
Supplementary Figures

Table S1: Feature comparison of single-cell synthetic data generators and simulators. 1 As show-
cased by vignette. 2 As showcased by Van den Berge et al. [1].

splatter powsimR PROSSTT SymSim dyngen
Available modality outputs
- mRNA expression 3 3 3 3 3

- Pre-mRNA expression 3

- Protein expression 3

- Promotor activity 3 3

- Reaction activity 3

Available ground-truth outputs
- True counts 3 3 3

- Cluster labels 3 3 3 3

- Trajectory 3 31 3 3

- Batch labels 3 31

- Differential expression 3 32

- Knocked down regulators 3

- Regulatory network 3 3

- Cell-specific regulatory network 3

Emulate experimental effects
- Single-cell RNA sequencing 3 3 3 3 3

- Batch effects 3 31

- Knockdown experiment 3

- Time-series 3

- Snapshot 3

Evaluation applications
- Clustering 3 3 3

- Trajectory inference 3 3 3 3

- Network inference 3 3

- Cell-specific network inference 3

- Differential expression 3 32

- Batch effect correction 3 3

- RNA Velocity 3

- Trajectory alignment 3
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Figure S1: dyngen allows benchmarking of trajectory alignment methods. A, B: Two samples con-
taining a linear trajectory, generated by dyngen. C, D: Result of the DTW alignment on the samples
in A and B. In C, the individual mappings of the alignment between cells are shown. In D, the ac-
cumulated distance matrix between the two trajectories is shown, including the black warping path,
corresponding to these cell to cell alignments in C. E, F: Shows the accumulated distance matrices
obtained after using DTW on two trajectories where noise (noise level of 0.4) was added to the count
matrix. In E the complete count matrices were used to perform the alignment. In F, smoothed pseu-
docells were used. G: Shows the influence of added noise to the different processing methods. We
can see that DTW + smoothing performs best in noisy circumstances.
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Figure S2: dyngen allows benchmarking of RNA velocity methods. A: An example bifurcating cycle
dataset, with as illustration the expression and ground truth velocity of a gene D1_TF1 that goes up
and down in one branch of the trajectory. B: The RNA velocity estimates of gene D1_TF1 by the
different methods. C: The velocity stream plots produced from the predictions of each method, as
generated by scvelo. D: The predictions scored by two different metrics, the velocity correlation
and the velocity arrow cosine. The velocity correlation is the correlation between the ground-truth
velocity (A, right) and the predicted velocity (B). The velocity arrow cosine is the cosine similarity
between the direction of segments of the ground-truth trajectory (A, left) and the RNA velocity values
calculated at those points (C).
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Figure S3: dyngen allows benchmarking Cell-specific Network Inference (CSNI) methods. A: A cell
is simulated using the global gene regulatory network (GRN, top left). However, at any particular state
in the simulation, only a fraction of the gene regulatory interactions are active. B: CSNI methods
were executed to predict the regulatory interactions that are active in each cell specifically. Using
the ground-truth cell-specific GRN, the performance of each method was quantified on 14 dyngen
datasets.
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Figure S4: The workflow of dyngen consists of six main steps. A: The user needs to specify the de-
sired module network or use a predefined module network. The module network is what determines
the dynamic behaviour of simulated cells. B: The number of desired transcription factors (which
drive the desired dynamic process) are amongst the given modules and adds regulatory interactions
according to the module network. Additional target genes (which do not influence the dynamic pro-
cess) are added by sampling interactions from GRN interaction databases. C: Each gene regulatory
interaction in the GRN is converted to a set of biochemical reactions. D: Along with the module
network, the user also needs to specify the backbone structure of expected cell states. The average
expression of each edge in the backbone is simulated by activating a restricted set of genes for each
edge. E: Multiple Gillespie SSA simulations are run using the reactions defined in step C. The counts
of each of the molecules at each time step are extracted. Each time step is mapped to a point in the
backbone. F: The molecule levels of multiple simulations are shown over time (left). From each sim-
ulation, multiple cells are sampled (from left to middle). Technical noise from profiling is simulated
by sampling molecules from the set of molecules inside each cell (from middle to right).
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Figure S5: The module network determines the type of dynamic process which simulated cells
will undergo. A module network describes the regulatory interactions between sets of transcription
factors which drive the desired dynamic process.
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Figure S6: Generating the feature network from a backbone consists of four main steps.

Table S2: Reactions affecting the abundance levels of pre-mRNAx𝐺, maturemRNAy𝐺 andproteins

z𝐺 of gene 𝐺. Define the set of regulators of 𝐺 as R𝐺, the set of upregulating regulators of 𝐺 as R+
𝐺,

and the set of down-regulating regulators of 𝐺 as R−
𝐺. Parameters used in the propensity formulae

are defined in Table S3.
Reaction Effect Propensity

Transcription ∅ → x𝐺 xpr𝐺 ×
bas𝐺−ind

|R+
𝐺|

𝐺 + ∏
𝐻∈R+

𝐺

(ind𝐺+bind𝐺,𝐻)

∏
𝐻∈R𝐺

(1+bind𝐺,𝐻)

Splicing x𝐺 → y𝐺 ysr𝐺 × x𝐺
Translation y𝐺 → y𝐺 + z𝐺 zpr𝐺 × y𝐺
Pre-mRNA degradation x𝐺 → ∅ ydr𝐺 × x𝐺
Mature mRNA degradation y𝐺 → ∅ ydr𝐺 × y𝐺
Protein degradation z𝐺 → ∅ zdr𝐺 × z𝐺
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Table S3: Default parameters defined for the calculation of reaction propensity functions.
Parameter Symbol Definition

Transcription rate xpr𝐺 ∈ 𝑈(10, 20)
Splicing rate ysr𝐺 = ln(2) / 2
Translation rate zpr𝐺 ∈ 𝑈(100, 150)
(Pre-)mRNA half-life yhl𝐺 ∈ 𝑈(2.5, 5)
Protein half-life zhl𝐺 ∈ 𝑈(5, 10)
Interaction strength str𝐺,𝐻 ∈ 10𝑈(0,2) *
Hill coefficient hill𝐺,𝐻 ∈ 𝑈(0.5, 2) *
Independence factor ind𝐺 ∈ 𝑈(0, 1) *

(Pre-)mRNA degradation rate ydr𝐺 = ln(2) / yhl𝐺
Protein degradation rate zdr𝐺 = ln(2) / zhl𝐺
Dissociation constant dis𝐻 = 0.5 × xpr𝐻×ysr𝐻×zpr𝐻

(ydr𝐻+ysr𝐻)×ydr𝐻×zdr𝐻

Binding strength bind𝐺,𝐻 = str𝐺,𝐻 × (z𝐻 / dis𝐻)hill𝐺,𝐻

Basal expression bas𝐺 =
⎧{
⎨{⎩

1 if R+
𝐺 = ∅

0.0001 if R−
𝐺 = ∅ and R+

𝐺 ≠ ∅
0.5 otherwise

*

*: unless 𝐺 is a TF, then the value is determined by the backbone.
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Figure S7: Twoapproaches canbeused to sample cells fromsimulations: snapshot and time-series.
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Figure S8: Examples of the ground-truth state networks which need to be provided alongside the
module network.
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