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Mean squared displacement. To characterize the di�usiveness of movements, we calculated the mean squared displacement12

(MSD) as defined in the Materials and Methods section of the main text for the simulated trajectories. Moreover, how MSD13

increases with time t can characterize the movements (1) as follows:14

MSD = È(Xt ≠ X0)2Í ≥ t
–

15

where – œ [0, 2] is an exponent for MSD. Brownian motions and straight lines have – = 1 and – = 2, respectively. The fact16

that the exponent – for Lévy walks is larger than 1 suggests that Lévy walks are superdi�usive.17

For Á = 0.1, 0.22, 0.3, an ensemble of 100 trajectories was obtained from di�erent initial conditions, x0 and y0, which were18

randomly chosen. The result shown in Fig. S1 shows that MSD and indicates that the slope – of Á = 0.22 is between those19

corresponding to Á = 0.1 and Á = 0.3. The relationship between time and MSD for Á = 0.22 does not seem linear over the20

whole range. The reason is that the step length distribution is not a pure power law distribution; instead, it a truncated power21

law distribution. Therefore, the slope of the log(MSD) versus log(time) relationship can converge to 1 after a su�ciently long22

time. However, we can conclude that the movement patterns for Á = 0.22 are highly di�usive; they are more di�use than those23

for Á = 0.1, and they are less di�use than those for Á = 0.3, considering that biologically realistic situations are not the limit of24

long time. This pattern is consistent with the argument that the movement patterns can be classified as Lévy walks.25

Fig. S1. Mean squared displacement (MSD). Blue dots represent MSD for Á = 0.1, red dots represent MSD for Á = 0.22, and green dots represent MSD for Á = 0.3 The
dashed lines represent the regression lines with the slope –.

Characteristics of dynamics. We showed that the movement trajectories of our model (Eqs. 1 and 2 in the main text) can be26

classified into Lévy walks, Brownian motions, and ballistic movements (see main text). To intuitively grasp how the dynamics27

of the internal states xt, yt produce such variable movement patterns, we show the attractors of xt, yt (Fig. S2). The diagonal28

line in Fig. S2 represents x = y, namely, synchronous states that lead to no turnings in the movements. Thus, if x = y, namely,29

�◊ = 0 is a (globally) stable attractor, the movement patterns are equivalent to straight (ballistic) movements (Á = 0.3; Fig.30

S2C), although x and y fluctuate in a chaotic manner. In contrast, if x = y is unstable, x ≠ y exhibits random fluctuations (see31

insets of Fig. 1BC in the main text). In particular, the case of Á = 0.1 covers a large range of x and y (Fig. S2A). Consequently,32

the movement patterns become a normal di�usion process, that is, Brownian motions. Between these two patterns (Á = 0.22),33

we can see the mixture of x ƒ y and random fluctuations, which produces intermittent patterns in the dynamics of x ≠ y and34

Lévy walks as movement trajectories (Fig. S2B).35

Stability condition for ballistic movements. To understand how the phase transition shown in Fig. 2 of the main text occurs,36

we derive the stability condition for ballistic movements, that is, �◊ = 0. First, we set the new variables to H = (x + y)/2 and37

K = (x ≠ y)/2. From Eqs. 1 and 2 in the main text, we obtain the di�erence equation for the new variables as follows:38

H(t + 1) = 1
2(f(H(t) + K(t)) + f(H(t) ≠ K(t)))39

K(t + 1) = 1 ≠ 2Á

2 (f(H(t) + K(t)) ≠ f(H(t) ≠ K(t)))40

where f is a nonlinear function that produces chaotic dynamics. Here, as mentioned in the main text, we used a tent map. The41

equations of a small perturbation h, k in the vicinity of G = 0 are obtained by linearization as follows:42

h(t + 1) = f
Õ(H(t))h(t)43

k(t + 1) = (1 ≠ 2Á)f Õ(H(t))k(t)44
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Fig. S2. Attractors depending on the parameter Á. The horizontal and vertical axes represent the internal states x and y of the agent, respectively. The black dots represent the
value at a certain time. (A) Á = 0.1, that is, attractor of Brownian motions. (B) Á = 0.22, that is, attractor of Lévy walks. (C) Á = 0.3, attractor of straight movement. The other
parameters were set to r = 0.7 and tmax = 10,000.
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Fig. S3. Detail of the classifications based on statistical analysis. The data are the same as shown in Fig. 2 in the main text.
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Note that we can separate k(t) from h(t). Because H(t + 1) = f(H(t)) exhibits chaotic dynamics, the linear stability for45

x ≠ y = 0 can be characterized by two exponents:46

⁄h = Èln |f Õ(H)|Í47

⁄k = ln |1 ≠ 2Á| + Èln |f Õ(H)|Í.48

where Á is the coupling strength in the system, and Èln |f Õ(H)|Í denotes a Lyapunov exponent of the nonlinear map f because49

of the ergodicity of chaos (2). Because a variable in a non-coupled tent map f is distributed uniformly from 0 to 1 (2), we can50

analytically derive the Lyapunov exponents ⁄tent = ⁄h of a single tent map as follows:51

⁄tent = ≠r ln r ≠ (1 ≠ r) ln (1 ≠ r)52

where r is a parameter of the tent map. From the above, the stability index ⁄c of x ≠ y is described as53

⁄c = ln |1 ≠ 2Á| + ⁄. [1]54

Therefore, the stability condition for �◊ = c(x≠y) = 0 is ln |1 ≠ 2Á|+⁄ < 0. For the case of r = 0.7, we obtain Á > Ác ƒ 0.22855

as the stability condition, which is consistent with the main result.56

Fig. S4. A trade-off relationship between the instability index (Lyapunov exponent ⁄) of xt ≠ yt and the diffusiveness (MSD) of the agents. The Lyapunov exponent was
obtained analytically using equation 1. The MSD was calculated for t = 400. The color of the plots represents the control parameter Á. Note that the results for Á > 0.4 are
not shown to improve the visibility. The gray dashed line corresponds to a Lyapunov exponent of 0, which signifies a boundary between the stable and unstable phases.

Other models. We assessed the robustness of the results for emergence conditions of Lévy walks as shown in Fig. 2 of the main57

text for di�erent nonlinear functions, the number of elements, and stochastic noise.58

Model with different nonlinear functions. First, we explored the e�ect of the parameter r in the tent map on the condition for the59

emergence of Lévy walks. Fig. S5 shows that the parameter r does not qualitatively a�ect the result. In the case of r = 0.5, we60

used r = 0.501 because the rounding error of the values caused a falling to a fixed point. The result suggests that the tendency61

of Lévy walks to emerge near a critical point was insensitive to r. Second, we used di�erent nonlinear functions, here logistic62

maps f(x) = ax(1 ≠ x), where a œ [0, 4] is a parameter, to determine the attractor (3). The result of the model with a = 3.9,63

which produces chaotic dynamics, is shown in Fig. S6 and also supports the main conclusion.64

Model with large degree of freedom. In the main analysis, we adopted a model system composed of only two elements. However,65

one might wonder if the number of elements a�ects the result. To investigate this question, we analyzed globally coupled maps66
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Fig. S5. Phase diagram for the model with different r. (A)r = 0.501, (B) r = 0.6, (C) r = 0.8, (D) r = 0.9. The other settings are the same as for the results shown in Fig.
2 in the main text.
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Fig. S6. Phase diagram for the logistic map model with a = 3.9. The other settings are the same as those shown in the results in Fig. 2 in the main text.

Masato S. Abe 7 of 12



Fig. S7. Phase diagram for the model with large degrees of freedom. (A) N = 10, (B) N = 100. The other settings are the same as those shown in Fig. 2 in the main text.
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(GCMs) with N elements, which have been used for modeling complex systems such as neural networks (4). The definition of67

GCMs is as follows:68

xi(t + 1) = (1 ≠ “)f(xi(t)) + “

N

Nÿ

j=1

f(xj(t))69

where xi is a value of element i and “ œ [0, 1] is the coupling strength between the elements. Here, as we did in the main70

analysis, we used a tent map with r = 0.7 as the nonlinear function f . Note that our model in the main analysis was a71

special case for N = 2 when “ = 2Á. We randomly chose two elements as the output nodes and used them for producing the72

movements. We used the same procedure for the two-elements model (Fig. 1A in the main text). The results for N = 10 and73

100 are shown in Fig. S7. The results suggest that even for systems with a relatively high number of elements, Lévy walks can74

emerge near the critical point.75

Model with noise. When one considers a biologically realistic situation, there is noise in the system. To verify the robustness76

of the result of the emergence of Lévy walks near the critical point, we added an inherently stochastic noise to the systems.77

At each time step, white noise following a normal distribution with µ = 0, ‡ = ÷ was added to the internal states xt and yt78

independently. Fig. S8 shows that although the stable area for large Á is likely to break down with increasing size of the noise,79

the tendency for the emergence of Lévy walks does not change qualitatively.80

Fig. S8. Phase diagram for the model with stochastic noise. (A) ÷ = 1.0 ◊ 10≠10, (B) ÷ = 1.0 ◊ 10≠8, (C) ÷ = 1.0 ◊ 10≠6, (D) ÷ = 1.0 ◊ 10≠4. The other settings are
the same as those shown in the results in Fig. 2 in the main text.

Data-based simulation of responses to perturbations. To examine responses to a perturbation in the empirical time series81

z1, . . . , zN of turning angles (Fig. 5B in the main text) where N is the number of data points, we developed a method based82

on a twin surrogate algorithm proposed by Thiel et al. (5). The twin surrogate algorithm allowed us to produce surrogate83

data with di�erent initial states while preserving the properties of a nonlinear dynamical system of the original time series. In84

addition to this algorithm, we virtually observed the response to a perturbation by specifying the initial value corresponding to85
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Fig. S9. Lyapunov exponents in empirical data. (A) The Lyapunov exponent is estimated as the initial slope of the log-transformed exponential divergence versus time, as
calculated by linear regression (blue line) for a linear increasing region. In our analysis, a regression line was obtained for a value d(Ø 1) up to 95% of the maximum value
of the vertical axis. We changed d and selected the regression line with R2 values greater than 0.9 that fit the longest region. Note that data with the longest fitted region
of 3 or less were excluded. (B) Estimated Lyapunov exponents in empirical data (n = 158), Brownian walk model (BW; Á = 0.0, n = 246), and Lévy walk model (LW;
Á = 0.22, n = 253). The result of the multiple comparison test showed that all the differences between them were significant (p < 10≠5).
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the perturbation size and stimuli type in the theoretical analysis (Figs. 3–4 in the main text) and observing the subsequent86

dynamics.87

Twin surrogate algorithm. First, we will explain the twin surrogate algorithm. This method shu�es an embedded vector sequence88

v(1), . . . , v(M) according to certain rules, where M is the number of vectors. Here, v(i) is {zi, zi≠1, . . . , zi≠(E≠1)}, and E is an89

embedding dimension obtained from a simplex projection (6). Specifically, this method consisted of the following four steps:90

1. For the M vectors v(1), . . . , v(M) created by embedding the original time series data, create a recurrence matrix with
i, j = 1, . . . , M

Ri,j = �(” ≠ Îv(i) ≠ v(j)Î)

where �(·) is a Heaviside function (i.e., �(·) = 0 for · < 0 and �(·) = 1 for · Ø 0) and Îv(i) ≠ v(j)Î denotes the maximum91

norm (the maximum absolute value of each component of v(i) ≠ v(j)). This recurrence matrix indicates whether any two92

vectors v(i) and v(j) are farther from the threshold ” by 0 or 1. Therefore, the recurrence matrix contains the same93

information as the original nonlinear dynamical system attractor (7), although with less resolution.94

2. If Ri,k = Rj,k for all k = 1, . . . , M , the pair v(i) and v(j) is called a twin. On a recurrence matrix of 0 and 1, it is95

impossible to distinguish between two vectors that are twins.96

3. The i-th surrogate datum is denoted by vs(i), and the original vector v is randomly selected as the first one, vs(1) = v.97

4. If vs(j) = v(m), then vs(j + 1) = v(m + 1) if v(m) does not have a twin. In contrast, if v(m) has v(n) as a twin, then98

vs(j + 1) = v(m + 1) or vs(j + 1) = v(n + 1) with equal probability, even if there are more than two twins.99

Repeat Step 4 to create surrogate data with the same length as the original. The surrogate data shall be rejected if they reach100

the end of the original vector (i.e., v(M)) before it reaches the same length as the original, and the end vector v(M) does not101

have a twin.102

Although this method requires the parameter ”, the dependence on ” has been shown to be small (5), and the best results103

seem to be obtained when the ratio of 1 in the recurrence matrix Ri,j is 0.05 ≥ 0.2. For the analysis in this paper, we adopted a104

” that produced a ratio of 1 in Ri,j = 0.125. It is known that the surrogate data created by this method preserve the properties105

of the original time series. In particular, mutual information, which is a nonlinear property, is known to be conserved by twin106

surrogates, but it is not conserved by other surrogate methods (5).107

Responses to perturbations. Furthermore, to examine responses to perturbations, we improved the procedure of determining the108

initial value in Step 3 in the following four cases:109

• (a) The case of a small perturbation (corresponding to small S). We considered a new, original time series starting from110

a randomly chosen vector v(i)(1 Æ i Æ M ≠ ·), where · is the time after the perturbation. We defined the initial vector111

of the perturbed time series to be vs(1) = v(i). Then, we repeated Step 4. Finally, the new, original time series was112

v(i), . . . , v(i + ·), and the perturbed series was vs(1), . . . , vs(1 + ·). These two time series started from the same values,113

but they exhibited di�erent dynamics via twins. Therefore, vs(1), . . . , vs(1 + ·) corresponded to a time series starting114

from a slightly di�erent initial state.115

• (b) The case of a large perturbation (corresponding to large S). The new, original time series was the same as in case (a),116

namely v(i), . . . , v(i + ·). The initial value vs(1) of the perturbed time series was randomly chosen from vectors that117

were in the top 5% of the distribution of Îv(i)Î where Î · Î means the Euclidean norm. Then, we repeated Step 4. The118

perturbed time series vs(1), . . . , vs(1 + ·) corresponded to a time series starting from a drastically changed initial state.119

• (c) The case of stimuli that evoke straight movements (corresponding to small S
Õ). To examine behavioral switching120

according to the type of stimulus, we randomly selected an initial value from vectors that were in the bottom 5% of the121

distribution of Îv(i)Î. Then we generated subsequent time series with the twin surrogate method. Finally, we compared122

the positions constructed from vs(1) and vs(1 + ·).123

• (d) The case of stimuli evoking turns (corresponding to large S
Õ). We randomly selected an initial value from vectors124

that were in the top 5% of the distribution of Îv(i)Î. Otherwise, this case was the same as case (c).125

Note that if we could not create the perturbed time series due to the absence of twins in entire time series or a shortage of126

original time series, we did not use the time series for analysis. The final sample size was n = 263.127
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