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Abstract21

Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that22

it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic23

activity for synaptic changes have, to date, not been able to account for learning complex tasks that24

demand credit assignment in hierarchical networks. Here, we show that if synaptic plasticity is regulated25

by high-frequency bursts of spikes, then neurons higher in a hierarchical circuit can coordinate the26

plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate27

that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and28

synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that29

require deep network architectures. Our results demonstrate that well-known properties of dendrites,30

synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.31

Introduction32

The current canonical model of synaptic plasticity in the cortex is based on the co-occurrence of33

activity on the two sides of the synapse, pre and postsynaptic [1, 2]. The occurrence of either long-34

term depression (LTD) or long-term potentiation (LTP) is controlled by specific features of pre and35

postsynaptic activity [3–12] and a more global state of neuromodulation [2, 13–21]. However, local36

learning rules by themselves do not provide a guarantee that behavioral metrics will improve. With37

neuromodulation driven by an external reward/punishment mechanism, this guarantee is achievable [22].38

But, such learning is very slow in tasks that require large or deep networks because a global signal39

provides very limited information to neurons deep in the hierarchy [23–25]. Thus, an outstanding question40

is (Fig. 1): how can neurons high-up in a hierarchy signal to other neurons — sometimes multiple41
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synapses lower — whether to engage in LTP or LTD in order to improve behavior [2]? This question is42

sometimes referred to as the “credit assignment problem”: essentially, how can we assign credit for any43

errors or successes to neurons that are multiple synapses away from the output [26]?44

In machine learning, the credit assignment problem is typically solved with the backpropagation-of-45

error algorithm (backprop [27]), which explicitly uses gradient information in a biologically implausible46

manner [25] to calculate synaptic weight updates. Many previous studies have attempted to capture47

the credit assignment properties of backprop with more biologically plausible implementations in the48

hope that a biological model could match backprop’s learning performance [25, 28–44]. However, a49

problem with most of these models is that there is always an implicit assumption that during some50

phases of learning no sensory stimuli are processed, i.e. the models are not “online” in their learning,51

which is problematic for both biological plausibility and for potential future development of low-energy52

neuromorphic computing devices. Moreover, there are several well-established properties of real neurons,53

including nonlinearities in the apical dendrites [45], short-term synaptic plasticity (STP) [46,47], and54

inhibitory microcircuits that are ignored. None of the previous studies successfully incorporated all55

of these features to perform online credit assignment (Table S1). Furthermore, none of these models56

captured the frequency dependence of synaptic plasticity, which is a very well-established property of57

LTP/LTD [6,8, 9, 48, 49].58

As established in non-hierarchical systems, such as the electrosensory lateral line lobe of the electric59

fish [50–52] or the cerebellum [53], feedback connections on dendrites are well-poised to orchestrate60

learning [54]. But for credit assignment in hierarchical networks, these connections should obey four61

constraints: 1) Feedback must steer the sign and magnitude of plasticity. 2) Feedback signals from62

higher-order areas should be multiplexed with feedforward signals from lower-order areas so that credit63

information can percolate down the hierarchy with minimal disruption to sensory information. 3)64

There should be some degree of alignment between feedback connections and feedforward connections.65

4) Integration of credit-carrying feedback signals should be close to linear and avoid saturation (i.e.,66

feedback signals should be linear with respect to any credit information). Experimental and theoretical67

work have addressed steering [12,55], multiplexing [56–59], alignment [34,41,60,61] or linearity [62] in68

isolation. , often by learning in an offline fashion [34–37, 40, 41, 63, 64], without learning rules based69

on spikes [28, 30, 35–37, 65] or without learning to solve tasks that necessitate hierarchical processing.70

But, it remains unclear whether a single set of cellular and subcellular mechanisms can address all four71

requirements for orchestrating learning in cortical hierarchies efficiently.72

Here, we address the credit assignment problem with a spike-based learning rule that models how73

high-frequency bursts determine the sign of synaptic plasticity [6, 8, 9, 48, 49]. Guided by the underlying74

philosophy first espoused by the work of Körding and König (2001) [28] that the unique properties of75

pyramidal neurons may contain a solution to biologically plausible credit assignment, we show that76

combining properties of apical dendrites [45] with our burst-dependent learning rule allows feedback77

to steer plasticity. We further show that feedback information can be multiplexed across multiple78

levels of a hierarchy when feedforward and feedback connections have distinct STP [66, 67]. Using79

spiking simulations, we demonstrate that these mechanisms can be used to coordinate learning across80

a hierarchical circuit in a fully online manner. We also show that a coarse-grained equivalent of these81

dynamical properties will, on average, lead to learning that approximates loss-function gradients as used82

in backprop. We further show that this biological approximation to loss-function gradients is improved83

by a burst-dependent learning rule performing the alignment of feedback weights with feedforward84

weights, as well as recurrent inhibitory connections that linearize credit signals. Finally, we show that85

networks trained with these mechanisms can learn to classify complex image patterns with high accuracy.86

Altogether, our work highlights that well-known properties of dendritic excitability, synaptic transmission,87

short-term synaptic plasticity, inhibitory microcircuits, and burst-dependent synaptic plasticity are88

sufficient to solve the credit assignment problem in hierarchical networks.89
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Figure 1. The credit assignment problem for hierarchical networks. (a) Illustration of a hierarchical neural
network with feedforward and feedback connections. (b) For an orchestration of learning in this network, the
representations in higher-level neurons should steer the plasticity of connections at a lower level.

Results90

A burst-dependent rule enables top-down steering of plasticity91

Experimental work has demonstrated that the sign of plasticity can be determined by patterns of pre and92

postsynaptic activity. The most common formulation of this is spike-timing-dependent plasticity (STDP),93

wherein the timing of pre and postsynaptic spikes is what determines whether LTP or LTD occurs [4,68,69].94

However, there is also evidence suggesting that in many circuits, particularly mature ones [70], the95

principal determinant of plasticity is the level of postsynaptic depolarization, with large depolarization96

leading to LTP and small depolarization leading to LTD [3, 5–7, 11], which is a direct consequence of97

the dynamics of N-methyl-D-aspartate receptor (NMDAR)-dependent calcium influx [71]. Importantly,98

one of the easiest ways to induce large magnitude depolarization in dendrites is via backpropagation of99

high-frequency bursts of action potentials [72] and, therefore, the degree of postsynaptic bursting controls100

plasticity [6–9,49]. Since bursting may be modulated by feedback synapses on apical dendrites [45,73],101

feedback could control plasticity in the basal dendrites via control of bursting. Thus, in considering102

potential mechanisms for credit assignment during top-down supervised learning, the burst-dependence103

of synaptic plasticity appears to be a natural starting point.104

To explore how high-frequency bursting could control learning in biological neural networks, we
formulated a burst-dependent plasticity rule as an abstraction of the experimental data. We consider
a burst to be any occurrence of at least two spikes with a short (i.e. under 16 ms) interspike interval.
Following Ref. [59], we further define an event as either an isolated single spike or a burst. Thus, for a
given neuron’s output, there is an event train (similar to a spike train, except that events can be either
bursts or single spikes) and a burst train, which comprises a subset of the events (see Methods). We
note that these definitions impose a ceiling on the frequency of events of 62.5 Hz, which is well above the
typical firing frequency of cortical pyramidal neurons [73,74]. The learning rule states that the change
over time of a synaptic weight between postsynaptic neuron i and presynaptic neuron j, dwij/dt, results

from a combination of an eligibility trace of presynaptic activity, eEj , and the potentiating (or depressing)
effect of the burst train Bi (or event train Ei) of the postsynaptic cell (Fig. 2a):

dwij

dt
= ⌘[Bi(t)� P i(t)Ei(t)] eEj(t). (1)

The variable P i controls the relative strength of burst-triggered potentiation and event-triggered depres-105

sion. To ensure a finite growth of synaptic weights, we set this to a moving average of the proportion106

of events that are bursts in postsynaptic neuron i, with a slow (⇠ 1� 10 s) time scale (see Methods).107

The constant ⌘ is the learning rate. The variable P i 2 [0, 1] is an exponential moving average of the108

proportion of events that are bursts in postsynaptic neuron i, with a slow (⇠ 1� 10 s) time constant (see109
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Figure 2. Burst-dependent plasticity rule. (a) Schematics of the learning rule. When there is a presynatic
eligibility trace, the occurrence of a postsynaptic burst leads to potentiation (top) whereas an isolated postsynaptic
spike leads to depression of the synapse (bottom). (b-d) Net weight change for different pairing protocols. (b)
The periodic protocol consisted of 15 sequences of 5 pairings, separated by a 10 s interval. We used pairings
with tpost = tpre. (c) For the Poisson protocol, the pre and postsynaptic activities were Poisson spike trains
with equal rates. The protocol was repeated with different initial time-average burst probabilities (P ). (d) For
the burst-Poisson protocol, pre and postsynaptic Poisson events were generated at a fixed rate (ER). For each
event, a burst was produced with a probability that varied from 0 to 50%. (e-g) Impact of distal inputs on burst
probability and feedforward synaptic weights for constant presynaptic event rate. Positive distal input (90–140
s) increases burst probability (e) and strengthens feedforward synapses (f). Negative distal input (190–240 s)
decreases burst probability and weakens synapses. A dendritic input to the presynaptic neuron (290–340 s)
increases its burst probability and mildly affects its event rate (g), but does not significantly change the weights
(f). (e) Event rate (ER; blue), burst probability (BP; solid red curve) and estimated BP (dashed red curve) for
the postsynaptic population. The black dotted line indicates the prestimulation ER and serves as a reference for
the variations of the ER with plasticity. (f) Weight change relative to the initial average value of the weights. (g)
Same as panel e, but for the presynaptic population. For the schematic on the right-hand side, black and grey
axonal terminals onto the presynaptic (green) population represent Poisson input noise; such noise is absent for
the postsynaptic (light blue) population for this simulation.

Methods). When a postsynaptic event that is not a burst occurs, the weight decreases proportionally to110

P i(t) eEj(t) < 0. In contrast, if a postsynaptic event is a burst then the weight increases proportionally111

to [1� P i(t)] eEj(t) > 0. Hence, this moving average regulates the relative strength of burst-triggered112

potentiation and event-triggered depression and can also be implemented by changes in the thresholds113

for controlling how NMDA-dependent calcium influx translates into either LTD or LTP [71]. It has been114

well established that such mechanisms exist in real neurons [75, 76].115

The plasticity rule stipulates that when a presynaptic input is paired with a postsynaptic burst LTP is116

induced, and otherwise, LTD results (Fig. 2a) [8,9,48,49,70,71]. Using this rule, we simulated a series of117

synaptic plasticity experiments from the experimental and computational literature. First, we examined118

a frequency-dependent STDP protocol [7]. We found that when the spike pairing frequency is low, LTD119

is produced, and when the pairing frequency is high, LTP is produced (Fig. 2b). This matches previous120

reports on frequency-dependent STDP and shows that a burst-dependent synaptic plasticity rule can121

explain this data. Then, we explored the behavior of our rule when the pre and postsynaptic neuron fire122

independently according to Poisson statistics [77] (Fig. 2c). Experimental results have established that123

in such a situation the postsynaptic firing rate should determine the sign of plasticity [7]. As in similar124

learning rules [77], we found that a burst-dependent plasticity rule produces exactly this behavior (Fig.125
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2c). Notably, contrary to the Bienenstock-Cooper Munro (BCM) model [78] where the switching point126

between LTD and LTP depends on a nonlinear moving average of of the forward-feeding activity, in the127

present case, the adaptive threshold is a burst probability, which can be controlled independently of the128

forward-feeding activity. These results demonstrate that a burst-dependent plasticity rule is capable of129

uniting a series of known experimental and theoretical results.130

The burst-dependent rule suggests that feedback-mediated steering of plasticity could be achieved if131

there were a mechanism for top-down control of the likelihood of a postsynaptic burst. To illustrate this,132

in Fig. 2d we simulated another protocol wherein events were generated with Poisson statistics, and each133

event could become a burst with probability P (x axis in Fig. 2d). Manipulating this burst probability134

against the initial burst probability estimate (P i(0) = 20%) controlled the occurrence of LTP and LTD,135

while changing the pre and postsynaptic event rates simply modified the rate of change of the weight136

(but not the transition point between LTP and LTD). This shows that one way for neurons to control the137

sign of plasticity to ensure effective learning may be to regulate the probability of high-frequency bursts.138

Interestingly, evidence suggests that in cortical pyramidal neurons of sensory cortices the probability of139

generating high-frequency bursts is controlled by inputs to the distal apical dendrites and their activation140

of voltage-gated calcium channels (VGCCs) [45,73,79–81]. Anatomical and functional data has shown141

that these inputs often come from higher-order cortical or thalamic regions [82, 83].142

We wondered whether combining a burst-dependent plasticity rule with regenerative activity in apical143

dendrites could permit top-down signals to act as a “teaching signal”, instructing the sign of plasticity in144

a neuron. To explore this, we ran simulations of pyramidal neuron models with simplified VGCC kinetics145

in the apical dendrites (see Methods). We found that by manipulating the distal inputs to the apical146

dendrites we could control the number of events and bursts in the neurons independently (Figs. 2e, g).147

Importantly, the inputs to the apical dendrites in the postsynaptic neurons were what regulated the148

number of bursts, and this also controlled changes in the synaptic weights, through the burst-dependent149

learning rule. When the relative proportion of bursts increased, the synaptic weights potentiated on150

average, and when the relative proportion of bursts decreased, the synaptic weights depressed (Fig.151

2f). Thus, in Fig. 2f, the weight increases (decreases) on average when P � P̄ is positive (negative).152

Modifying the proportion of bursts in the presynaptic neurons had little effect on the weights (see the153

rightmost gray shaded area in Fig. 2e-g). The sign of plasticity was independent of the number of events,154

though the magnitude was not. Therefore, while the number of events contributed to the determination155

of the magnitude of changes, the top-down inputs to the apical dendrites controlled the sign of plasticity.156

In this way, the top-down inputs acted as a “teaching signal” that determined whether LTP or LTD157

would occur. These results show that a burst-dependent learning rule paired with the control of bursting158

provided by apical dendrites enables a form of top-down steering of synaptic plasticity in an online, local,159

and spike-based manner.160

Dendrite-dependent bursting combined with short-term plasticity supports161

multiplexing of feedforward and feedback signals162

The question that naturally arises from our finding that top-down inputs can steer synaptic plasticity via163

a burst-dependent rule is whether feedback can steer plasticity without affecting the communication of164

bottom-up signals? Using numerical simulations, we previously have demonstrated that in an ensemble165

of pyramidal neurons the inputs to the perisomatic and distal apical dendritic regions can be distinctly166

encoded using the event rate computed across the ensemble of cells and the percentage of events167

in the ensemble that are bursts (the “burst probability”), respectively [59]. When communicated by168

synapses with either short-term facilitation (STF) or short-term depression (STD), this form of “ensemble169

multiplexing” may allow top-down and bottom-up signals to be simultaneously transmitted through a170

hierarchy of pyramidal neurons.171

To explore this possibility, we conducted simulations of two reciprocally connected ensembles of172

pyramidal neurons along with interneurons providing feedforward inhibition. One ensemble received173

currents in the perisomatic region and projected to the perisomatic region of the other ensemble (Fig.174

3a, green ensemble). The other ensemble (Fig. 3a, light blue) received currents in the distal apical175
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compartment and projected to the distal apical compartment of the first ensemble. As such, we considered176

the first ensemble to be “lower” (receiving and communicating bottom-up signals), and the other to177

be “higher” (receiving and communicating top-down signals) in the hierarchy. Furthermore, we made178

one key assumption in these simulations. We assumed that the synapses in the perisomatic regions179

were short-term depressing, whereas those in the distal apical dendrites were short-term facilitating.180

Additionally, we assumed that the inhibitory interneurons targeting the perisomatic region possessed STD181

synapses, and the inhibitory interneurons targeting the distal apical dendrites possessed STF synapses.182

These properties are congruent with what is known about parvalbumin-positive and somatostatin-positive183

interneurons [46, 47,84], which target the perisomatic and apical dendritic regions, respectively.184

In these simulations, we observed that currents injected into the lower ensemble’s perisomatic185

compartments were reflected in the event rate of those neurons (Fig. 3c3), though with a slight phase186

lead due to spike frequency adaptation. In contrast, the currents injected into the distal apical dendrites187

of the higher ensemble were reflected in the burst probability of those neurons (Fig. 3b2). Importantly,188

though, we also observed that these signals were simultaneously propagated up and down. Specifically,189

the input to the lower ensemble’s perisomatic compartments was also encoded by the higher ensemble’s190

event rate (Fig. 3b3), whereas the burst rate of the higher ensemble was encoded by the lower ensemble’s191

burst probability (Fig. 3c2). In this way, the lower ensemble had access to a conjunction of the signal192

transmitted to the higher ensemble’s distal apical dendrites, as well as the higher ensemble’s event rate193

(see arrow highlighting amplitude modulation in Fig. 3c2). Thus, since the higher ensemble’s event rate194

is modulated by the lower ensemble’s event rate, the burst rate ultimately contains information about195

both the top-down and the bottom-up signals (Fig. 3d). Notably, this is important for credit assignment,196

as credit signals ideally are scaled by the degree to which a neuron is involved in processing a stimulus197

(this happens in backprop, for example).198

These simulations demonstrate that if bottom-up connections to perisomatic regions and perisomatic199

inhibition rely on STD synapses, while top-down connections to apical dendrites and distal dendritic200

inhibition utilize STF synapses, then ensembles of pyramidal neurons are capable of simultaneously201

processing both a top-down signal and a bottom-up signal using a combination of event rates, burst rates,202

and burst probabilities. We conclude that with the appropriate organization of short-term synaptic203

plasticity mechanisms, a top-down signal to apical dendrites can 1) control the sign of plasticity locally204

(steering; Fig. 2a), 2) be communicated to lower ensembles without affecting the flow of bottom-up205

information (multiplexing; Fig. 3), and 3) be combined with bottom-up signals appropriately for credit206

assignment.207

Combining a burst-dependent plasticity rule with short-term plasticity and208

apical dendrites can solve the credit assignment problem209

To test whether STP, dendrite-dependent bursting and a burst-dependent learning rule can act simul-210

taneously in a hierarchy to support learning, we built a simulation of ensembles of pyramidal neurons211

arranged in three layers, with two ensembles of cells at the input, one ensemble of cells at the output,212

and two ensembles of cells in the middle (the “hidden” layer; Fig. 4a). The distal dendrites of the top213

ensemble received “teaching” signals indicating desired or undesired outputs. No other teaching signal214

was provided to the network. As such, the hidden layer ensembles were informed of the suitability of215

their output only via the signals they received from the output ensemble’s bursts. Currents injected into216

the somatic compartments of the input layer populations controlled their activity levels in accordance217

with the learning task to be discussed below. Compared to Figs. 2-3, for this simulation we made a few218

modifications to synaptic transmission and pyramidal neuron dynamics to streamline the burst-event219

multiplexing and decoding (see Methods). The most important addition, however, was that we modified220

the learning rule in Eq. 1 by multiplying the right-hand side by an additional global term, M(t), that221

gates plasticity. This term abstracts a number of possible sources of control of plasticity, like dendritic222

inhibition [62,73,85], or disinhibition through vasoactive intestinal peptide (VIP)-positive cells [86], burst223

sizes [71, 87] or transient neuromodulation [14,88,89]. Importantly, M(t) in our model gates plasticity224

without changing its sign, contrary to some models on the role of neuromodulation in plasticity [21]. Its225
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Figure 3. Dendrite-dependent bursting combined with short-term plasticity supports the simultaneous prop-
agation of bottom-up and top-down signals. (a) Schematic of the network. Lower-level pyramidal neurons
(green) received a somatic current Is and projected with STD synapses to the somatic compartments of both a
higher-level pyramidal neuron population (light blue) and to a population providing disynaptic inhibition (grey
discs). The dendritic compartments of the light blue population received a current Id. The light blue neurons
innervated with STF synapses both the dendritic compartments of the green pyramidal neurons and a population
providing disynaptic inhibition (grey squares). Results referring to the light blue and green population appear
in panels b1-b3 and c1-c3, respectively. (b1, c1) Raster plots of 25 out of the 4000 neurons per pyramidal
population for the light blue (b1) and green (c1) populations. Blue ticks show the start of an event, being either
a burst or an isolated spike. Orange ticks are the second spike in a burst; the remaining spikes in a burst are not
shown. The corresponding population event rates (blue lines) and burst rates (orange lines) are superimposed.
(b2-b3) Encoding performed by the light blue ensemble (pop 2). Its burst probability (b2, dotted red line)
reflects the applied dendritic current Id (dashed black line), whereas its event rate (b3, dotted blue line) reflects
the event rate of the green population (solid blue line). (c2-c3) Encoding performed by the green ensemble
(pop 1). Its burst probability (c2, solid red line) reflects the burst rate (dotted orange line) of the light blue
ensemble, whereas its event rate (solid blue line) reflects the applied somatic current Is (dashed black line).
Arrow highlights amplitude modulation arising from the conjunction of top-down and bottom-up inputs. Results
are displayed as mean ± 2SD over five realizations of the Poisson noise applied to all neurons in the network.
In each panel, the encoded input signal has been linearly rescaled so that its range matches that of the output.
For clarity, the encoded signals in panels b3 and c2 are displayed using their averages only (i.e., without the
standard deviations). For instance, in panel c2 the BP of the green population encodes the BR of the light blue
population. The bin size used in the population averages was 50 ms. (d) Schematic illustrating information
propagation in the network.
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role was to make sure that plasticity elicited by the abrupt onset and offset of each training example226

does not overcome the plasticity elicited by the teaching signal, i.e. it was used to ensure a supervised227

training regime. We accomplished this by setting M = 0 when no teaching signal was present at the228

output layer and M = 1 under supervision. In this way, we ensured that the teaching signal was the229

primary driver of plasticity.230

We trained our 3-layer network on the exclusive or (XOR) task, wherein the network must respond231

with a high output if only one input pool is active, and low output if neither or both input pools are232

active (Fig. 4a-b). We chose XOR as a canonical example of a task that requires a nonlinear hierarchy233

with appropriate credit assignment for successful learning. Before learning, the network was initialized234

such that the output pool treated any input combination as roughly equivalent (Fig. 4c, dashed line).235

To compute XOR, the output pool would have to learn to reduce its response to simultaneously active236

inputs and increase its response to a single active input.237

We set up the network configuration to address a twofold question: (1) Would an error signal applied238

to the top-layer neurons’ dendrites be propagated downward adequately? (2) Would the burst-dependent239

learning rule combine top-down signals with bottom-up information to make the hidden-layer neurons240

better feature detectors for solving XOR?241

Importantly, if the answer to these two questions were ‘yes’, we would expect that the two hidden242

ensembles would learn different features if they receive different feedback from the output. To test this,243

we provided hidden pool 1 with positive feedback from the output, and hidden pool 2 with negative244

feedback (Fig. 4a, light blue symbols). With this configuration, adequate error propagation to the two245

hidden pools would make their responses diverge with learning, and the output pool would learn to take246

advantage of this change. Indeed, our results showed that the XOR task was solved in this manner after247

training (Fig. 4c, solid line).248

To understand how this solution was aided by appropriate credit assignment, we examined the249

information about the top-down teaching signals in each layer. According to the learning rule, plasticity250

can be steered by controlling the instantaneous propensity to burst with respect to a moving average of251

the burst probability (see term Bi � P iEi in Eq. 1 and Fig. 2e-f). In the output pool, the error signal252

applied to the apical dendrites induced a temporary decrease in the burst probability when the input253

pools were both active or both inactive, and a temporary increase when only one input pool was active254

(Fig. 4d). These changes in the output burst probability modified the output burst rate, which was255

propagated to the hidden pools. As mentioned above, the hidden pools received top-down signals with256

different signs (Fig. 4e1-2, orange lines), and indeed their respective burst probabilities were altered257

in opposite directions (Fig. 4e1-2, red lines). Due to these distinct top-down signals and the adaptive258

threshold P i, the hidden pools’ response diverged during learning (Fig. 4f1-2). For instance, hidden259

pool 1 reduced its responses to both inputs being active, while hidden pool 2 increased its response.260

These changes were due to the top-down control of the plasticity of synapses between the input and261

hidden pools. We verified that solving this task depends on the plasticity of connections from input to262

hidden units, but only weakly on the size of the ensembles (Fig. S1). Also, we verified that the task263

was solved when the time constant ⌧avg was shorter (Fig. S2), and when the feedback pathways had264

the same sign of connection (Fig. S3). These results demonstrate that the propagation of errors using265

burst-multiplexing and the burst-dependent learning rule can combine to achieve hierarchical credit266

assignment in ensembles of pyramidal neurons.267

Burst-dependent plasticity promotes linearity and alignment of feedback268

Having demonstrated that a burst-dependent learning rule in pyramidal neurons enables online, local,269

spike-based solutions to the credit assignment problem, we were interested in understanding the potential270

relationship between this algorithm and the gradient-descent-based algorithms used for credit assignment271

in machine learning. To do this, we wanted to derive the average behavior of the burst-dependent272

learning rule at the coarse-grained, ensemble-level, and determine whether it provided an estimate of273

a loss-function gradient. More precisely, in the spirit of mean-field theory and linear-nonlinear rate274

models [90–92], we developed a model where each unit represents an ensemble of pyramidal neurons,275

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.03.30.015511doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.015511
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Burst-dependent plasticity can solve the credit assignment problem for the XOR task. (a) Each
neuron population contained 2000 500 pyramidal neurons. Feedforward connections transmitted events, while
feedback connections transmitted bursts. The teacher (pink arrow) was applied by injecting a hyperpolarizing
current into the output ensemble’s dendrites if their event rate was high in the presence of inputs that are either
both active or both inactive. A depolarizing current was injected into the output ensemble’s dendrites if their
event rate was low when only one of the inputs was active. The activity of the input populations was controlled
by somatic current injections (grey arrows). The � and  symbols represent the initialization of the feedback
synaptic weights as mainly excitatory or inhibitory. (b) Input layer event rates (ERs) for the four input conditions
presented sequentially in time. The duration of each example was 20 s 8 s. (c) Output ER before and after
learning. The output ensemble acquired strong firing (event rate above the dotted line) at the input conditions
associated with “true” in XOR. Results are displayed as mean ± 2SD over 5 random initializations of the
single-neuron connectivity. In other panels, a single realization is displayed for clarity. Mean ± 2SD, in the same
order as displayed: before: 3.3± 0.1, 4.7± 0.1, 4.7± 0.1, 4.9± 0.1; after: 4.9± 0.1, 7.1± 0.2, 6.6± 0.2, 5.0± 0.1 (in
Hz). (d) During learning, the dendritic input (dashed pink) applied to the output ensemble’s neurons controlled
their burst probability in the last two seconds of the input condition. (e1-e2) During learning, the burst rate
(BR) at the output layer is encoded into the BP of the hidden layer to propagate the error. For the hidden-2
population, this inherited credit is inverted with respect to that in the hidden-1 population. (f1-f2) After (full
line) vs. before (dashed line) learning for the hidden layer. The ER decreased in hidden-1 but increased in
hidden-2. The bin size used in the population averages was 0.4 s.
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with event rates, burst probabilities, and burst rates as described above (Fig. S4). In this step we276

lump together aspects of the microcircuitry, such as feedforward inhibition by parvalbumin-positive cells277

which helps to linearize the transfer function of event rates and preventing bursting in the absence of278

apical inputs [93, 94]. Specifically, for an ensemble of pyramidal neurons, we defined e(t) and b(t) as279

ensemble averages of the event and burst trains, respectively. Correspondingly, p(t) = b(t)/e(t) refers to280

the ensemble-level burst probability. We then defined the connection weight between an ensemble of281

presynaptic neurons and an ensemble of postsynaptic neurons, Wpost,pre, as the effective impact of the282

presynaptic ensemble on the postsynaptic ensemble, taking into consideration potential polysynaptic283

interactions. Note that this means that the ensemble-level weight, Wpost,pre, can be either positive or284

negative, as it reflects the cumulative impact of both excitatory and inhibitory synapses (see Supplemental285

Materials).286

Our goal was then to derive the ensemble-level weight updates from the burst-dependent plasticity
rule (Eq. 1). We assumed that any given pair of neurons were only weakly correlated on average, a
reasonable assumption if the synaptic weights in the circuit are small [95]. Moreover, decorrelation
between neurons is observed when animals are attending to a task [95], which suggests that this is a
reasonable assumption for active processing states. We further assumed that the neuron-specific moving
average burst probability (P i) is independent of the instantaneous occurrence of events. Using these
assumptions, it can be shown (see Supplemental Materials) that the effective weight averaged across
both pre and postsynaptic ensembles obeys:

dWpost,pre

dt
= ⌘M(t)[ppost(t)� ppost(t)]epost(t)epre(t) (2)

where the learning rate ⌘ is different from that appearing in Eq. 1, and ppost(t) is a ratio of moving287

averages for the postsynaptic burst rate and event rate. This learning rule can be shown to implement an288

approximation of gradient descent for hierarchical circuits, like the backpropagation-of-error algorithm [96].289

Specifically, if we assume that the burst probabilities remain in a linear regime (linearity), that the290

feedback synapses are symmetric to the feedforward synapses (alignment), and that error signals are291

received in the dendrites of the top-level ensembles, then �[ppost(t)� ppost(t)]epost(t) is equivalent to292

the error signal sent backwards in backpropagation (see Supplemental Materials). For the sake of293

computational efficiency, when simulating this ensemble-level learning, we utilized simplifications to the294

temporal dynamics (i.e. we implemented a discrete-time version of the rule), though the fundamental295

computations being implemented were identical to the continuous-time equation above (see Methods and296

Supplemental Materials).297

The assumptions of feedback linearity and alignment can be supported by the presence of additional298

learning mechanisms. First, we examined learning mechanisms to keep the burst probabilities in a299

linear regime. Multiple features of the microcircuit control linearity (Fig. S5), including distal apical300

inhibition [30,59], which is consistent with the action of somatostatin-positive Martinotti cells in cortical301

circuits [45, 62]. We used recurrent excitatory and inhibitory inputs to control the apical compartments’302

potential (Fig. 5a). These dendrite-targeting inputs propagated bursts from neural ensembles at the303

same processing stage in the hierarchy, which provided them with the necessary information to keep the304

burst probabilities in a linear range of the burst probability function. We found that a simple homeostatic305

learning rule (see Methods) could learn to keep burst probabilities in a linear regime, thus improving306

gradient estimates (Fig. 5b).307

Second, we explored potential mechanisms for learning weight symmetry. Symmetry between308

feedforward and feedback weights is an implicit assumption of many learning algorithms that approximate309

loss-function gradients. However, such an assumption is unnecessary, as it has been shown that it is310

possible to learn weight symmetry [61]. In one classic algorithm [97], weight symmetry is obtained if311

feedforward and feedback weights are updated with the same error signals, plus some weight decay [41].312

In our model, this form of feedback weight update could be implemented locally because the error signal313

used to update the feedforward weights in discrete time is the deviation of the burst rates from the314

moving average baseline, and this, we propose, is also determining the updates to the feedback weights315

(see Methods). In brief, what this rule means in practice is that the apical dendrites would have a316
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different learning rule than the basal dendrites, something that has been observed experimentally [8, 98].317

As well, the specific learning rule used here assumes that the sign of plasticity at the feedback synapses318

is based on presynaptic bursts, rather than postsynaptic bursts. Whether such a phenomenon exists319

in real apical dendrites has, to our knowledge, not yet been examined. However, we note that there320

are many different potential algorithms for training feedback weights, and we selected this one largely321

because it has been shown to perform well in artificial neural networks [41, 99]. Thus, we anticipate that322

this feedback learning rule could be updated in the future based on experimental findings. Here, it is a323

tool we used to determine whether the burst-dependent plasticity rule can learn challenging tasks if it is324

paired with a feedback learning rule that promotes weight alignment. Indeed, when we implemented this325

form of learning on the ensemble-level feedback weights we observed rapid weight alignment (Fig. 5c and326

Fig. S6) and convergence to a loss-function gradient (Fig. 5d). Altogether, these results demonstrate327

that the burst-dependent learning rule, averaged across ensembles of pyramidal neurons, and paired with328

biologically plausible learning rules for recurrent inputs and feedback connections, can provide a good329

estimate of loss-function gradients in hierarchical networks.330

Ensemble-level burst-dependent plasticity in deep networks can support good331

performance on standard machine learning benchmarks332

We wanted to determine whether the ensemble-level learning rule could perform well on difficult tasks333

from machine learning that previous biologically plausible learning algorithms have been unable to solve.334

Specifically, we built a deep neural network comprised of pyramidal ensemble units that formed a series335

of convolutional layers followed by fully-connected layers (Fig. 6a). We then trained these networks336

on two challenging image categorization datasets that previous biologically plausible algorithms have337

struggled with: CIFAR-10 and ImageNet [31].338

The training in all components of the network used our burst-dependent plasticity rule and recurrent339

inputs for linearization at fully-connected hidden layers. For the CIFAR-10 dataset, we observed a340

classification test error rate of 20.1 % after 400 epochs (where an epoch is a pass through all training341

images), similar to the error rate achieved with full gradient descent in a standard artificial neural342

network (Fig. 6b). Training the feedback weights was critical for enabling this level of performance on343

CIFAR-10, as fixed feedback weights led to much worse performance, even when the number of units was344

increased in order to match the total number of trainable parameters (see Tables S3 and S4), in line with345

previous results [31]. Furthermore, rich unit-specific feedback signals were critical. A network trained346

using a global reward signal, plus activity correlations, while theoretically guaranteed to follow gradient347

descent on average [22,23], was unable to achieve good performance on CIFAR-10 in a reasonable amount348

of time (Fig. 6b, node perturbation). For the ImageNet dataset, we observed a classification error rate349

of 56.1 % on the top 5 predicted image classes with our algorithm, which is much better than the error350

rate achieved when keeping the feedback weights fixed, and much closer to that of full gradient descent351

(Fig. 6c). The remaining gap between the ensemble-level burst-dependent learning rule and backprop352

performance on ImageNet can likely be explained by the fact that we could not use recurrent input at353

convolutional layers due to memory limitations, which led to degraded linearity of feedback at early354

layers (Fig. S7). We also trained a network on the MNIST dataset, and achieved a similar performance355

of 1.1% error on the test set with all three algorithms (Fig. S8). Therefore, these results demonstrate356

that the ensemble-level burst-dependent learning rule, coupled with additional mechanisms to promote357

multiplexing, linearity and alignment, can solve difficult tasks that other biologically plausible learning358

algorithms have struggled with.359

Discussion360

In this paper, we asked the following question: could high-frequency bursts in pyramidal neurons provide361

an instructive signal for synaptic plasticity that can coordinate learning across hierarchical circuits (Fig.362

1)? We have shown that the well-known burst-dependence of plasticity rulecombined with STP and363
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Figure 5. Burst-dependent plasticity of recurrent and feedback connections promotes gradient-based learning by
linearizing and aligning feedback. (a) Diagram of a hidden-layer unit in the rate model. Each unit (green outline)
in the network represents an ensemble of pyramidal neurons. Recurrent inputs (purple arrows) from all ensembles
in a layer provide homeostatic control of the dendritic potential. (b) Throughout learning, recurrent weights were
updated in order to push the burst probabilities towards the linear regime (top). This led to an overall decrease
in the magnitudes of burst probabilities, while continuing to support positive and negative values necessary for
credit assignment (bottom). (c) Alignment of feedback weights Y and feedforward weights W for three layers in
a three-hidden-layer network trained on MNIST. Each hidden layer contained 500 units. Homeostatic recurrent
inputs slightly reduce the angle between the two sets of weights, denoted W\Y , while learning on the feedback
weights dramatically improves weight alignment. Each datapoint is the angle between feedforward and feedback
weights at the start of a training epoch. (d) Angle between our weight updates (�) and those prescribed by the
backpropagation algorithm (�BP), for three layers in a three-hidden-layer network trained on MNIST. Recurrent
inputs slightly improve the approximation to backpropagation, whereas learning on the feedback weights leads to
a much closer correspondence. Each datapoint is the average angle between weight updates during a training
epoch. In c and d, results are displayed as mean ± SD over n = 5 trials.
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Figure 6. Ensemble-level burst-dependent plasticity supports learning in deep networks. (a) The deep networks
consisted of an input layer, a series of convolutional layers, and a series of fully-connected layers. Layers were
connected with sets of feedforward weights (blue arrows) and feedback weights (orange arrows). Fully-connected
hidden layer contained recurrent connections (purple arrows). (b) Our learning rule, combined with learning of
the feedback weights, was able to reach the performance of the backpropagation algorithm (backprop) on the
CIFAR-10 classification task. (c) A network trained using our learning rule was able to learn to classify images
in the ImageNet dataset when feedback weights were also updated. In b and c, results are displayed as mean ±
SD over n = 5 trials.
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regenerative dendritic activity turns feedback connections into a teacher (Fig. 2), which by multiplexing364

(Fig. 3) can coordinate plasticity across multiple synaptic jumps (Fig. 4). We then showed that, with365

some additional burst-dependent learning at recurrent and feedback synapses, these mechanisms provide366

an approximation of a loss-function gradient for supervised learning (Fig. 5) and perform well on367

challenging image classification tasks (Fig. 6). Together, these results show that a local, spike-based and368

experimentally supported learning rule that utilizes high-frequency bursts as an instructive signal can369

enable sophisticated credit assignment in hierarchical circuits.370

Decades of research into biologically plausible learning have struggled to find a confluence of biological371

properties that permit efficient credit assignment. In this manuscript, we focused on the frequency-372

dependence of LTP/LTD, STP, dendritic nonlinearities, and inhibitory microcircuits. We focused on373

these aspects in part because the previous literature has established that these properties have important374

links with synaptic plasticity [6, 73, 85, 100], but also because they are very well-established properties of375

cortical circuits. Our burst-dependent learning rule itself could readily be implemented by previously376

established synaptic plasticity signalling pathways [76]. Overall, our model can be seen as a concrete377

implementation of a recent proposal from [25], which posited that differences in activity over time could378

carry gradient signals. Here, we have shown that differences in the probability of high-frequency bursts379

can carry gradient signals without affecting the time-dependent flow of sensory information. Therefore,380

one of the primary lessons from our model is that when local synaptic plasticity rules are sensitive381

to high-frequency bursts, then pyramidal neurons possess the necessary machinery for backprop-like382

top-down control of synaptic plasticity.383

It is important to note that there are a number of limitations to our model. First, our ensemble-level384

models utilized many “ensemble units” that incorporated the activity of many pyramidal neurons, which385

could potentially require networks of disproportionate size. However, the functional impact of using386

many neurons in an ensemble is to provide a means for averaging the burst probabilities. Theoretically,387

this averaging could be done over time, rather than over neurons. If so, there is no reason that the388

algorithm could not work with single-neuron ensembles, though it would require a much longer time389

to achieve good estimates of the gradients. To some extent, this is simply the typical issue faced by390

any model of rate-based coding: if rates are used to communicate information then spatial or temporal391

averaging is required for high-fidelity communication. Furthermore, we suspect that allowing population392

coding could reduce the number of neurons required for a reliable representation [101].393

Next, by focusing on learning, we ignored other ongoing cognitive processes. For instance, the394

close link between attention and credit assignment implies that the same mechanisms may serve both395

attention and learning purposes [65, 102]. Although some experimental data points to a role of bursting396

in attention [103, 104], further work is required to establish if burst coding can give rise to attention-like397

capabilities in neural networks.398

The presence of the gating term, M(t), may be seen as an additional limitation in the model, since399

it is left in an abstract form and not directly motivated by biology. This term was introduced in400

order to ensure that learning was driven by the teaching signal and not by changes in the stimuli.401

Of course, if the goal is not supervised learning, but unsupervised learning, then this term may be402

unnecessary. Indeed, one may view this as a prediction of sorts, i.e. that learning to match a target403

should involve additional gating mechanisms that are not required for unsupervised learning. These404

gating mechanisms could be implemented, e.g., by dendritic disinhibition [62, 73, 85, 86] (Fig. S5b)405

or transient neuromodulation [14, 88, 89]. Our model did not include any sophisticated disinhibition406

mechanisms or neuromodulatory systems. Yet, we know both disinhibition and neuromodulation can407

regulate synaptic plasticity [14]. Future work could investigate how burst-dependent plasticity and408

disinhibition/neuromodulation could interact to guide supervised learning.409

Another set of limitations derive from how we moved from detailed cellular-level simulations to abstract410

neural network models that were capable of solving complex tasks. For example, in moving to the abstract411

models, we gradually made a number of simplifying assumptions, including clear separation between412

bursts and single spikes, simplified STP, simplified bursting mechanisms, and ensemble-level units that413

represented spiking activity across multiple neurons with a single value. We highlight these limitations414

because it is important to keep them in mind when considering the potential for the cellular-level415
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plasticity rule to implement sophisticated credit assignment. Ideally, we would have the computational416

resources to fully simulate many thousands of ensembles of pyramidal neurons and interneurons with417

complex synaptic dynamics and bursting in order to see if the cellular-level burst-dependent rule could418

also solve complicated tasks. However, these questions will have to be resolved by large-scale projects419

that can simulate millions of biophysically realistic neurons with complicated internal dynamics [105,106].420

Similarly, we did not include recurrent connections between pyramidal neurons within a layer, despite421

the fact that such connections are known to exist. We did this for the sake of simplicity, but again, we422

consider recurrent connectivity to be fully compatible with our model and a subject of future investigations.423

Moreover, our model makes some high-level assumptions about the structure of cortical circuitry. For424

example, we assumed that top-down signals are received at apical dendrites while bottom-up signals425

are received at basal dendrites. There is evidence for this structure [82], but also some data showing426

that it is not always this way [107]. Likewise, we assumed that pyramidal neurons across the cortical427

hierarchy project reciprocally with one another. There is some evidence that the same cells that project428

backwards in the cortical hierarchy also project forwards [108], but the complete circuitry of cortex is far429

from determined.430

Our model makes a number of falsifiable experimental predictions that could be examined experimen-431

tally. First, the model predicts that there should be a polarization of STP along the sensory hierarchy,432

with bottom-up synaptic projections being largely STD and top-down synaptic projections being largely433

STF. There are reports of such differences in thalamocortical projections [66, 67], which suggests that an434

important missing component of our model is the inclusion of thalamic circuitry. There are also reports435

of polarization of STP along the basal dendrosomatic axis [109], and our model would predict that this436

polarization should extend to apical dendrites. Second, because our model proposes that burst firing437

carries information about errors, there should be a relationship between burst firing and progress in438

learning. Specifically, our model predicts that the variance in burst probabilities across a population439

should be correlated with the errors made during learning (Fig. S9). Experimental evidence in other440

systems supports this view [58, 73]. Finally, our model predicts that inhibition in the distal apical441

dendrites serves, in part, to homeostatically regulate burst probabilities to promote learning. Thus, a442

fairly simple prediction from the model is that manipulations of distal dendrite targeting interneurons,443

such as somatostatin positive interneurons, should lead to unusual levels of bursting in cortical circuits444

and disrupt learning. Some recent experimental evidence supports this prediction [73,85].445

Linking low-level and high-level computational models of learning is one of the major challenges in446

computational neuroscience. Our focus on supervised learning of static inputs was motivated by recent447

progress in this area. However, machine learning researchers have also been making rapid progress in448

unsupervised learning on temporal sequences in recent years [110,111]. We suspect that many of the449

same mechanisms we explored here, e.g. burst-dependent plasticity, but also many of the mechanism not450

explored here, e.g. NMDA-spikes inducing cooperativity [112,113], or bursting induced by feedforward451

activity escaping feedforward inhibition [93, 94], could be adapted for unsupervised learning of temporal452

sequences in hierarchical circuits. It is likely that the brain combines unsupervised and supervised453

learning mechanisms, and future research should be directed towards how neurons may combine different454

rules for these purposes. Ultimately, by showing that a top-down orchestration of learning is a natural455

result of a small set of experimentally observed physiological phenomena, our work opens the door to456

future approaches that utilize the unique physiology of cortical microcircuits to implement powerful457

learning algorithms on dynamic stimuliusing time-varying signals.458
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Methods459

Spiking model460

Spiking simulations were performed using the Auryn simulator [114], except for the pairing protocols of461

Fig. 2b-d, which used Python.462

Event and burst detection463

An event was said to occur either at the time of an isolated spike or at the time of the first spike in a
burst. A burst was defined as any occurrence of at least two spikes with an interspike interval (ISI) less
than the threshold bth = 16 ms [59,115]. Any additional spike with ISI < bth belonged to the same burst.
A neuron i kept track of its time-averaged burst probability P i by using exponential moving averages of
its event train Ei and burst train Bi:

Ei(t) =
1

⌧avg

Z 1

0
Ei(t� ⌧)e�⌧/⌧avgd⌧ (3)

Bi(t) =
1

⌧avg

Z 1

0
Bi(t� ⌧)e�⌧/⌧avgd⌧ (4)

P i(t) =
Bi(t)

Ei(t)
, (5)

where ⌧avg is a slow time constant (⇠ 1-10 s). Also, Ei(t) =
P

event �(t� ti,event) and Bi(t) =
P

burst �(t�464

ti,burst), where ti,event and ti,burst indicate the timing of an event and of the second spike in a burst,465

respectively.466

Plasticity rule467

Weights were updated upon the detection of a postsynaptic event or burst according to

dwij

dt
= ⌘M

n⇥
(1 +Hi)Bi + (�P i +Hi)Ei

⇤ eEj +GiEj

o
(6)

where eEj(t) =
R1
0 Ej(t�⌧)e�⌧/⌧pred⌧ is a presynaptic trace with time constant ⌧pre. Here, ⌧pre is typically468

much smaller than ⌧avg, with ⌧pre ⇠ 10 ms, but it could possibly be made larger to accommodate plasticity469

rules with slower dynamics [100]. The prefactor M gates plasticity during training: in the XOR task470

(Fig. 4), M = 1 when the teaching signal is present and 0 otherwise. In Fig. 2, M = 1 throughout.471

Homeostatic terms help to restrict the activity of neurons to an appropriate range. The homeostatic
functions Hi and Gi were defined as

Hi(t) = �

✓
1�

emax

Ei(t)

◆
⇥(Ei(t)� emax) (7)

Gi(t) =
⇥
emin � Ei(t)

⇤
⇥(emin � Ei(t)), (8)

where emin (resp. emax) is a minimum (resp. maximum) event rate, and ⇥(·) denotes the Heaviside step472

function. When the neuron-specific running average of the event rate, Ei(t), lies within these limits,473

Hi = Gi = 0, and we recover the learning rule of Eq. 1. In most simulations, network parameters were474

chosen in such a way that the homeostatic plasticity had little to no effect. Typically, we used emin = 2475

Hz and emax = 10 Hz.476

Pairing protocols477

For all pairing protocols of Fig. 2b-d, we had ⌧pre = 50 ms, ⌧avg = 15 s, ⌘ = 0.1, and we set the478

homeostatic terms to zero.479
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• Periodic protocol. Five consecutive pairings were separated by a quiescent period of 10 s, 15 times.480

We used pairings with �t = 0. For each pairing frequency the starting value for the estimated481

burst probability was P i(t = 0) = 0.15 and Ei(t = 0) = 5 Hz.482

• Poisson protocol. Both the pre and postsynaptic neurons fired spikes at a Poisson rate r with483

no refractory period a refractory period of 2 ms. For each r, the induction lasted 100 s and we484

averaged over 20 independent realizations. We used Ei(t = 0) = 5 Hz.485

• Burst-Poisson protocol. Both the pre and postsynaptic neurons produced events at a Poisson rate486

r, including a refractory period ⌧ (E)
ref > bth. For each event, a burst was generated with probability487

p and an intraburst ISI was sampled from Unif(⌧ (B)
ref , ⌧

(B)
ref + tmax), with ⌧

(B)
ref + tmax < bth. For488

the simulations in Fig. 2d, we used ⌧
(E)
ref = 20 ms, ⌧ (B)

ref = 2 ms and tmax = 10 ms. We set489

P i(t = 0) = 0.2 and the event rate of the pre and postsynaptic neurons were set to r = 5 Hz and490

r = 10 Hz, with corresponding values for the initial postsynaptic event rate estimates. For each r,491

the induction lasted 100 s and we averaged over 20 independent realizations.492

Neuron models493

• Pyramidal neurons The somatic compartment obeyed

CsV̇s = �(Cs/⌧s)(Vs � EL) + gsf(Vd) + Is � ws

⌧wsẇs = �ws + b⌧wsS(t)
(9)

where Vs is the somatic membrane potential, ws is an adaptation variable, Is is the total current494

applied to the soma (includes noise and other synaptic inputs) and S(t) is the spike train of495

the neuron. The function f(Vd) in the equation for Vs takes into account the coupling with the496

dendritic compartment, with f(Vd) = 1/{1 + exp[�(Vd � Ed)/Dd]} and parameters Ed = �38 mV497

and Dd = 6 mV. A spike occurred whenever Vs crossed a moving threshold from below. The latter498

jumped up by 2 mV right after a spike and relaxed towards -50 mV with a time constant of 27 ms.499

Other somatic parameters were: ⌧s = 16 ms, Cs = 370 pF, EL = �70 mV, ⌧ws = 100 ms, b = 200500

pA, and gs = 1300 pA. The reset voltage after a spike was Vr = �70 mV.501

The dendritic compartment obeyed

CdV̇d = �(Cd/⌧d)(Vd � EL) + gdf(Vd) + cd(K ⇤ S)(t) + Id � wd

⌧wdẇd = �wd + aw(Vd � EL).
(10)

The function f(Vd) is the same as above and is responsible for the regenerative dendritic activity.502

The term cd(K ⇤ S)(t) represents the backpropagating action potential, with the kernel K modeled503

as a box filter of amplitude one and duration 2 ms, delayed by 0.5 ms with respect to the somatic504

spike. Other dendritic parameters were: ⌧d = 7 ms, Cd = 170 pF, EL = �70 mV, ⌧wd = 30 ms,505

a = 13 nS, and gd = 1200 pA.506

This model and its parameters are described in more detail and compared with experimental data507

in Ref. [59].508

• Dendrite-targeting inhibition. We modeled somatostatin-positive interneurons [116–118] using the
adaptive exponential integrate-and-fire (AdEx) model [119]:

CV̇ = �gL(V � EL) + gL�T e
V �VT
�T + I � w

⌧wẇ = a(V � EL) + b⌧wS(t)� w

where I is the total current applied to the neuron. A spike occurred whenever V crossed Vcut = 24509

mV and was followed by a refractory period ⌧ref . Parameter values were C = 100 pF, gL = 5 nS,510

EL = �70 mV, VT = �62 mV, �T = 4 mV, ⌧w = 500 ms, a = 0.5 nS, b = 10 pA, Vr = �65 mV511

and ⌧ref = 2 ms. In Fig. 3, these model neurons (grey squares in Fig. 3a) were receiving top-down512

excitation from higher-level pyramidal cells.513
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• Perisomatic inhibition We modeled parvalbumin-positive neurons [120] using the AdEx model514

with parameters chosen to reproduce qualitatively their typical fast-spiking phenotype. Parameter515

values were C = 100 pF, gL = 10 nS, EL = �70 mV, VT = �48 mV, �T = 2 mV, Vr = �55 mV,516

⌧ref = 1 ms and a = b = 0. In Fig. 3, these model neurons (grey discs in Fig. 3a) were receiving517

bottom-up excitation from the lower-level pyramidal cells.518

Connectivity519

In general, connections between distinct neural ensembles were sparse (⇠ 5�20% connection probability).520

Pyramidal neurons within an ensemble had no recurrent connections between their somatic compartments.521

Within a pyramidal ensemble, burst-probability linearization was enacted by sparse STF inhibitory522

synapses onto the dendritic compartments (Fig. S10). These STF connections were not illustrated in Fig.523

3a for clarity. The net strength of inputs onto the apical dendrites was chosen to preserve a stationary524

burst probability between 10 and 50 %, as in vivo experimental data reports burst probability between525

15 and 25 % [74,104].526

Synapses527

All synapses were conductance-based. The excitatory (resp. inhibitory) reversal potential was 0 mV528

(resp. �80 mV) and the exponential decay time constant was 5 ms (resp. 10 ms). There were no NMDA529

components to excitatory synapses. For a given connection between two ensembles, existing synapses530

had their strengths all initialized to the same value.531

Noise532

Each neuron (for single-compartment neurons) and each compartment (for two-compartment neurons)533

received its own (private) noise in the form of a high-frequency excitatory Poisson input combined to an534

inhibitory Poisson input. The only exception was the noise applied to the neural populations in Fig.535

2e-g, where we used sparse connections from a pool of excitatory and inhibitory Poisson neurons. Noise536

served to decorrelate neurons within a population and to imitate in vivo conditions.537

Short-term plasticity538

STP was modeled following the extended Markram-Tsodyks model [47]. Using the notation of Ref. [121],539

the parameters for STF were D = 100 ms, F = 100 ms, U = 0.02 and f = 0.1. For STD, the parameters540

were D = 20 ms, F = 1 s, U = 0.9 and f = 0.1. These sets of parameters were chosen following [59] to541

help decode bursts (using STF) and events (using STD).542

Spiking XOR gate543

A XOR gate maps binary inputs (0, 0) and (1, 1) onto 0 and inputs (1, 0) and (0, 1) onto 1. In the context544

of our spiking network, input 0 corresponded to a low event rate (⇠ 2 Hz) and input 1 to a higher event545

rate (⇠ 10 Hz). These were obtained by applying a hyperpolarizing (resp. depolarizing) current for 0546

(resp. 1) to the corresponding input-layer population. Importantly, compared to the spiking simulations547

described above, our implementation of the spiking XOR gate used three simplifications to reduce the548

dimension of the parameter search space. First, events and bursts were propagated directly instead of549

relying on STP (see Fig. S11). Second, disynaptic inhibition was replaced by direct inhibition coming550

from the pyramidal cells. Third, we used a simplified pyramidal neuron model. Below, we describe this551

model, as well as the initialization of the network, the error generation and the learning protocol for the552

XOR gate.553

• Simplified pyramidal neuron model. The effect of dendritic regenerative activity on the somatic554

compartment (controlled by gs in Eqs. 9-10) was replaced by a conditional burst probability:555

whenever a somatic event occurred, a burst was produced with probability f(Vd). This function is556
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the same as that appearing in Eqs. 9-10, but with Ed = �57 mV. This model permitted a cleaner557

burst-detection process and burst-ensemble multiplexing.558

• Initialization of the network. The feedforward synaptic strengths were initialized so that the event559

rates of all pyramidal ensembles in the network belonged to [emin, emax] for all inputs. Excitatory560

synaptic strengths from the input layer to the hidden layer were all equal, and likewise for the561

inhibitory synapses. For the hidden-to-output feedforward connections, the ratio of the excitatory562

synaptic strengths was 1.4:1.05 in favor of hidden 1. This ratio for inhibition was 5:0.3 in favor563

of hidden 2. All existing feedforward excitatory synaptic strengths were equal together, and564

likewise for the inhibitory synapses. The feedback synaptic strengths from the output population565

to the hidden populations—the only existing ones—were initialized so that one coarse-grained566

connection would be predominantly excitatory and the other inhibitory (the one onto hidden pool 2567

in Fig. 4). As with the feedforward connections, the excitatory feedback synapses belonging to the568

same coarse-grained connection shared the same strength, and likewise for inhibition. A constant569

depolarizing current was applied to the hidden pool 2’s dendritic compartments to compensate for570

the stronger inhibition.571

• Error generation. At the output layer, we specified a maximum and a minimum event rate, emax

and emin (the same as in the learning rule of Eq. 6). The following linearly transformed Ei

E
0
i =

Ei � emin

emax � emin

was then used in conjunction with a cross entropy loss function to compute the error for each

neuron of the output population. As a result, a current, I(d)i (where d indicates “dendritic”), was
injected into every neuron so that its burst probability would increase or decrease according to the
running average of its event rate and the desired output:

if desired output = 0 ) I
(d)
i = �c/(emax � Ei)

if desired output = 1 ) I
(d)
i = c/(Ei � emin).

where c ⇠ 1 nA ·Hz. For instance, if the desired output was 0 and Ei was large, then the injected572

current was strongly hyperpolarizing. The injected current was set to zero when Ei was to within573

1 Hz of the desired value.574

• Learning protocol. A simulation proceeded as follows. With the plasticity off, there was first a575

relaxation interval of duration 3⌧avg, with no input applied to the network. In Fig. 4, we have set576

⌧avg = 2 s, although a faster time scale can still yield adequate learning (Fig. S2). Then, the four577

different input pairs were applied consecutively to give the “before learning” response in Fig. 4d.578

Afterward, the four input/output pairs were applied consecutively for 20 s each (typically in the579

same order); namely one epoch (for one epoch), typically in the same order (but see Fig. S1e).580

For each input/output pair, first, the input alone was applied to the input populations with the581

plasticity off. We let the network reach its steady state for that input for the first 90% of the582

duration of an example. During this prediction interval, the moving average of the burst probability583

would converge towards the actual burst probability of the population for that given input. The584

duration of an example was chosen to be 4⌧avg = 8 s to provide enough time for this steady state to585

be reached to a good approximation, although relaxing that assumption can still produce adequate586

learning (Fig. S2). During the last 10% of the example duration, the plasticity was activated for587

all feedforward excitatory synapses and the teacher was applied. For computational efficiency,588

the error was computed once, at the very end of the prediction interval. The total number of589

epochs required to reach decent performance depended on the initialization of the network and the590

learning rate; for Fig. 4, we used 500 epochs. At the end of learning, the plasticity was switched591

off for good and the “after learning” response was computed.592
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Deep network model for categorical learning593

We now describe the deep network model that was used to learn the classification tasks reported in594

Figs. 5-6. The model can be seen as a limiting case of a time-dependent rate model, which itself can be595

heuristically derived from the spiking network model under simplifying assumptions (see Supplemental596

Materials).597

For the fully-connected layers in the network, we defined the “somatic potentials” of units in layer l598

as:599

vl = Wlel�1,

where Wl is the weight connecting layer l � 1 to layer l. Note that in this formulation we include a bias
term as a column of Wl. The event rate of layer l was given by

el = fl (vl) ,

where fl is the activation function for layer l. In models trained on MNIST and CIFAR-10, the activation600

function was a sigmoid. In the model trained on ImageNet, a ReLU activation was used for hidden layers601

and a softmax activation was used at the output layer.602

During the feedforward pass, the burst probability at the output layer (l = L) was set to a constant,

p
(0)
L (in these experiments, this was set to 0.2). Our previous research [59] has shown that the dendritic

transfer function is a sigmoidal function of its input (see also Fig. S5). Therefore, the hidden-layer burst
probabilities, pl, for l < L, were computed using a sigmoidal function of a local “dendritic potential” ul

as

pl = �(�ul + ↵),

where ↵ and � are constants controlling the dendritic transfer function. In our experiments, we set � = 1
and ↵ = 0. Figure S5 illustrates various mechanisms affecting these parameters. The dendritic potentials
were given by

ul = h(el)�
�
Ylbl+1

�
, (11)

where � is the elementwise product. The vector-valued function h(el) ⌘ f
0(vl)� e�1

l depends on the
chosen activation function; of course, some caution is required when ReLU and softmax activations are
used (see Supplemental Materials). The burst rate is given by

bl+1 = pl+1 � el+1. (12)

Finally, Yl is the feedback weight matrix. For the feedback alignment algorithm, Yl is a random matrix603

and is fixed throughout learning [34]. In the standard backpropagation algorithm, the feedforward and604

feedback weight matrices are symmetric so that Yl = WT
l+1, where

T denotes the transpose. Below, we605

also describe how to learn the feedback weights to make them symmetric with the feedforward weights606

using the Kolen-Pollack algorithm [41].607

With the teacher present, the output-layer burst probabilities were set to a squashed version of

p
(0)
L �h(el)�reLL, where L is the loss function (a mean squared error loss for Figs. 5-6). The squashing
function was to make sure that pL,i 2 [0, 1]. The Supplemental Materials provide a few examples of
squashing functions. The burst probabilities of the hidden layers were then computed as above. Finally,
the weights were updated according to

�Wl = ⌘l

�
(pl � pl)� el

�
eTl�1 � �Wl, (13)

where pl and pl denote the burst probabilities with and without teacher, respectively, ⌘l is the learning
rate hyperparameter for units in layer l, and � is a weight decay hyperparameter. Note that, for this
model, el lags el by a single computational step (see Supplemental Materials). Therefore, when the
teacher appears, el = el and we can write

(pl � pl)� el = bl � bl.
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This means that, in this model, the error is directly represented by the deviation of the burst rate with608

respect to a reference.609

In the case of convolutional layers, the event rates of ensembles in layer l were given by

el = fl(Wl ⇤ el�1),

where ⇤ represents convolution. Similarly, the dendritic potentials in layer l were given by ul = Yl ⇤bl+1

while burst probabilities were calculated as in the fully-connected layers. Finally, the weights of
convolutional layers were updated as

�Wl = ⌘l 
�
bl � bl, el�1

�
� �Wl, (14)

where  combines the burst deviations and event rates to compute an approximation of the gradient610

with respect to the convolutional weights Wl.611

Learning the recurrent weights612

In certain experiments, we introduced recurrent inputs into the hidden layers that served to keep burst
probabilities in the linear regime of the sigmoid function. At layer l, we set the reference dendritic
potentials to

ul = h(el)�Ylbl+1 � Zlbl, (15)

where Zl is the recurrent weight matrix and the burst rates used here, in bold sans-serif, are calculated
as the burst rate without any recurrent inputs and without the teaching signal:

bl = �
�
�h(el)�Ylbl+1 + ↵

�
� el. (16)

Otherwise, the dendritic potentials and burst rates must be solved self-consistently, slowing down
computations. Recurrent weights are then updated in order to minimize ul:

�Zl = �⌘rulb
T
l , (17)

where ⌘r is the learning rate. Note that, with these recurrent inputs, the updates of matrix Wl are the
same as before, but now with

pl = �[�
�
h(el)�Ylbl+1 � Zlbl

�
+ ↵].

.613

Learning the feedback weights614

Kolen and Pollack [97] found that if the feedforward and feedback weights are updated such that

�Wl = ⌘A� �Wl

�Yl = ⌘A� �Yl,

where A is any matrix with the same shape as Wl and Yl, then Yl and Wl will converge. This means
that if the feedback weights are updated in the same direction as the feedforward weights and weight
decay is applied to both sets of weights, they will eventually become symmetric. Thus, we implemented
the following learning rule for the feedback weights between layer l + 1 and layer l:

�Yl = ⌘l

�
bl+1 � bl+1

�
eTl � �Yl, (18)

where � is a weight decay hyperparameter. In convolutional layers, we used the following weight update:

�Yl = ⌘l 
�
bl+1 � bl+1, el

�
� �Yl. (19)
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Training the model with CIFAR-10 and ImageNet615

The network architectures described in Tables S3 and S4 of the Supplemental Materials were trained616

on standard image classification datasets, CIFAR-10 [122] and ImageNet [123]. The CIFAR-10 dataset617

consists of 60,000 32⇥ 32 px training images belonging to 10 classes, while the ImageNet dataset consists618

of 1.2 million images (resized to 224⇥ 224 px) split among 1000 classes.619

Each unit in these networks represents an ensemble of pyramidal neurons and has an event rate, burst620

probability, and burst rate. For each training example, the input image is presented and a forward pass621

is done, where event rates el throughout the network are computed sequentially, followed by a feedback622

pass where burst probabilities pl and burst rates bl are computed. Then, the teaching signal is shown at623

the output layer, and new burst probabilities pl and burst rates bl are computed backward through624

the network. Weights are then updated using our weight update rules. Networks were trained using625

stochastic gradient descent (SGD) with mini-batches, momentum and weight decay. ReLU layers were626

initialized from a normal distribution using Kaiming initialization [124], whereas Xavier initialization627

was used in sigmoid layers [125]. Hyperparameter optimization was done on all networks using validation628

data (see Supplemental Materials for details).629

Training the model using node perturbation630

Node perturbation is a technique that approximates gradient descent by randomly perturbing the
activations of units in the network, and updating weights according to the change in the loss function
[22,23]. In the model trained using node perturbation, at each step, first the input is propagated through
the network as usual, after which the global loss, L, is recorded. Then, the same input is propagated
again through the network but the activations of units in a single layer l are randomly perturbed:

el = fl(Wl ⇤ el�1 + ⇠l), (20)

where the elements of ⇠l are chosen from a normal distribution with mean 0 and standard deviation
�. The new loss, LNP, is recorded. The weights in layer l are then updated using the following weight
update rule:

�Wl = ⌘l

�
(LNP � L)⇠l/�

2
�
eTl�1. (21)

The layer to be perturbed, l, is changed with each mini-batch by iterating bottom-up through all of the631

layers in the network.632
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