transfection reagent 870 

(Invitrogen). 72 hours after the transfection, cells were diluted and clonally expanded 871 

another 7 days. Colonies were picked and lysates were prepared after the first passage 872 

for genotyping71 (KCNH2-enh extended forward primer, 873 

ACACCTTACTTTGGGTGAGAAG; KCNH2-enh extended reverse primer, 874 
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AGACAGAGCACAGACCTAGAA; KCNH2-enh internal forward primer, 875 

GCTGTGCAGTGTCAGGTTAT; KCNH2-enh internal reverse primer, 876 

TCTCCCTCCTTCTCTCTCATTC). After confirmation of genome-edited clones by 877 

Sanger sequencing, two transfected WT clones, two heterozygote clones, and two 878 

homozygote clones were selected for further functional analysis. 879 

 880 

RT-qPCR 881 

Total RNA was isolated from the cells using TRIzol reagent (Invitrogen). 1 µg of total RNA 882 

was reverse transcribed using the iScript Reverse Transcription Supermix kit (Bio-Rad) 883 

for RT-qPCR. RT-qPCR was performed using PowerUPTM SYBRTM Green Master Mix 884 

(Applied Biosystems) in the CFX Connect Real-Time System (Bio-Rad). The results were 885 

normalized to the TBP gene. The primers used for RT-qPCR are listed in Supplemental 886 

Table XXI. 887 

 888 

Electrophysiology of cardiomyocytes 889 

Both WT and KCNH2 enhancer knockout D15 in vitro cardiomyocytes were purified using 890 

the PSC-derived cardiomyocyte isolation kit, human (Miltenyi Biotec, 130-110-188) and 891 

cultured for another 10-20 days in a low density prior to electrophysiological 892 

measurements. The single-pipette, whole-cell patch current-clamp technique was used 893 

for recordings. Action potentials were recorded with a patch clamp amplifier (Axopatch 894 

200B, Axon) and experiments were performed at a temperature of 35 ± 0.5 °C. Current-895 

clamp command pulses were generated by a digital-to-analog converter (DigiData 1440, 896 

Axon) which was controlled by the pCLAMP software (10.3, Axon). Pipettes (resistance 897 

3-5 MΩ) were pulled using a micropipette puller (Model P-87, Sutter Instrument Co.). 898 

Several minutes after seal formation, the membrane was ruptured by gentle suction to 899 

establish the whole-cell configuration for voltage clamping. Subsequently, the amplifier 900 

was switched to the current-clamp mode. Cells were paced with 1 Hz, injected current 901 

stimuli from 3 to15 nA for 5 ms duration. Cells were superfused with extracellular solution 902 

containing (in mM): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1.0 MgCl2, 5.5 glucose and 5.0 HEPES 903 

(pH 7.4 adjusted with NaOH). Pipette solution contained (in mM): 120 K-gluconate, 10 904 
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KCl, 5 NaCl, 10 HEPES, 5 Phosphocreatine, 5 ATP-Mg2 and Amphotericin 0.44 µM (pH 905 

7.2 adjusted with KOH). 906 

 907 

DATA ANALYSIS 908 

 909 

Demultiplexing of snATAC-seq reads 910 

For each sequenced snATAC-Seq library, we obtained four FASTQ files, two for paired-911 

end DNA reads as well as the combinatorial indexes for i5 (768 different PCR indices) 912 

and T7 (96 different tagmentation indices; Supplemental Table XX). We selected all reads 913 

with <= 2 mistakes per individual index (Hamming distance between each pair of indices 914 

is 4) and subsequently integrated the full barcode at the beginning of the read name in 915 

the demultiplexed FASTQ files (https://gitlab.com/Grouumf/ATACdemultiplex/).  916 

 917 

Filtering of snATAC-seq profiles by TSS enrichment and unique fragments 918 

TSS (transcriptional start site) positions were obtained from the GENCODE database 919 

v3161. Tn5-corrected insertions were aggregated ± 2000 bp around each TSS genome 920 

wide. Then, this profile was normalized to the mean accessibility ± (1900 to 2000) bp from 921 

the TSS and smoothed every 11 bp. The maximum value of the smoothed profile was 922 

taken as the TSS enrichment. We selected all nuclei that had at least 1,000 unique 923 

fragments and a TSS enrichment of at least 7 for all data sets. 924 

 925 

Clustering strategy for snATAC-seq datasets 926 

We utilized two rounds of clustering analysis to identify clusters. The first round of 927 

clustering analysis was performed on individual samples. We divided the genome into 928 

5 kbp consecutive bins and then scored each nucleus for any insertions in these bins, 929 

generating a bin-by-cell binary matrix for each sample. We filtered out those bins that are 930 

generally accessible in all nuclei for each sample using z-score threshold 1.65. Based on 931 

the filtered matrix, we then carried out dimensionality reduction followed by graph-based 932 

clustering to identify cell clusters. We called peaks using MACS225 for each cluster using 933 

the aggregated profile of accessibility and then merged the peaks from all clusters to 934 

generate a union peak list. Based on the peak list, we generated a cell-by-peak count 935 
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matrix and used Scrublet62 to remove potential doublets with default parameters. Doublet 936 

scores returned by Scrublet62 were then used to fit a two-component Gaussian mixture 937 

model using the BayesianGaussianMixture function from the python package scikit-938 

learn72. Nuclei in the component with the larger mean doublet score were removed from 939 

downstream analysis since they likely reflected doublets. 940 

Next, to carry out the second round of clustering analysis, we merged peaks called from 941 

all samples to form a reference peak list. We generated a binary cell-by-peak matrix using 942 

nuclei from all samples and again performed the dimensionality reduction followed by 943 

graph-based clustering to obtain the final cell clusters across the entire dataset. 944 

 945 

Dimensionality reduction and batch correction of snATAC-seq data 946 

For processing of snATAC-seq data we adapted our previously published method, 947 

SnapATAC22. To reduce the dimensionality of the peak by cell count matrix, SnapATAC 948 

utilizes spectral embedding for dimensionality reduction. To further increase the 949 

performance and scalability of spectral embedding, we applied the Nyström method73 to 950 

enable handling of large datasets. Specifically, we first randomly sampled 35,000 nuclei 951 

as training data. We then computed the Jaccard index between each pair of cells in the 952 

training set and constructed the similarity matrix S. We computed the matrix 𝑃 = 𝐷$%𝑆 S, 953 

where D is the diagonal matrix such that 𝐷'' = ∑ 𝑆')) . The eigendecomposition was 954 

performed on P and the eigenvector with eigenvalue 1 was discarded. From the rest of 955 

the eigenvectors, we took k of them corresponding to the largest eigenvalues as the 956 

spectral embedding of the training data. We utilized the Nyström method73 to extend the 957 

embedding to the data outside the training set. Given a set of unseen samples, we 958 

computed the similarity matrix S' between the new samples and the training set. The 959 

embedding of the new samples is given by ′ = 𝑆′𝑈𝛬$% , where U and Λ are the 960 

eigenvectors and eigenvalues of P obtained in the previous step.  961 

To correct for donor/batch specific effects, after dimensionality reduction we performed 962 

cell grouping on individual samples using k-mean clustering with k equal to 963 

20. We then constructed k-NN graphs for each sample and used the MNN correction 964 

method to identify mutual nearest neighbors74.These mutual nearest neighbors were 965 
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used as the anchors to match the cells between different samples and correct for 966 

donor/batch effects as described previously74. 967 

 968 

Clustering of snATAC-seq data 969 

We constructed the k-nearest neighbor graph (k-NNG) using low-dimensional embedding 970 

of the nuclei with k equal to 50. We then applied the Leiden algorithm75 with constant 971 

Potts model (CPM) to find communities in the k-NNG corresponding to the cell clusters. 972 

The Leiden algorithm can be configured to use different quality functions. The modularity 973 

model is a popular choice but it is hampered by the resolution-limit, particularly when the 974 

network is large76. Therefore, we used the modularity model only in the first round of 975 

clustering analysis to identify initial clusters. In the final round of clustering, we chose the 976 

constant Potts model as the quality function since it is resolution-limit-free and is better 977 

suited for identifying rare populations in a large dataset76. Nuclei from two small clusters 978 

(280 and 254 nuclei) with low reproducibility and stability were discarded from 979 

downstream analysis. 34 nuclei that formed clusters of 1 and 2 nuclei were discarded as 980 

well. 981 

 982 

Processing and clustering analysis of snRNA-seq datasets 983 

Raw sequencing data was demultiplexed and preprocessed using the Cell Ranger 984 

software package v3.0.2 (10x Genomics). Raw sequencing files were first converted from 985 

Illumina BCL files to FASTQ files using cellranger mkfastq. Demultiplexed FASTQs were 986 

aligned to the GRCh38 reference genome (10x Genomics), and reads for exonic and 987 

intronic reads mapping to protein coding genes, long non-coding RNA, antisense RNA, 988 

and pseudogenes were used to generate a counts matrix using cellranger count; expect-989 

cells parameter was set to 5,000. A separate counts matrix for each sample was also 990 

generated using only reads mapped to intronic regions. 991 

Next, exon + intron count matrices for individual datasets were processed using the 992 

Seurat v3.1.4 R package23 (https://satijalab.org/seurat/) to assess dataset quality. 993 

Features represented in at least 3 cells and barcodes with between 500 and 4,000 genes 994 

were used for downstream processing; additionally, barcodes with mitochondrial read 995 

percentages greater than 5% were removed. Counts were log-normalized and scaled by 996 
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a factor of 10,000 using NormalizeData. To identify variable genes, FindVariableFeatures 997 

was run with default parameters except for nfeatures = 3000 to return the top 3,000 998 

variable genes. All genes were then scaled using ScaleData, which transforms the 999 

expression values for downstream analysis. Next, principal component analysis was 1000 

performed using RunPCA with default parameters and the top 3,000 variable features as 1001 

input. The first 20 principal components were used to run clustering using FindNeighbors 1002 

and FindClusters (parameter res = 0.4). To generate UMAP coordinates RunUMAP was 1003 

run using the first 20 principal components and with parameters umap.method = “umap-1004 

learn”, and metric = “correlation”. Doublet scores (pANN) were generated for cell 1005 

barcodes using DoubletFinder 77 (https://github.com/chris-mcginnis-ucsf/DoubletFinder) 1006 

using the parameters pN =0.15 and pK = 0.005; the anticipated collision rate was set by 1007 

specifying 2% collisions per thousand nuclei for individual datasets. 1008 

Individual datasets were merged together using the merge function in Seurat to combine 1009 

the count matrices and designate unique barcodes. Cell barcodes with pANN scores 1010 

greater than 0 were removed from downstream analysis. Metadata was also encoded for 1011 

each barcode, and the merged dataset was processed in a similar manner as described 1012 

above; clusters were identified using FindNeighbors and FindClusters (res = 0.8). To 1013 

generate the UMAP coordinates, the first 14 principal components were used in 1014 

RunUMAP; the UMAP algorithm for Seurat v3.1.4 uses the uwot R-package, and that 1015 

setting was used to generate the coordinates here. To regress out donor specific effects, 1016 

the Harmony R package (https://github.com/immunogenomics/harmony)78 was used, and 1017 

the recomputed principal components were used to re-cluster the cells and rerun UMAP 1018 

using the above parameters. For downstream analysis and comparison to snATAC-seq 1019 

data we combined ventricular cardiomyocyte clusters, atrial cardiomyocyte clusters, 1020 

fibroblast clusters, and endothelial cell clusters manually based on shared gene 1021 

expression patterns (Fig S2G, H). Cluster-specific genes in the all-transcripts dataset 1022 

were identified in a global differential gene expression test using FindAllMarkers with 1023 

parameters logFC = 0.25, min.pct = 0.25, and only.pos = FALSE.  1024 

 1025 

Integration of snRNA-seq and snATAC-seq data 1026 
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The snRNA-seq and snATAC-seq datasets were used to perform label transfer from the 1027 

RNA cells onto the snATAC-seq dataset using the Seurat v3.1.4 R package 1028 

(https://satijalab.org/seurat/)23. Gene activity scores were calculated using chromatin 1029 

accessibility in regions from the promoter up to 2kb upstream for each ATAC nucleus. 1030 

Activity scores were log-normalized and scaled using NormalizeData and ScaleData. To 1031 

compare the snRNA and snATAC datasets and identify anchors, FindTransferAnchors 1032 

was run considering the top 3,000 variable features from the snRNA-seq dataset. Anchor 1033 

pairs were used to assign RNA-seq labels to the snATAC-seq cells using TransferData, 1034 

with the weight.reduction parameter set to the principal components used in snATAC-seq 1035 

clustering. The efficacy of integration was assessed by examining the distribution of the 1036 

maximum prediction scores output by TransferData and the distribution of annotated 1037 

snATAC-seq identities to the corresponding predicted label. 1038 

 1039 

Creation of a consensus list of heart candidate cis regulatory elements 1040 

MACS2 (v2.1.2)25 was used to identify accessible chromatin sites for each cluster with 1041 

the following parameters: -q 0.01 --nomodel --shift -100 --extsize 200 -g 2789775646 --1042 

call-summits --keepdup-all. Estimated genome size was determined to be 2789775646 1043 

bp and was indicated by the -g parameter. We next filtered out peaks overlapping with 1044 

the ENCODE blacklist79 (hg38, https://github.com/Boyle-Lab/Blacklist/). 1045 

To generate the union of heart cCREs, we merged the blacklist-filtered peaks obtained 1046 

for each cluster using the BEDtools merge command with default settings (v2.25.0) 80. 1047 

 1048 

Computing relative accessibility scores for candidate cis regulatory elements 1049 

To correct biases arising from differential read depth among cells and cell types, we 1050 

derived a procedure that normalizes chromatin accessibility at cCREs identified by 1051 

MACS2 peak calling (v2.1.2)25. We define the set of accessible loci by L and we define a 1052 

peak p as a subset of related loci l from L. Let 𝑎. be the accessibility of accessible locus l 1053 

and P the set of non-overlapping peaks used to define the loci. For a given cell type 𝑆' ∈1054 

𝑆, we computed the median 𝑚𝑒𝑑) number of reads sequenced per cells. For each feature 1055 

𝑝) ∈ 𝑃, we computed 𝑚') the average number of reads sequenced from 𝑆' and 1056 
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overlapping 𝑝). We then defined the activity 𝑎')of loci 𝑝) in 𝑆' as 𝑎') =1057 

106. 8(%$	;<=)
?/ABC=

∑ 8(%$	;<=)
?/ABC=

=	∈D

. We then define the relative accessibility score (RAS) 𝐴') =
F<=

∑ F<=<	∈G
.  1058 

 1059 

K-means clustering of candidate cis regulatory elements 1060 

We clustered the union of 287,415 candidate cis regulatory elements (cCREs) using a K-1061 

means clustering procedure. We first created a sparse cell x peak matrix that was 1062 

transformed into a RAS-normalized cell type x peak matrix. We then performed K-means 1063 

on the normalized matrix with K from 2 to 12 and computed the Davies-Bouldin (DB) index 1064 

for each K81. Let 𝑅IJ = 	
(KLMKN)
OLN

 with 𝑠I the average distance of each cell of cluster x and 1065 

𝑑IJ the distance between the centroids of clusters x and y. The Davies-Bouldin index is 1066 

defined as 𝐷𝐵 =	 %
R
∑ max

IVJ
(𝑅IJ)I,J	∈R . We selected K = 9 since it resulted in the lowest DB 1067 

index which indicates the best partition. We used the python library scikit-learn72 to 1068 

compute the K-means algorithm and the DB index81.  1069 

 1070 

Cell type annotation 1071 

We annotated snATAC-seq and snRNA-seq clusters based on chromatin accessibility at 1072 

promoter regions or expression of known lineage marker genes, respectively. We 1073 

annotated atrial and ventricular cardiomyocytes based on differential chromatin 1074 

accessibility and gene expression at NPPA, MYH6, KCNJ3, MYL7, MYH7, HEY2, MYL2 1075 

and other reported markers of atrial and ventricular cardiomyocytes82-84. We used, for 1076 

example, the gene DCN to annotate cardiac fibroblasts85; VWF and EGFL7 for endothelial 1077 

cells86,87; GJA4 and TAGLN for smooth muscle cells88,89; CD163 and MS4A6A for 1078 

macrophages90,91; IL7R and THEMIS for lymphocytes92,93; ADIPOQ and CIDEA for 1079 

adipocytes94,95; NRXN3 and GPM6B for a cluster of nervous cells with neuronal and 1080 

Schwann-like gene expression and chromatin accessibility signatures9,10,96. From 1081 

snRNA-seq, we identified a population of endothelial-like cells with specific expression of 1082 

endocardial cell markers NRG3 and NPR397,98. We also identified subtypes of 1083 

mesenchymal cells that included myofibroblasts with characteristic expression of 1084 

embryonic smooth muscle actin MYH1099,100 as well as arterial smooth muscle cells with 1085 
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preferential expression of ACTA2 and TAGLN relative to a larger cluster of pericytes101 1086 

(Supplemental Table IV). snRNA-seq annotations were consistent with recent single cell 1087 

transcriptomic analyses of adult human heart tissue9,10.  1088 

 1089 

Identification of cell type-specific candidate cis regulatory elements 1090 

We used edgeR (version 3.24) in R102 to identify cell type-specific cCREs. For each cCRE, 1091 

accessibility within a cell type was compared to average accessibility in all other clusters. 1092 

For each cell type, we created a count table for each cCRE using the following strategy: 1093 

each sample was described with a donor and a chamber ID. For each sample ID we 1094 

reported read count within 1) the cell type and 2) the rest of the cell types in aggregate. 1095 

We used this count matrix as input for edgeR analysis102. We performed a likelihood ratio 1096 

test and considered peaks with FDR < 0.01 after Benjamini-Hochberg correction and 1097 

log2(fold Change) > 0 as cell type-specific.  1098 

 1099 

Co-accessibility analysis using Cicero 1100 

We used the R package Cicero33 to infer co-accessible chromatin loci. For each 1101 

chromosome, we used as input the corresponding peaks from our 287,415 cCRE union 1102 

set and the coordinates of the snATAC-seq UMAP59. We randomly subsampled 15,000 1103 

cells from our aggregate snATAC-seq dataset to construct input matrices for Cicero 1104 

analysis. We used +/-250 kbp as cutoff for co-accessibility interactions. All other settings 1105 

were default. 1106 

 1107 

Correlation of gene expression and promoter accessibility 1108 

We defined promoter regions as transcriptional start sites (TSS) +/-2 kbp. Transcriptional 1109 

start sites were extracted from annotation files from GENCODE release 3361. We 1110 

identified promoter-overlapping peaks using BEDtools80 and a custom script (see Code 1111 

availability). For each overlapping pair (peak, promoter) identified, we kept only the open 1112 

chromatin site closest to the TSS in order to obtain a 1:1 correspondence between genes 1113 

and open chromatin peaks. We then used the relative accessibility score (RAS) and the 1114 

cluster-scaled FPKM gene expression score to create feature x cell type matrices for 1115 

RNA-seq and ATAC-seq datasets. We then used these matrices to create heatmaps and 1116 
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to perform ATAC-seq/RNA-seq cluster correlation analysis using the Pearson similarity 1117 

metric. For each cell type, we computed the Pearson correlation score between the RAS 1118 

vector of the 7,081 promoters and the scaled FPKM vector of the corresponding 7,081 1119 

genes identified via the 1:1 correspondence method described above.  1120 

 1121 

Differential accessibility between cell types by chamber 1122 

Between-heart chamber differential accessibility analysis was performed for five cell types 1123 

from our aggregated single nuclear ATAC-seq dataset. We considered only cell types 1124 

which had a representation of at least 50 nuclei per dataset and at least 300 nuclei across 1125 

each tested condition. The cell types that met these inclusion criteria included 1126 

cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and macrophages. 1127 

Within each cell type, a generalized linear model framework was employed using the R 1128 

package edgeR102. All fragments for a given cell type were aggregated in the .bed format. 1129 

MACS225 was used to call peaks on the aggregate .bed file for each cell type with the 1130 

parameters specified above. NarrowPeak output bed files were used for differential 1131 

accessibility testing. The aggregate .bed file for each cell type was then partitioned based 1132 

on dataset of origin using nuclear barcodes. The ‘coverage’ option of the BEDtools 1133 

package80 was applied with default settings to count the total number of chromatin 1134 

fragments from each dataset overlapping narrowPeaks called on the aggregate .bed file 1135 

for the corresponding cell type. This yielded a raw count matrix in the format of single 1136 

nuclear ATAC-seq datasets (columns) by narrowPeaks (rows) for each cell type. The raw 1137 

count matrix was used as input for edgeR analysis. To filter low-coverage peaks from our 1138 

analysis, we used the ‘filterByExpr’ command within edgeR with default settings. We 1139 

applied an average prior count of one during fitting of the generalized linear model in 1140 

order to avoid inflated fold changes in instances for which peaks lacked coverage for one 1141 

but not both tested conditions. We modelled chromatin accessibility at each peak as a 1142 

function of heart chamber (group) with sex as a covariate. The generalized linear model 1143 

was expressed as follows in edgeR notation: 1144 

-- 1145 

design <- model.matrix(~sex+group) 1146 

y <- estimateDisp(y, design, prior.count = 1) 1147 
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glmFit(y, design) 1148 

-- 1149 

Significance was tested using a likelihood ratio test. To account for testing multiple 1150 

hypotheses, a Benjamini-Hochberg significance correction was applied for all cCREs 1151 

tested within each considered cell type. Any cCRE with an absolute log2(fold change) > 1152 

1 and an FDR-corrected p value < 0.05 was considered significant. 1153 

 1154 

Gene expression analysis of genes co-accessible with DA candidate cis regulatory 1155 

elements  1156 

To compare the expression of genes co-accessible with heart chamber-dependent distal 1157 

DA cCREs (outside +/- 2 kb of TSS) in cardiomyocytes and fibroblasts, we performed 1158 

differential expression testing for all genes between indicated heart chambers using 1159 

Wilcoxon rank sum test in Seurat23. Genes with an absolute Fold Change > 1.5 and an 1160 

FDR-adjusted P value < 0.05 were considered differentially expressed. We then tested 1161 

resulting genes for co-accessibility33 with distal DA cCREs at a co-accessibility score 1162 

threshold of 0.1, and displayed scaled gene expression values from Seurat for the 1163 

indicated differentially expressed genes linked to chamber-dependent distal DA cCREs. 1164 

 1165 

GREAT ontology analysis 1166 

The Genomic Regions Enrichment of Annotations Tool (GREAT, 1167 

http://great.stanford.edu/public/html/index.php)28 was used with default settings for 1168 

indicated cCREs or candidate enhancers in the .bed format. Biological process 1169 

enrichments are reported. P-values shown for enrichment are Bonferroni-corrected 1170 

binomial p-values.  1171 

 1172 

Motif enrichment analysis 1173 

For de novo and known motif enrichment analysis of cluster-specific cCREs, the 1174 

findMotifsGenome.pl utility of the HOMER package was used with default settings30. For 1175 

display of enrichment patterns for motifs from the JASPAR103 database with evidence of 1176 

enrichment in at least one set of cell type-specific cCREs, motifs with an enrichment p-1177 

value < 10-5 in at least one set of cluster-specific cCREs were selected. For motif 1178 
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enrichment within differentially accessible cCREs, narrowPeak calls from MACS2 were 1179 

used as input, with peaks called on the corresponding cell type (as described above) used 1180 

as background. For enrichment of motifs within deconvoluted bulk enhancers, snATAC-1181 

seq peaks from the union of snATAC-seq peaks were utilized. Summits were extracted 1182 

from peaks that overlapped bulk enhancer annotations and extended by 250bp on either 1183 

side to obtain fixed-width peaks. We also computed motif enrichment scores at single-1184 

cell resolution using chromVAR29. For input to chromVAR, we used the summits of the 1185 

287,415 peaks in our consensus list extended by 250 base pairs in either direction, and 1186 

a set of 870 non-redundant motifs as input. To identify differentially enriched motifs in 1187 

each cell type, we used the following strategy: for each cell type and each motif, we 1188 

computed a Rank Sum test between the chromVAR Z-score distributions from cells within 1189 

the cell type and outside of the cell type. Tests were run using a random sampling of 1190 

40,000 cells. Then, for each cell type we used 1e-8 as p-value cutoff. In addition, we 1191 

applied a Bonferroni correction to account for multiple testsing which resulted in selection 1192 

of significant motifs with p-value < 1e-11.   1193 

 1194 

Bulk candidate heart enhancer deconvolution 1195 

We obtained published candidate heart enhancers annotated by H3K27ac ChIP-seq from 1196 

a recently reported bulk survey of healthy left ventricular tissue from 18 human donors14. 1197 

Candidate enhancers were defined per the study as H3K27ac ChIP-seq peaks that were 1198 

at least 1kb away from a transcription start site and present in two or more donors. 1199 

Because these reference annotations were derived from bulk profiling of healthy left 1200 

ventricles, we selected only left ventricular nuclei from our aggregate dataset for 1201 

comparison. We limited our analysis to cell types that comprised at least 5% of nuclei by 1202 

proportion in our aggregate dataset. These included cardiomyocytes, fibroblasts, 1203 

endothelial cells, smooth muscle cells, and macrophages. We first combined all 1204 

fragments for each cell type from left ventricular datasets. The ‘coverage’ option of 1205 

BEDtools80 was applied with default settings to count the total number of chromatin 1206 

fragments from each ventricular cell type overlapping the candidate enhancer 1207 

annotations. This yielded a raw count matrix in the format of snATAC-seq cell types 1208 

(columns) by candidate enhancers (rows). The raw count matrix was normalized to RPKM 1209 
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(reads per kilobase per million mapped reads) for each candidate enhancer. We next 1210 

used Cluster3.0104 to k-means cluster the 31,033 healthy heart candidate enhancers into 1211 

K groups between 2 and 12 with the following settings (Method = k-Means, Similarity 1212 

Metric = Euclidian distance, number of runs = 100). We calculated the Davies-Bouldin 1213 

(DB) index81 as described above for each clustering using the index.DB function of the R 1214 

package clusterSim (http://keii.ue.wroc.pl/clusterSim/). We selected a k-means of 8, 1215 

which yielded the lowest DB index, indicating the best partitioning.  1216 

We repeated the above analysis for 4,406 candidate enhancers reported have increased 1217 

bulk H3K27ac ChIP signal and 3,101 candidate enhancers reported to have decreased 1218 

signal in 18 late stage idiopathic dilated cardiomyopathy (heart failure) left ventricles 1219 

versus 18 healthy control left ventricles reported in the same study. We again clustered 1220 

the candidate enhancers for both groups into k groups between 2 and 12 as above and 1221 

selected the clustering that yielded the lowest DB index81.  1222 

 1223 

Genome-wide association study (GWAS) variant enrichment analysis  1224 

We used LD (linkage disequilibrium) score regression41,105 to estimate genome-wide 1225 

enrichment for variants associated with GWAS traits within cell type-resolved open 1226 

chromatin sites. We compiled published GWAS summary statistics for cardiovascular 1227 

diseases42-46, other diseases106-117, and non-disease traits118-127 using the European 1228 

subset from transethnic studies where applicable. We created custom LD score files by 1229 

using peaks from each cluster as a binary annotation. In addition to the baseline 1230 

annotations included in the baseline-LD model v2.2, we also included LD scores created 1231 

from the merged peaks across all clusters as the background. For each trait, we used LD 1232 

score regression to estimate enrichment z-scores for each annotation relative to the 1233 

background. Using these z-scores, we computed one-sided p-values for enrichment and 1234 

used the Benjamini Hochberg procedure to correct for multiple tests. 1235 

 1236 

Fine mapping for atrial fibrillation 1237 

We obtained published atrial fibrillation GWAS summary statistics and index variants for 1238 

111 disease-associated loci43. To construct credible sets of variants for each locus, we 1239 

first extracted all variants in linkage disequilibrium (r2 > 0.1 using the EUR subset of 1000 1240 
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Genomes Phase 3)128 in a large window (±2.5 Mb) around each index variant. We next 1241 

calculated approximate Bayes factors47 (ABF) for each variant using effect size and 1242 

standard error estimates. We then calculated posterior probabilities of association (PPA) 1243 

for each variant by dividing its ABF by the sum of ABF for all variants within the locus. For 1244 

each locus, we then defined 99% credible sets by sorting variants by descending PPA 1245 

and retaining variants that added up to a cumulative PPA of > 0.99. This resulted in an 1246 

output of 6,014 candidate causal variants. 1247 

 1248 

Variant prioritization for functional validation 1249 

To prioritize variants for functional validation, we refined our list of candidate causal 1250 

variants from fine mapping analysis to only those with a posterior probability of 1251 

association (PPA) > 0.1 (216 remaining out of 6,014). We used BEDtools80 to intersect 1252 

these variants with ATAC-seq peaks called on an aggregate .bed file for atrial and 1253 

ventricular cardiomyocyte snATAC-seq clusters (cardiomyocyte cCREs). This resulted in 1254 

40 fine-mapped variants that resided within 38 candidate cardiomyocyte cCREs (38 1255 

cCRE-variant pairs).  1256 

We assessed each remaining cCRE-variant pair via the following criteria: 1257 

• cCREs primarily accessible in cardiomyocytes 1258 

• presence of a corresponding ATAC-seq peak at a testable time point in the in vitro 1259 

hPSC-cardiomyocyte differentiation model system  1260 

• sequence conservation in 100 vertebrates (genome browser track generated using 1261 

phyloP of the PHAST5 package downloaded from UCSC genome browser129, 1262 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/) 1263 

• predicted co-accessibility of candidate enhancer with a gene promoter 1264 

• expression of putative target gene associated with cCRE appearance (chromatin 1265 

accessibility and H3K27ac) during hPSC-cardiomyocyte differentiation49 1266 

A candidate cCRE-variant pair at the KCNH2 locus was prioritized for functional 1267 

experimentation. 1268 

 1269 

ChIP-seq data processing 1270 
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Reads were mapped to the human genome reference GRCh38 using Bowtie2 (version 1271 

2.2.6)130 and reads with MAPQ > 30 selected using SAMtools (version 1.3.1)131. PCR 1272 

duplicates were removed using MarkDuplicates function of Picard tools (version 1.119)132. 1273 

RPKM normalized signal tracks were generated using BamCoverage function in 1274 

deepTools (version 2.4.1)133. 1275 

 1276 

RNA-seq data processing 1277 

Reads were mapped to the human genome reference GRCh38 using STAR (version 1278 

020201)134 and reads with MAPQ > 30 selected using SAMtools (version 1.3.1)131. PCR 1279 

duplicates were removed using MarkDuplicates function of Picard tools (version 1280 

1.1.19)132. RPKM normalized signal tracks were generated using BamCoverage function 1281 

in deepTools (version 2.4.1)133. 1282 

 1283 

ATAC-seq data processing 1284 

Reads were mapped to the human genome reference GRCh38 using Bowtie2 (version 1285 

2.2.6)130 and reads with MAPQ > 30 selected using SAMtools (version 1.3.1)131. PCR 1286 

duplicates were removed using SAMtools (version 1.3.1)131. RPKM normalized signal 1287 

tracks were generated using BamCoverage function in deepTools (version 2.4.1)133. 1288 

 1289 

Statistics 1290 

No statistical methods were used to predetermine sample sizes. There was no 1291 

randomization of the samples, and investigators were not blinded to the specimens being 1292 

investigated. However, clustering of single nuclei based on chromatin accessibility was 1293 

performed in an unbiased manner, and cell types were assigned after clustering. Low-1294 

quality nuclei and potential barcode collisions were excluded from downstream analysis 1295 

as outlined above. Cluster-specificity at each cCRE was tested using edgeR102 as 1296 

described above, with p-values corrected via the Benjamini Hochberg method. To identify 1297 

differentially accessible sites between heart chambers and for each cell type, a likelihood 1298 

ratio test was used, and the resulting p-value was corrected using the Benjamini 1299 

Hochberg method. For significance of ontology enrichments using GREAT, Bonferroni-1300 

corrected binomial p values were used28. For significance testing of enrichment of de 1301 
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novo and known motifs, a hypergeometric test was used without correction for multiple 1302 

testing30. For luciferase and qPCR data, we performed one-way ANOVA (ANalysis Of 1303 

VAriance) analysis with post-hoc Tukey HSD (Honestly Significant Difference) using 1304 

GraphPad Prism version 8.0.0 for Windows, GraphPad Software, San Diego, California 1305 

USA, www.graphpad.com. 1306 

 1307 

External datasets 1308 

Cardiomyocyte differentiation: RNA-Seq, H3K27ac day 0 (hPSC); day 5 (cardiac 1309 

mesoderm); and day 15 (primitive cardiomyocytes) were downloaded from GSE11686249. 1310 

Signal tracks for heart H3K27ac ChIP-seq data were downloaded from 1311 

https://portal.nersc.gov/dna/RD/heart/. List of candidate enhancers was downloaded from 1312 

Supplemental tables14. H3K27ac ChIP-seq data for cardiomyocyte nuclei from non-failing 1313 

donors (NF1) were downloaded from NCBI SRA BioProject ID PRJNA353755135. 1314 

 1315 

Code availability 1316 

The pipeline for processing snATAC-seq data is available as a part of the Taiji software: 1317 

https://taiji-pipeline.github.io/ 1318 

Custom code used for demultiplexing and downstream analysis for snATAC data is 1319 

available here:  1320 

https://gitlab.com/Grouumf/ATACdemultiplex/-/tree/master/ATACdemultiplex  1321 

https://gitlab.com/Grouumf/ATACdemultiplex/-/blob/master/scripts/  1322 

The protocol for the custom set of motifs used with chromVAR29 can be found here: 1323 

https://github.com/GreenleafLab/chromVARmotifs 1324 

 1325 

Data availability 1326 

Data will be deposited to dbGAP. Processed data can be explored using our publicly-1327 

available web portal including a UCSC cell browser 1328 

(https://github.com/maximilianh/cellBrowser) and genome browser track viewer (IGV.js: 1329 

https://github.com/igvteam/igv.js#igvjs): http://catlas.org/humanheart.  1330 
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