
S2 Text. Y2H-NGIS Simulation.
Y2H-SCORES: A statistical framework to infer protein-protein interactions from

next-generation yeast-two-hybrid sequencing data.

Simulation
To test the performance of Y2H-SCORES under different conditions we developed a framework for Y2H-NGIS
simulation, using empirical data to motivate simulation models and parameter values. Figure 5 shows the
experimental workflow we wish to simulate. We simulated both total and fusion read counts under selected
and non-selected conditions.

In what follows, we will explain how non-selected, selected, and in-frame prey counts were simulated. We
explain how every parameter of our model is estimated from real data. During the simulation study, the
most important variables will be intentionally varied to assess their impact. Key to these simulations is a
model for exponential yeast growth, which we describe next.

Model
We used a Galton-Watson (GW) branching process to model yeast growth in each condition c ∈ {S,N}. In
this presentation of the model, we drop the index c from the notation for simplicity. The rth replicate culture
in the presence of bait i starts with Mir(0) = M0 = 3.84 × 109 total yeast, and is grown for a potentially
random number of Tir generations until the exponential growth phase ends. While the population size
Mir(Tir) at the end of the experiment will be about 7.5× 1010, there is enough variation in this number that
we do not consider it necessary to condition on its value.

Let Xikr(t) be the number of yeast containing prey k at generation t. We assume Xikr(t) follows a simple
Galton-Watson branching process,

Xikr(t) = Xikr(t− 1) + δktr,

where δktr ∼ Bin(Xikr(t− 1), eik) and eik is the “fitness” of prey k in the given condition with bait i. We will
generally assume each prey is experiencing differential growth rates eik because of selection, but the model
also applies to non-selection conditions, where we assume all yeast grow at the same rate eik = eN .

From branching process theory, we know

E [Xikr(t) | Xikr(0) = 1] = (1 + eik)t

Var [Xikr(t) | Xikr(0) = 1] = (1− eik) (1 + eik)t−1
[
(1 + eik)t − 1

]
.

By the independence of yeast during exponential growth, if the initial number of prey k is Xikr(0) = Mikr,
then

E [Xikr(t) | Xikr(0) = Mikr] = Mikr (1 + eik)t

Var [Xikr(t) | Xikr(0) = Mikr] = Mikr (1− eik) (1 + eik)t−1
[
(1 + eik)t − 1

]
.

Given the true proportion qik of prey k in the prey library, the initial number of prey k yeast,

Mikr ∼ Bin (M0, qik) ,
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is a binomial random variable, where M0 is the initial number of diploid yeast cells starting the culture. By
the Laws of Total Expectation and Total Variance, we have the unconditional expectation and variance are

E [Xikr(t)] = M0qik (1 + eik)t

Var [Xikr(t)] = M0qik (1− eik) (1 + eik)t−1
[
(1 + eik)t − 1

]
+ (1 + eik)2t

M0qik [1− qik] .

At the end of the experiment (selection or non-selection), at generation Tir, we do not observe Xikr(Tir)
directly. Instead, we observe read counts

Zikr (Tir) ∼ NB(LirXikr(Tir), φik),
from a Negative Binomial distribution with mean and variance

E [Zikr (Tir) | Xikr (Tir)] = LirXikr (Tir)
Var [Zikr (Tir) | Xikr (Tir)] = LirXikr (Tir) + φikL

2
irX

2
ikr (Tir)

where Lir ≈ Vir

Mir(Tir) is a scaling factor (also called “size factor”) accounting for sequencing depth Vir and the
population size Mir(Tir) at generation Tir. Parameter φik ≥ 0 is an overdispersion parameter that accounts
for extra variation not already explained by the randomness in the initial prey count Mikr and the branching
process. We treat diploid enrichment and the second round of selection as deterministic in the model (Fig
5), but either may cause overdispersion relative to our stochastic growth model. Possible overdispersion is
accommodated by using a NB observation model.

The assumption Lir = Vir

Mir(Tir) is good if PCR amplification plays a negligible role in the sampling, meaning
read depth is much smaller than the number of yeast cells sampled and there is no bias in the amplification.
The unconditional mean and variance are therefore

E [Zikr (Tir)] = Lir E [Xikr (Tir)]
Var [Zikr (Tir)] = Lir E [Xikr (Tir)] + φikL

2
ir E

[
X2

ikr (Tir)
]

+ L2
irVar [Xikr (Tir)] .

Estimation of parameters
The proportion of true interactors in the library varies with bait, but is roughly Unif(0.0004, 0.001). This
distribution is based on the data of Pashova et al. (2016) who confirmed 8 out of ~15000 preys to be true
interactors. Our experiments also showed a similar trend, having confirmed interactions between 1 and 25 in
a ~36000 prey population.

Observed size factors were computed as L̂icr = vicr

Micr(Ticr) for the rth replicate of bait i under condition c.
Here, vicr =

∑K
k=1 zikcr(Ticr) is the observed coverage and Micr(Ticr) is the yeast population size at the end

of the experiment. For this calculation, we assumed the rough estimate Micr(Ticr) = 7.5 × 1010, which is
constant across baits, conditions and replicates.

No selection

Under no selection, each prey should replicate at the same rate regardless of bait, and we can drop the bait
index i. Furthermore, we assume eN = 1 under these ideal conditions, so every yeast replicates at every
generation. Because the initial population size MiNr(0) = M0 = 3.84× 109 is large and all yeast are actively
replicating, the total population size MiNr(t) = MN (t) is not only independent of bait i, but also effectively
deterministic and thus independent of replicate r, even if the individual number MikNr(t) of some prey k
is notably stochastic and not constant with bait i and replicate r. Since the experiment is stopped based
on the total population size, the number of elapsed generations TiNr = TN is also constant across baits and
replicates in the non-selection experiments. Under the branching process formulation, after t generations, the
population size is expected to reach

E [MN (t) |M0] = M0(1 + eN )t.
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Given information about the initial population sizeM0 and the final population sizeMN (TN ), we can estimate
the number of elapsed generations as

TN = log2

(
MN (TN )
M0

)
= log2

(
7.5× 1010

3.84× 109

)
≈ 4.29,

which we round to TN = 4 in practice.

Furthermore, we expect the proportion of prey k in the population qikNr(t) at generation t to satisfy

E [qikNr(t) | qikNr(0)] = qikNr(0),

and the expected initial proportion E [qikNr(0)] = qk is determined by the prey library, independent of
replicate r, bait i and experimental condition (S or N). We have observed zikNr(TN ) reads of prey k in the
presence of the rth replicate of bait i in the absence of selection. We can use the method of moments to
estimate

q̂k = 1∑
i,r 1

∑
i,r

zikNr (TN )
viNr

,

the average proportion of prey k observed across all baits and replicates in the non-selection condition.

We can also use the method of moments to estimate overdispersion parameters φkN for each prey. Estimating
equation∑

i,r

z2
ikNr(TN ) =

∑
i,r

Var(ZikNr(TN )) + E[ZikNr(TN )]2

=
∑
i,r

LiNr E [XikNr (TN )] + φ̂kNL
2
iNr E

[
X2

ikNr (TN )
]

+ L2
iNrVar [XikNr (TN )] + (LiNr E [XikNr (TN )])2

=
∑
i,r

LiNr E [XikNr (TN )] + φ̂kNL
2
iNr(Var [XikNr (TN )] + E [XikNr (TN )]2)

+ L2
iNrVar [XikNr (TN )] + (LiNr E [XikNr (TN )])2,

yields estimate

φ̂kN =

∑
i,r

{
z2

ikNr(TN )− L2
iNrVar[XikNr (TN )]− LiNr E[XikNr (TN )]− (LiNr E[XikNr (TN )])2

}
∑

i,r {L2
iNr (Var[XikNr (TN )] + E[XikNr (TN )]2)} ,

with
E [XikNr(TN )] = M0q̂k (1 + eN )TN

Var [XikNr(TN )] = M0q̂k (1− eN ) (1 + eN )TN−1
[
(1 + eN )TN − 1

]
+ (1 + eN )2TN M0q̂k [1− q̂k] .

Selection

By experimental design, we know the initial number of cells MiSr(0) = M0 = 3.84 × 109 in the selection
experiments, which do not vary by bait i or replicate r. Let qikSr(0) be the initial proportion of prey k at
generation t = 0 in the selection experiment with bait i. Since both non-selected and selected growth were
initialized in the same way and non-selected growth does not change the prey proportions, we can assume the
initial prey proportion qikSr(0) = q̂k, where q̂k were estimated from the no selection experiments. Then, the
initial number of prey k yeast in the selection replicate r against bait i,

MikSr(0) ∼ Bin (M0, q̂k) ,
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is a binomial random variable.

Culture growth under selection depends on the bait and because it is so severely inhibited, becomes stochastic,
so the time to saturation is observed to vary across baits and replicates. We estimated the number of
generations TiSr = hiSr/gT per selection experiment assuming a constant generation time gT = hN/TN ,
calculated from the observed culture time hN = 18h of the non-selected samples, which was constant across
experiments, and the observed culture times hiSr of selected samples, varying across baits and replicates.

By the end of the experiment, after TiSr generations of growth, the theory developed earlier yields unconditional
mean and variance

E [ZikSr (TiSr)] = LiSr E [XikSr (TiSr)]
Var [ZikSr (TiSr)] = LiSr E [XikSr (TiSr)] + φikSL

2
iSr E

[
X2

ikSr (TiSr)
]

+ L2
iSrVar [XikSr (TiSr)]

for the observed count ZikSr (TiSr) of prey k.

We used the method of moments to estimate eik from the observed counts zikSr(TiSr) as

3∑
r=1

zikSr(TiSr) =
3∑

r=1
LiSrM0q̂k (1 + ê′ik)TiSr ,

which yields ê′ik as the root of equation

0 =
3∑

r=1
LiSrM0q̂k (1 + ê′ik)TiSr −

3∑
r=1

zikSr(TiSr),

equivalent to

0 = M0

MiSr(TiSr)

3∑
r=1

q̂k (1 + ê′ik)TiSr −
3∑

r=1
q̂ikSr(TiSr),

where once again we make the assumption that MiSr(TiSr) ≈ 7.5× 1010 at the end of the experiment, and
thus is constant across baits and replicates. We then estimated ê′ik using the Newton-Raphson method
implemented by the uniroot function in R. To assure a positive estimate, we ultimately set

êik = max {0, ê′ik} .

As in the non-selection experiments, we can estimate the overdispersion parameters φikS as

φ̂ikS =

∑3
r=1

{
z2

ikSr(TiSr)− L2
iSrVar[XikSr (TiSr)]− LiSr E[XikSr (TiSr)]− (LiSr E[XikSr (TiSr)])2

}
∑3

r=1 {L2
iSr (Var[XikSr (TiSr)] + E[XikSr (TiSr)]2)}

.

with
E [XikSr(TiSr)] = M0q̂k (1 + êik)TiSr

Var [XikSr(TiSr)] = M0q̂k (1− êik) (1 + êik)TiSr−1
[
(1 + êik)TiSr − 1

]
+ (1 + êik)2TiSr M0q̂k [1− q̂k] .

Fusion data

We expect some fraction uikc of the Zikcr(Ticr) observed reads to be fusion reads Fikcr. The factors
determining uikc include the placement of the PCR primers, the read length and coverage, the library and
bait in selective conditions. It is difficult to model this process, but in a high throughput experiment, there
are enough prey to model the distribution empirically. After verifying that the fusion read fraction was stable
across baits and replicates in non-selection conditions, we simply estimated ûkN = 1∑

i,r
1

∑
i,r

fikNr

zikNr(TN ) .
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In selected conditions, the fusion read fraction was stable across replicates, but not baits, so we estimated
ûikS = 1∑

r
1

∑
r

fikSr

zikSr(TiSr) . The resulting empirical distributions are shown in Figure S4.

If the number of in-frame fusion reads is given by Yikcr, some proportion πikc = Yikcr

Fikcr
of the fusion reads will

be in-frame. Again, we observed little variation across baits and replicates in non-selection conditions and little
variation across replicates in selection conditions. For the non-selected condition, we computed the observed
proportions π̂kN = 1∑

i,r
1

∑
i,r

yikNr

fikNr
for all prey with at least one fusion read. We used the density π̂kN to

sample πkN during the simulation. Similarly, for the selected condition we calculated π̂ikS = 1∑
r

1

∑
r

yikSr

fikSr

and used it to sample πikS .

For selection conditions, the in-frame proportion πikS will further depend on the bait and the type of
prey, true interactor, non-interactor, or auto-active/non-specific interactor. Since we do not know the true
interactor status of each prey, we set true interactors πikS ∼ π̂ikS

{
πikS ∈ π̂ikS : π̂ikS|0.95 < πikS < π̂ikS

}
,

which matches the right peak of the observed in-frame proportions in selected conditions (Fig 2 and Fig S4D).
In the case of non-interactors and auto-active/non-specific interactors, we sampled from this density without
restiction. S4 Fig shows these distributions depicting a frame preference during selection, which points to a
higher efficiency of a specific prey frame during selection. In the case of true interactors we asume this frame
should be in-frame to have a biological meaning.

Simulation algorithm
Our simulation relies on parameters estimated from real data, namely estimates

QN =
{

(q̂k, φ̂kN ) : 1 ≤ k ≤ K
}

from the non-selection experiments

QS =
{

(êik, φ̂ikS) : 1 ≤ i ≤ I, 1 ≤ k ≤ K
}

from the selection experiments, and

L =
{
L̂icr : 1 ≤ i ≤ I, 1 ≤ r ≤ 3, C ∈ {S,N}

}
from all experiments

TS =
{
T̂iSr : 1 ≤ i ≤ i, 1 ≤ r ≤ 3

}
from all selection experiments

UN = {ûkN : 1 ≤ k ≤ K} from all non-selection experiments
US = {ûikS : 1 ≤ i ≤ I, 1 ≤ k ≤ K} from all selection experiments.
PN = {π̂kN : 1 ≤ k ≤ K} from all non-selection experiments
PS = {π̂ikS : 1 ≤ i ≤ I, 1 ≤ k ≤ K} from all selection experiments.

In addition, the simulation takes several parameters as input: the proportion of auto-active/non-specific
prey ps, the fitness threshold et, the number of simulated baits Isim, the total number of prey np, the
initial selected population size and the initial non-selected population size MiSr(0) = MN (0) = M0, and
the final population size MN (TN ), assumed to be approximately equal to the final selected population sizes
MiSr(TiSr). The number TN of generations elapsed in non-selected conditions is implied by these choices.
True interactors are assumed to have fitness eik ≥ et, while non-interactors have eik < et. A proportion ps of
auto-active/non-specific interactors in the sample, which autoactivate in the presence of any bait, or interact
with multiple baits. Their eik are selected from the top 10% of êik < et in QS .

Select ni ∼ Unif(0.0004, 0.001) · np true interactors and ns ∼ ps(np − ni) auto-active/non-specific interactors
from the non-interactors. Compute the 99th percentile e0.99t of all fitness parameters êik < et. Compute
TN = log2

(
MN (TN )

M0

)
In what follows, GW(M, e, t) is the Galton-Walton random branching process initialized

with M particles, replicating at rate e for t generations. For the fusion count simulation we calculate the
95th percentile πikS|0.95 of all the in-frame proportion for selected condition πikS|0.95 < π̂ikS .

For each bait 1 ≤ j ≤ Isim:

• For each replicate r,
– select LjSr, LjNr from L with replacement, and
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– select TjSr from TS with replacement.
• For each prey l in the non-selected condition:

– If j = 1, this is the first prey, we select parameters that will be shared by subsequent preys:
∗ Select (ql, φlN ) from subset QN with replacement unless we want to simulation low abundance

interactors, in which case truncate ql above the minumum values sampled during the simulation
∼ 1× 10−8 if l is a true interactor, with φlN = 0.

∗ If we want to simulate high overdispersion then we sample φlN from
{
φ̂kN ∈ QN : φ̂kN |0.9 < φ̂kN

}
⊂

QN

∗ Sample proportion of fusion reads ulN from UN .
∗ Sample proportion of in-frame reads πlN from PN .

– For each replicate r:
∗ Simulate XjlNr(TN ) ∼ GW(M0ql, eN , TN ).
∗ Simulate ZjlNr(TN ) ∼ NB(LjNrXjlNr(TN ), φlN ).
∗ Simulate number of fusion reads FjlNr ∼ Bin (ZjlNr(TN ), ulN ).
∗ Simulate number of in-frame fusion reads YjlNr ∼ Bin (FjlNr, πlN ).

• For each prey l in the selected condition:
– Sample proportion of fusion reads ujlS from US .
– If l is true interactor with bait j,

∗ Select (ejl, φjlS) from subset
{(
êik, φ̂ikS

)
∈ QS : êik > et

}
⊂ QS .

∗ Sample πjlS from subset
{
π̂ikS ,∈ PS : π̂ikS > π̂ikS|0.95

}
⊂ PS .

– Else if it is a auto-active/non-specific interactor
∗ Select (ejl, φjlS) from subset

{(
êik, φ̂ikS

)
∈ QS : ê0.99t < êik < et

}
⊂ QS .

∗ Sample πjlS from PS .
– Else if it is a non-interactor and j = 1,

∗ Select (ejl, φjlS) from subset
{(
êik, φ̂ikS

)
∈ QS : êik ≤ et

}
⊂ QS and set k′ to the prey k

selected.
∗ Sample πjlS from PS .

– Else if it is a non-interactor or a true interactor and j > 1,
∗ Select (ejl, φjlS) from subset

{(
êik, φ̂ikS

)
∈ QS : k = k′

}
.

∗ Sample πjlS from PS .
– If we want to simulate high overdispersion then we sample φjlS from

{
φ̂ikS ∈ QS : φ̂ikS|0.9 < φ̂ikS

}
⊂

QS

– For each replicate r:
∗ Simulate XjlSr(TjSr) ∼ GW(M0ql, ejl, TjSr).
∗ Simulate ZjlSr(TjSr) ∼ NB(LjSrXjlSr(TjSr), φjlS).
∗ Simulate number of fusion reads FjlSr ∼ Bin (ZjlSr(TjSr), ujlS).
∗ Simulate YjlSr ∼ Bin (FjlSr, πjlS).
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