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Abstract 23 

The brain can rapidly process and transfer information between cortical brain networks by 24 

dynamically transitioning between brain states. Here we study the switching activity between 25 

functional brain networks that have been estimated at various spatial scales from n = 100 to n 26 

= 1000 using resting-state fMRI data. We also generate timeseries at different temporal scales 27 

from milliseconds to seconds using whole-brain modelling. We calculate the entropy of 28 

switching activity between functional brain networks which represents the richness of the 29 

dynamical repertoire. We provide evidence that the entropy of functional network occurrence 30 

follows an inverted U-shaped curve with a maximum at a spatial scale between 200 and 300 31 

regions and at a temporal scale of 200 milliseconds.  32 

 33 
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Introduction 35 

The brain can rapidly process and adapt to new information through transitioning between 36 

multiple cognitive states. There has been substantial interest in neuroimaging research to 37 

better understand how the brain executes these rapid transitions between cognitive states from 38 

an anatomical and functional perspective, e.g. through investigating brain dynamics that 39 

describe the changes of brain activity and brain network connectivity over time and space (Stitt 40 

et al. 2017). To derive metrics of brain dynamics, researchers have to decide on the temporal 41 

scale (meaning the sampling rate) and the spatial scale (meaning the spatial resolution) of the 42 

data. Whereas lower spatiotemporal scales (i.e., more coarse resolutions) are associated with 43 

loss of relevant information, higher spatiotemporal scales (i.e., finer resolutions) lead to 44 

increases of unwanted noise and enhanced computational complexity and inefficiencies. In 45 

practice, current brain dynamics studies vary widely in their choice of spatiotemporal scales. 46 

Therefore, the description of the brain dynamics remains a challenge to neuroscientific 47 

researchers not only due to the arbitrary choice of experimental parameters that massively 48 

influence the resulting metrics of brain dynamics. In fact, the fundamental question at which 49 

spatiotemporal scale the brain intrinsically transitions between functional states has so far 50 

remained unanswered.  51 

Several studies have performed comparisons between spatial scales. In these studies, spatial 52 

scales and parcellation techniques were compared in regard to various metrics, such as 53 

reproducibility of resulting networks, agreement with other modalities such as anatomical 54 

connectivity, and their effect on prediction accuracy of neuropsychiatric conditions (Dadi et al. 55 

2019; Arslan et al. 2018; Messé 2019). For instance, Proix et al. (2016) investigated the effect 56 

of spatial scale on information content in a model of brain dynamics by decomposing the 57 

simulated timeseries using a principle component analysis and found an optimum at around 58 

140 regions. While all these studies have significantly contributed to our fundamental 59 

understanding of how different spatial scales affect the analyses of brain dynamics, they only 60 

focus on identifying the optimal spatial scale in isolation without taking into account the 61 

temporal scale. In empirical research practice, however, every measurement in brain dynamics 62 

features both a spatial and a temporal scale.  63 

Experimental comparisons between temporal scales would require a comparison of several 64 

studies using different neuroimaging modalities, but there is still a lack of robust translations 65 

of brain dynamics metrics between different modalities. For this question dynamical whole-66 

brain network models offer a practical solution to contrast different temporal scales. A previous 67 

study using a generative whole-brain network model compared brain dynamics between 68 

different temporal scales (2019) a temporal scale of 200 milliseconds captures the most 69 

relevant information on brain dynamics by calculating the entropy of switching between 70 

functional brain networks. As this study focused on the assessment of the optimal temporal 71 
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scale, it was not considered whether the optimum of temporal scale would be contingent on 72 

the spatial scale. 73 

In this study, we address the previously neglected link between spatial and temporal scales in 74 

their optimal values for brain dynamics analyses by adding a temporal scale to our analyses 75 

of optimal spatial scales. We seek to provide an assessment of the optimal, integrated 76 

spatiotemporal scale at which the brain performs dynamical state reconfigurations. In addition, 77 

in identifying potential interaction effects between optimal spatial and temporal scales, we aim 78 

at reducing researchers’ uncertainty inherent in choosing appropriate neuroimaging modalities 79 

and parcellation techniques. Thus, our study should not only have implications for a better 80 

understanding of the relevant spatial and temporal scale of dynamical reconfiguration of brain 81 

networks over time, but also contributes to the robustness and sensitivity of brain dynamics 82 

metrics as potential biomarkers of neuropsychiatric diseases. 83 

To achieve this goal, we explore the switching behavior of spatial networks at spatial scales 84 

from 100 to 900 regions both in empirical timeseries extracted from resting-state fMRI with 85 

fixed temporal scales as well as in simulated timeseries with various temporal scales from 86 

milliseconds to seconds. We determine the relevant spatiotemporal scale by comparing the 87 

entropy of the switching activity, so that it maximizes the relevant informational content of 88 

spatiotemporal networks. In the discussion of our results, we derive recommendations for 89 

researchers, highlighting our finding that the relevant spatial scale for analyses of brain 90 

dynamics lies at 200-300 regions and at a optimal temporal scale of 200 milliseconds and thus 91 

contribute to an empirical basis of relevant parameters for studies of brain dynamics.  92 

 93 

Methods 94 

Data acquisition and preprocessing  95 

We used resting state functional data from 94 of 100 unrelated subjects of the Human 96 

Connectome Project (HCP; Van Essen et al. 2013); six subjects were due to methodological 97 

reasons as FC matrices consisted of at least one N/A row in one of the higher parcellations. 98 

We further chose one of the four available resting-state fMRI scans of about 15 minutes 99 

duration (TR of 0.72 sec). During fMRI acquisition, subjects were instructed to keep their eyes 100 

open while looking at a fixation cross. A full description of the imaging parameters and minimal 101 

preprocessing pipeline can be found in Glasser et al. (2013). In short, after correction for 102 

motion, gradient and susceptibility distortions the fMRI data was aligned to an anatomical 103 

image. The aligned functional image was then corrected for intensity bias, demeaned and 104 

projected to a common surface space, which resulted in a cifti-file.  105 

We also employed an independent dataset from the enhanced NKI Rockland study (Nooner 106 

et al. 2012). We chose fMRI data (TR = 2.0 sec) from the first 50 subjects who participated in 107 

a 10-minute resting-state fMRI scan with their eyes open and a fixation cross. We used the 108 
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preprocessed fMRI data (see McDonald et al. 2017 for preprocessing details). Briefly, fMRI 109 

data was corrected for slice timing and coregistered to the anatomical scan. Subsequently, we 110 

performed a nuisance variable regression and the data was transformed into MNI space and 111 

smoothed using a 6mm FWHM kernel.  112 

Both studies were approved by the local ethical committees and informed consent was 113 

obtained from all subjects. 114 

All fMRI data was filtered between 0.1 and 0.01 Hz to retain the relevant frequency range for 115 

further analyses. We obtain structural and functional matrices in different spatial scales using 116 

the Schaefer parcellation, which optimizes local gradient and global similarity measures of the 117 

fMRI signal in various spatial scales ranging from 100 to 1000 regions (Schaefer et al. 2018). 118 

In both fMRI datasets timeseries were extracted with the help of the connectome workbench 119 

for the HCP data and fslmeants for the NKI data. We correlated the timeseries of all regions 120 

with each other using the pairwise Pearson correlations and normalized the resulting r-values 121 

using the Fisher’s transform.  122 

To make our analyses more robust, we performed several iterations of the model fitting to the 123 

empirical data. To do so, the HCP fMRI data was split into two groups. The first 30 subjects 124 

were used for model fitting (see below). A subset of 10 subjects out of the second group was 125 

randomly selected in 20 iterations and their timeseries were concatenated for the estimation 126 

of the empirical spatiotemporal networks. The NKI dataset was used for validation of the model 127 

fitting.  128 

To create a structural connectivity matrix as a basis for the whole-brain model, we generated 129 

a normative structural connectome depicting the fiber density in the required spatial scales, 130 

based on 32 HCP subjects (Horn et al. 2017; Setsompop et al. 2013) using the Lead-DBS 131 

toolbox version 2.0 (Horn et al. 2018). Structural matrices were constructed in the same spatial 132 

scales as the functional data.  133 

 134 

Whole-brain modelling  135 

The use of fMRI signals would normally limit our study in the temporal dimension. To overcome 136 

this shortcoming, we use a whole-brain model which allows us simulate data in varying 137 

timescales from milliseconds to seconds, while preserving the statistics of the empirical 138 

signals. We create a dynamic mean field model, which is conceptually based on pools of 139 

neurons that contain excitatory and inhibitory neurons. These neurons emit spontaneous 140 

neuronal noise which is broadcasted to the rest of the network. We further assume that multiple 141 

pools of neurons interact, as given by the interactions of the structural connectome (Deco et 142 

al. 2014). These assumptions are implemented through a modified DMF model based on the 143 

original reduction first proposed by Wong and Wang (2006). 144 
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A summary of the individual steps that were taken to create the model can be found in Figure 145 

1. In the model used in this study, NMDA receptors represent excitatory connections and 146 

GABA-A receptors represent inhibitory connections. Additionally, there are long-range 147 

connections mediated by AMPA receptors. Inhibitory sub-populations communicate 148 

reciprocally with excitatory sub-populations on a local level. Excitatory sub-populations are 149 

additionally linked with to other excitatory sub-populations via long-range connections. The 150 

weights of the links are based on the fiber density weights given by the structural connectome, 151 

scaled by a global scaling factor G. 152 

We adjusted the dynamical parameters of the model so that excitatory subpopulations have a 153 

spontaneous firing rate of 3 Hz and inhibitory subpopulations have a rate of 9 Hz. The weight 154 

of feedback inhibition is adjusted for each excitatory subpopulation to obtain a firing rate of 155 

about 3 Hz, using a regulatory mechanism called Feedback Inhibition Control (Deco et al. 156 

2014).  157 

The resulting neuronal signal is transformed into a simulated fMRI BOLD-signal by employing 158 

the Balloon-Windkessel hemodynamic model (Stephan et al. 2007), which depicts the 159 

transduction of the sum of inhibitory and excitatory neural activity to perfusion changes. To 160 

focus on the functionally relevant frequency range, we band-pass filtered the BOLD signals 161 

between 0.1 and 0.01 Hz (Glerean et al. 2012; Achard et al. 2006). 162 

We perform the fitting to the empirical signals using the global coupling parameter, which 163 

adjusts the coupling of the connections so that the fit of simulated brain dynamics to the 164 

empirical brain dynamics is maximized. The global scaling parameter is the only parameter 165 

that is adjusted according to the empirical data using model fitting (see below).  166 

The fitting of the data was performed by adjusting the global scaling factor to improve the fit to 167 

three different metrics; average functional connectivity (FC), the Kuramoto synchronization 168 

index, and dynamical functional connectivity (DFC) (below). Each of these metrics represents 169 

different properties of empirical signal, so performing a good fitting of the three measures 170 

ensures maintaining biologically plausible signal statistics in the simulated timeseries. Using 171 

this model, we created simulated BOLD data of 10 subjects. 172 

To obtain robust fitting values, we performed 10 iterations of the fitting of 10 randomly chosen 173 

subsets from the HCP dataset and validate the fitting using the NKI dataset. 174 

 175 

Dynamical measures used for the fitting: 176 

Average FC: The average FC was created by correlating BOLD signals pairwise over the 177 

complete acquisition period using Pearson correlations. We compared the empirical and 178 

simulated FC using the Pearson correlation.  179 
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Kuramoto synchronization index: The synchronization index measures the global level of 180 

phase synchronization. It is calculated as the mean of the Kuramoto order parameter R(t) 181 

across time, which depicts the average phase 𝜑 of the system across n regions. 182 

𝑅(𝑡) =  𝑒 ( )

 

 
𝑛

(1) 183 

 184 

We extracted the Kuramoto synchronization index by detrending the filtered fMRI timeseries 185 

and calculating the phases of the timeseries of each region using the Hilbert transform. We 186 

calculated the differences between empirical and simulated Kuramoto synchronization index, 187 

that has been previously proven to be suitable to define the dynamical working point of 188 

dynamical whole-brain models (Deco et al. 2017).  189 

DFC: We evaluated the temporal dependencies of spatial correlation using the DFC. We first 190 

extracted the difference of phases between regions using the cosine, resulting in a similarity 191 

matrix representation. Subsequently, we divided the regional phase differences into time 192 

windows of about two seconds and computed the correlations between the phase similarity 193 

matrices between time windows, which resulted in a representation of spatiotemporal 194 

fluctuations of phases.   195 

 196 

Extraction of spatiotemporal networks using ICA and calculation of entropy 197 

To retrieve different temporal scales from the simulated BOLD data in the range of milliseconds 198 

to seconds, the timeseries were binned by averaging the signals in windows of the width of the 199 

according timescale. The temporal scale of the empirical data was determined by the TR (HCP: 200 

720 ms, NKI: 2000 ms). We then extracted spacetime motifs from the empirical and simulated 201 

timeseries. To reduce dimensionality of the data, the timeseries were binarized using the point-202 

process binarization algorithm for BOLD signals (Tagliazucchi et al. 2012).  203 

To estimate the number of relevant spatiotemporal networks, we applied an adaptation of an 204 

eigenvalue analysis for assessing the statistical significance of resulting networks (Peyrache 205 

et al. 2010), as introduced by Lopes-dos-Santos, Ribeiro, and Tort (2013). This method finds 206 

the number of principal components within the event matrix that have significantly larger 207 

eigenvalues compared to a normal random matrix as introduced by Marčenko and Pastur 208 

(1967). After determining the number of relevant spatiotemporal networks, we extracted these 209 

networks by applying an ICA to the binarized event matrix, resulting in a matrix of 210 

spatiotemporal networks with n brain regions and c independent components.  211 

Lastly, we evaluated the resulting temporal evolution of spatiotemporal networks by tracking 212 

their activity over time (see Figure 2B). Through projection of the binarized event matrix onto 213 

the network matrix, the similarity between each network and the whole-brain activity at each 214 
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time point could be assessed. This resulted in an activity matrix of the temporal activity of each 215 

network: 216 

𝐴𝑐𝑏 =  𝑒𝑏
𝑇𝑃𝑐𝑒𝑏 (2) 217 

with e being the event matrix n (with dimension number of regions x binned time points) and 218 

the projection matrix 𝑃  defined as: 219 

𝑃𝑐 =  �⃑�𝑐 ⊗  �⃑�𝑐
𝑇

= �⃑�𝑐�⃑�𝑐
𝑇

(3) 220 

where ⊗ is the outer product operator and �⃑�  one of the extracted ICA components from the 221 

event matrix. 222 

By calculating the ratio of activity of each network in relation to overall activity, we were able 223 

to retrieve a probability of each network: 224 

𝑝(𝑐) =  𝐴𝑐𝑏

𝑏

/ 𝐴𝑐𝑏

𝑐,𝑏

  (4) 225 

 226 

Using these probabilities, we computed the entropy of occurrence of each network, 227 

representing the diversity of switching activity between spacetime networks.  228 

 229 

𝐻 =  − 𝑝(𝑐) log 𝑝(𝑐)

𝑐

  (5) 230 

The entropy was then normalized for the resulting number of networks. 231 

 232 

Results 233 

We aimed to define the optimal spatiotemporal scale that captured the most relevant 234 

information about the temporal evolution of functional networks. We extracted timeseries at 235 

different parcellations at different spatial scales (from n = 100 to n = 1000) in the empirical 236 

data. Furthermore, we created a dynamic mean-field model to create timeseries at various 237 

temporal scales from milliseconds to seconds (Figure 1). Using both simulated and empirical 238 

timeseries, we explored the probability of occurrence of meaningful functional spatiotemporal 239 

networks over time. We calculated the entropy of these probabilities’ occurrence of each 240 

network as a proxy of the diversity of switching activity between spatiotemporal networks 241 

(Figure 2). 242 

 243 

Validation of the whole-brain model  244 

The dynamic mean field model is a neuronal model that recreates inhibitory and excitatory 245 

synaptic dynamics (including AMPA, GABA and NMDA receptors) following the structure given 246 

by the underlying anatomical connectivity. By using the steps detailed in Figure 1 and following 247 

the constraints of anatomical connectivity as provided by the normative structural connectome, 248 

we were able to create realistic neuronal timeseries at the scale of milliseconds to seconds 249 
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using the dynamic mean field model. To ensure the robustness of the model, we fitted the 250 

resulting simulated BOLD timeseries to the empirical BOLD timeseries from two independent 251 

datasets using the DFC and the global synchronization level (see Figure 3). For each spatial 252 

scale, the fitting resulted in two optima at a global coupling value G between 1.55 and 1.85 253 

and at between 2.2 and 2.5. We chose the first peak to create the mean-field model, as using 254 

the first peak resulted in an adequate representation of the empirical dataset with comparable 255 

numbers of spatiotemporal networks. In contrast, the second peak had much lower numbers 256 

of spatiotemporal networks (e.g. 5 networks at a spatial scale of 100 regions).  257 

 258 

Entropy of evolution of spatiotemporal networks 259 

The evolution of spatiotemporal networks over time and their probabilities of occurrence allow 260 

us to estimate the richness of the dynamical repertoire at various spatiotemporal scales from 261 

a probabilistic perspective. In Figure 4, we display the entropy of spatiotemporal networks as 262 

a function of the spatial and temporal scale in the empirical and simulated dataset. As the 263 

number of networks was contingent on the spatial scale used, we corrected the entropy for the 264 

logarithm of the number of networks. We discovered an inverted U-shape form of the entropy 265 

both of the empirical and simulated timeseries, based on calculating the entropy as a function 266 

of probability of spatiotemporal networks across time. Regarding the spatial scale, the maximal 267 

entropy was found on a scale between 200 and 300 regions, but with only a minor decrease 268 

at scales with 100 or 400 regions. At scales above 400 regions, we observed a drop in entropy 269 

with a further decrease with increasing numbers of regions. Regarding the temporal scale, the 270 

highest entropy was to be found at 200 ms. Taking both scales into account, the highest level 271 

of entropy could be found at a temporal scale of 200 ms with similar values of spatial scales 272 

between 100 to 300 regions. At increasing temporal scales at the range of seconds, the highest 273 

entropy was achieved with 300 regions and to a slightly smaller degree with 100 and 200 274 

regions.  275 

 276 

Spatiotemporal networks across spatial and temporal scales 277 

Figure 2 summarizes the workflow to create the spatiotemporal networks from the binned data 278 

across different spatial and temporal scales. Using the empirical and simulated data, we 279 

determined the number of networks by counting the number of eigenvalues above the 280 

maximum of the eigenvalues, as given by the null hypothesis distribution based on random 281 

matrix theory as given by the Marčenko–Pastur distribution. To ensure that the simulated 282 

timeseries captured the relevant characteristics of the empirical data, we also compared the 283 

number of resulting networks between the empirical and simulated timeseries, which followed 284 

a similar trend. We observed a linear increase of the number of networks at an increasing 285 

spatial scale in both empirical and simulated datasets, starting with an average of 13.72 286 
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(empirical) vs. 16.0 (simulated) networks at a scale of n = 100 to over 22.29 (empirical) vs. 287 

27.0 (simulated) networks at scale of n = 200 until up to an average 67.79 (empirical) networks 288 

at a scale of n = 900.  289 

An example depicting the spatial distribution of the resulting empirical and simulated 290 

spatiotemporal networks at the spatial scale of n = 200 with associated probabilities of each 291 

network can be found in Figure 5. At the lower spatial scales (e.g. n = 200), the networks 292 

resembled classical resting state networks. At higher scales, more networks arose—with a 293 

significant proportion of the networks having a low probability of occurrence (below 1%, as can 294 

be seen for a network with n = 900 in supplementary figure S1). 295 

 296 

Discussion 297 

In this study, we investigated the most relevant optimal spatiotemporal scale at which 298 

fundamental macroscopic dynamical processes within the brain take place. We followed 299 

functional spatiotemporal networks over time not only at different spatial scales, but through 300 

the use of a dynamic mean-field model also at fine-grained temporal scales from milliseconds 301 

to seconds. Across empirical and simulated functional timeseries, we generated evidence that 302 

the entropy of network occurrence followed an inverted U-shaped curve with a maximum at a 303 

spatial scale between 200 and 300 regions and at a temporal scale of 200 milliseconds.  304 

Our findings are consistent with the study by Proix et al. (2016), who investigated the 305 

information content of the effect of a perturbation paradigm on functional connectivity in a 306 

dynamical model, and who also found an inverted U-shaped function with an optimum of 307 

around 140 regions. Most other prior studies rather focused on the effect of spatial scales more 308 

from an analytical point view in regard to reproducibility (Arslan et al. 2018) or prediction 309 

accuracy (Dadi et al. 2019; Abraham et al. 2017) with optimal values between 100 and 150 310 

regions; however, our focus was more general in regard to the functionally relevant scale of 311 

brain dynamics. Nonetheless, even when considering prediction accuracy or reproducibility 312 

more broadly (i.e., as measures of relevant information content), our findings on entropy of 313 

brain dynamics are complementary to these measures. Moreover, we join the argument of 314 

these studies that although choosing a higher number of regions for analyses of brain 315 

dynamics adds complexity to the representation of the dynamical repertoire of the human 316 

brain, this additional information is not necessarily more relevant. As shown by our analyses, 317 

additional complexity as given by increased spatiotemporal scales can be detrimental—not 318 

only increasing the computational cost of the analysis, but also adding irrelevant and noisy 319 

signals to the analyses.  320 

Our findings have several implications for future research of brain dynamics. First, we were 321 

able to reproduce the finding of the optimal temporal scale of 200 ms (Deco, Cruzat, and 322 

Kringelbach 2019). Our findings reflect experimental results of temporal dynamics of conscious 323 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.12.277699doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.12.277699


10 
 

processes that operate at similar temporal scales and typically involve a rapid temporal 324 

sequence of information stabilization and transfer (Mai, Grootswagers, and Carlson 2019; 325 

Wutz et al. 2014; Salti et al. 2015). On top of that, our study shows that the optimal temporal 326 

scale represents a general rule and is not contingent on the spatial scale used. For researchers 327 

aiming to extract the most relevant information content in their analyses of brain dynamics, we 328 

therefore advise to either use neuroimaging modalities operating at this optimal temporal scale 329 

(e.g. MEG or EEG) or augment their analyses with whole-brain modelling, which allows to take 330 

other temporal scales into consideration. Second, our study provides an empirical basis for 331 

neuroimaging studies using dimensionality reduction techniques while preserving the most 332 

relevant information of brain dynamics. This is because we provided evidence that a spatial 333 

scale between 200 and 300 regions is sufficient to capture the most relevant information on 334 

macroscopic brain dynamics. While lower scales may be associated with a loss of information, 335 

higher spatial scales introduce irrelevant and noisy functional networks.  336 

Limitations and outlook 337 

We used independent component analysis (ICA) to derive functional networks at different 338 

scales. As any other method, ICA is not free of underlying assumptions and especially 339 

assumes maximal spatial independence of the networks (Jutten and Herault 1991). Future 340 

studies could consider additional analyses using other metrics such as network measures or 341 

apply emerging techniques that specifically consider the change of spatial composition of 342 

functional networks over time (Geniesse et al. 2019). As Arslan et al. (2018) and Hilger et al. 343 

(2020) demonstrated in their studies that network measures of integration and segregation are 344 

largely altered by the spatial scale, appropriate correction techniques should be used for such 345 

analyses across scales. In regard to the parcellation used, we used the Schaefer parcellation 346 

for our analyses across scales, which is ideal for cross-study comparisons at increasing spatial 347 

scales because it is offers fine-grained parcellations at various spatial scales in both MNI and 348 

surface space. Future studies could also consider other fine-grained parcellations (Hagmann 349 

et al. 2008) and consider comparing the contribution of cortical versus subcortical regions on 350 

the dynamical repertoire of the brain which might operate at other temporal scales during 351 

subconscious processes (Ji et al. 2019).  352 

Overall, our results suggest that the brain operates at an optimum of about 200 – 300 regions 353 

and a timescale of 200 milliseconds. We therefore provide a framework for a general 354 

understanding of spatiotemporal dynamics of brain processing, which could be an inspiration 355 

for future studies to harmonize spatiotemporal scales.  356 

 357 

 358 

 359 

 360 
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Figures 497 

 498 

 499 

Figure 1. Whole-brain modelling steps to create functional timeseries in different temporal 500 

scales from empirical BOLD data. A. Extraction of BOLD timeseries from fMRI data and 501 

creation of structural connectome from diffusion-weighted data. B. Whole brain modelling of 502 

the excitatory and inhibitory neuronal sub-populations, taking into account the connections 503 

between regions through the weights of the structural connectome. C. Fitting the simulated 504 

functional timeseries to the empirical functional timeseries using metrics of average functional 505 

connectivity, Kuramoto synchronization index and dynamical functional connectivity.  506 
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 508 

Figure 2. Extraction of spatiotemporal networks at different spatial and temporal scales. A. 509 

Extraction of a fixed temporal scale (given by TR) but different spatial scale of the empirical 510 

BOLD data and varying temporal scales (from milliseconds to seconds) of the simulated 511 

neuronal data. B. Binning of timeseries to create events over time, estimation of networks 512 

within data using ICA. Tracking of the resulting networks over time by projecting the event 513 

matrix onto the networks. C. Computation of the entropy of the activity of the networks as a 514 

function of their probability over time and comparison of the entropy across spatial and 515 

temporal scales.  516 
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 518 

Figure 3. Fitting of the optimal working point of the model employing the global synchronization 519 

level and dynamical functional connectivity (DFC) across two independent datasets (HCP, 520 

NKI). 521 
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 523 

Figure 4. Entropy of temporal probability of spatiotemporal networks. A. Entropy using 524 

simulated timeseries with variable temporal scale with bin sizes from 10 to 3000 ms. The peak 525 

in the entropy shows a peak in the temporal scale of 200 ms and a spatial scale of 300 regions. 526 

There is clearly a decrease in entropy when using a scale of 400 regions.  527 

B. Entropy using the empirical timeseries with a fixed temporal scale of 720 ms. The entropy 528 

follows an inverted U-shaped curve with a at 300 regions with only minor decreases at 100-529 

400 regions, but with a marked decrease at spatial scales above 500 regions.  530 
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Figure 5. Spatiotemporal networks retrieved from empirical timeseries (A) and simulated 533 

timeseries at 200 ms (B) rendered on the standard brain and ordered by their probability of 534 

occurrence in percent. 535 
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Figure S1. Empirical spatiotemporal networks at a spatial scale of n = 900 as derived with an 539 

ICA and their probabilities of occurrence over time (in percent).  540 
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