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Patient Characteristics 

The patient characteristics and statistics for the trial enrollments are shown in Table S1. 
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Table S1. Patient characteristics  

Patient Characteristics Frequency (n=20) [%] 

Disease Status 
Newly Diagnosed 18 [90%] 
Platinum-Sensitive Recurrent Disease 2 [10%] 
Diagnosis 
Ovarian Cancer 17 [85%] 
Fallopian Tube Cancer 2 [10%] 
Primary Peritoneal Cancer 1 [5%] 
FIGO Tumor Stage 
I/II 5 [25%] 
III/IV 15 [75%] 
Tumor Grade 
High Grade or Poorly Differentiated 19 [95%] 
Low Grade or Well Differentiated 1 [5%] 
Tumor Histology 
Serous 16 [80%] 
Clear Cell 2 [10%] 
Endometrioid 1 [5%] 
Carcinosarcoma 1 [5%] 
Cytoreduction 
Optimal Primary Cytoreduction 16 [80%] 
Suboptimal Primary Cytoreduction 2 [10%] 
Secondary Cytoreduction 2 [10%] 
Systemic Therapy prior to Specimen Collection 
None 8 [40%] 
Neoadjuvant Platinum + Taxane 10 [50%] 
Multiple Prior Therapies, including >=1 
Platinum 2 [10%] 
System Therapy after Specimen Collection 
Platinum + Taxane 12 [60%] 
Platinum + Gemcitabine 5 [25%] 
Platinum + Cyclophosphamide 1 [5%] 
Platinum + Immunotherapy 1 [5%] 
Platinum Monotherapy 1 [5%] 
Platinum Free Interval (PFI) 
(Duration of Remission after Platinum Therapy) 
PFI ≥ 6 months (Platinum-Sensitive) 16 [80%] 
PFI < 6 months (Platinum-Resistant) 4 [20%] 
Other Patient Demographics Median [Range] 
Age 63.5 [47-76] 
Number of Prior Systemic Therapies 1 [0-5] 
Number of Prior Platinum Therapies 1 [0-3] 
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Immobilization  

The two different sample immobilization methods were used.  The first 8 samples were immobilized using 

agar, and the remaining 15 samples were immobilized using poly-lysine.  The shift occurred because poly-

lysine was found to provide better sample stabilization.  However, this shift created systematic differences in 

some BDI features. There is a difference in the means for values of baseline biomarkers like NSD in a two-

sample t-test for samples immobilized with agarose vs with poly-lysine. The difference in drug response is 

significant for paclitaxel and its combination with carboplatin, but for not carboplatin only. D’Agostino-

Pearson normality tests were used to validate the t-test normalized data assumption. (p-values are given in 

Table S2). The low NSD values found in poly-lysine immobilized samples indicate that poly-lysine is more 

effective for sample attachment. Drugs containing paclitaxel have lower SDIP0 values that may indicate that 

the paclitaxel mechanism of action, i.e. targeting tubulin and stabilizing the microtubule polymer, may be 

interacting with the mechanical properties of the agarose, creating trends that show up as part of the drug 

responses.  The comparison of agar to poly-lysine is shown in Fig. S1. Because of this immobilization 

systematic, the primary analysis trains exclusively on the 15 samples immobilized by poly-lysine, then uses 

the trained model to test the agar samples and the metastatic samples (of either immobilization).  This 

approach down-weights the feature selection that might be influenced by the agar mechanical properties. 

 

 
 

Figure S1: comparison of feature value from samples under different immobilization methods. a) NSD values. b) 

SDIP0 values for three treatments 
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Table S2: p-values for statistical tests used to study agar versus poly immobilization 
 

 NSD SDIP0 (carb) SDIP0 (carb+tax) SDIP0 (tax) 

t-test for 
agar/poly-lysine 

comparison 
 0.06   

Normality test for 
agar samples  0.008 0.04  

Normality test for 
poly-lysine 

samples 
    

 
 
 

Biomarker Definition 

 
Table S3 is a comprehensive description of all 40 metrics, or features, associated with a patient and drug.  

The first 9 are the global biomarkers, and the next 9 are the local biomarkers, discussed in the main text.  

These 18 are all based on the time-frequency format of the drug-response spectrogram.  The frequency 

bands are described in Table 2 in the main text.  The time dependence is simple polynomial: 0 is constant, 1 

is linear, and 2 is quadratic. 

 The biomarkers 19 – 27 are drug-induced changes in the preconditions 28 – 36.  NSD is the 

normalized standard deviation, also known as temporal speckle contrast.  BSB is the brightness of the 

sample. NCNT is the number of pixels in the cross-sectional image of a target. DR is the “vertical” 

dynamic range of the spectral density of a power spectrum.  NY is the value of the spectral density at the 

Nyquist frequency.  KNEE is the knee frequency of the fluctuation spectrum at which the power falls to 

half of its low-frequency value.  HW is the half-width of the spectrum, closely related to KNEE.  S is the 

spectral slope (linear on log-log) of the power spectrum for frequencies above the knee frequency and is 

closely related to SF which uses a nonlinear fitting method to measure the slope.  The final metrics in Fig. 

S3 include three measures of the baseline B0, B1 and B2 which each represent constant, linear and 

quadratic frequency dependence.  The final metric DQ is the data quality assigned to each well or to each 

patient and drug. 

 

152 10-´ 117 10-´ 72 10-´

55 10-´ 82 10-´

107 10-´ 72 10-´ 510- 204 10-´
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Table S3:  Definitions of Biodynamic Biomarkers 
 

 Biomarker Name Description 
  Global Spectral Biomarkers 
1 ALLF0 All frequencies.  All times 
2 SDIP0 Blue shift: All times 
3 CDIP0 Middle-out: All times 
4 ALLF1 All frequencies.  Linear time dependence 
5 SDIP1 Blue shift: Linear time dependence 
6 CDIP1 Middle-out: Linear time dependence 
7 ALLF2 All frequencies.  Quadratic time dependence 
8 SDIP2 Blue shift: Quadratic time dependence 
9 CDIP2 Middle-out: Quadratic time dependence 
   
  Local Spectral Biomarkers 
10 LOF0 Low-frequencies:  All times 
11 MID0 Mid-frequencies: All times 
12 HI0 Hi-frequencies: All times 
13 LOF1 Low-frequencies:  Linear time dependence 
14 MID1 Mid-frequencies: Linear time dependence 
15 HI1 Hi-frequencies: Linear time dependence 
16 LOF2 Low-frequencies:  Quadratic time dependence 
17 MID2 Mid-frequencies: Quadratic time dependence 
18 HI2 Hi-frequencies: Quadratic time dependence 
   
  Change in Precondition 
19 DNSD Change in normalized standard deviation (NSD) 
20 DBSB Change in back-scatter brightness (BSB) 
21 DNCNT Change in number of pixels (NCNT) 
22 DDR Change in dynamic range (DR) 
23 DNY Change in Nyquist floor (NY) 
24 DKNEE Change in knee frequency (KNEE) 
25 DHW Change in half-width (HW) 
26 DS Change in Slope (S) 
27 DSF Change in linear slope (SF) 
   
  Precondition 
28 NSD Normalized standard deviation (NSD) 
29 BSB Back-scatter brightness (BSB) 
30 NCNT Number of pixels (NCNT) 
31 DR Dynamic range (DR) 
32 NY Nyquist floor (NY) 
33 KNEE Knee frequency (KNEE) 
34 HW Half-width (HW) 
35 S Slope (S) 
36 SF Linear slope (SF) 
37 B0 Baseline: all frequencies 
38 B1 Baseline: linear frequency 
38 B2 Baseline: quadratic frequency 
40 DQ Data Quality 
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The biomarkers in Table S3  have a covariance matrix with off-diagonal values that measure the correlations 

among them.  Therefore, we use principal component analysis (PCA) based on singular vector decomposition 

(SVD) to pool the biomarkers into a smaller number of independent biomarkers.  The feature selection is 

described in detail in the main text.  The four features selected in this study are shown in Table S4 along with 

the coefficients for each of the raw features in Table S3.  
Table S4. Coefficients of Raw Features combined into Principal Components 
 

 BM7C BM2TC BM4TC BM7TC 
ALLF0 0.3359 -0.209 0.0488 0.2833 
SDIP0 -0.2051 -0.0079 0.1717 -0.3371 
CDIP0 0.2623 0.0497 -0.0166 -0.1102 
ALLF1 -0.0686 0.386 0.0133 0.0016 
SDIP1 0.0355 -0.0034 -0.2491 -0.0186 
CDIP1 0.135 0.3571 0.5599 0.1908 
ALLF2 0.324 0.2502 -0.1074 0.3021 
SDIP2 -0.0968 0.069 0.042 -0.3345 
CDIP2 0.308 0.0499 0.3578 0.0476 
LOF0 0.2654 -0.0776 -0.1592 0.4261 
MID0 0.3493 -0.1595 0.0381 0.1936 
HI0 0.2201 -0.2164 -0.0111 0.1721 
LOF1 -0.1274 0.1884 -0.1198 -0.0806 
MID1 -0.0123 0.408 0.1757 0.0741 
HI1 -0.1945 0.3733 -0.5031 -0.1617 
LOF2 0.2112 0.063 -0.0942 0.3908 
MID2 0.3301 0.2206 -0.0034 0.2624 
HI2 0.1719 0.3395 -0.0363 -0.031 
DNSD 0.0361 -0.0292 0.0128 0.0494 
DBSB 0.0084 0.041 0.0246 -0.0043 
DNCNT -0.0001 -0.0004 0 0.0003 
DDR 0.0553 0.0269 -0.0294 0.1008 
DNY 0.0434 -0.043 -0.0396 0.0302 
DKNEE 0.0008 0 -0.0001 0.0011 
DHW 0.0476 0.0314 -0.0282 0.0256 
DS 0.0004 -0.0003 -0.0001 0.0011 
DSF 0.0561 -0.0122 -0.0124 0.1204 
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Spectral Response to Refreshed Medium 

The growth medium is RPMI-1640, and the carrier for adding drugs to the medium is 0.1% DMSO.  

Therefore, 17 replicates of the negative control (0.1% DMSO in RPMI-1640 medium) are applied for each 

patient to measure the response of the living tissue to the refreshed medium that contains fresh nutrients and 

oxygen.  The spectrogram of the negative control is shown in Fig. S2 averaged over all replicates over all 

patients.  The baseline is established for 4 hours and the medium is applied.  The biopsy samples respond to 

the refreshed medium with a broad-band increase in spectral density centered around 0.1 Hz (average 

intracellular speed 300 nm/sec).  This enhanced activity is a general property of living samples responding 

to refreshed medium that has been observed across multiple disease types.  Because this non-negligible 

response is part of every drug signature, this background spectrogram is subtracted from the drug responses 

on a patient-by-patient basis.  The spectrograms shown in the figures in the main text are all after this 

background subtraction. 

 

Fig. S2 Average spectrogram response to the negative control (0.1% DMSO in RPMI-1640 growth 

medium).  The biopsy samples respond with increased spectral weight across nearly the full frequency 

band.  This pattern is consistent with increased cellular metabolism in response to the refreshed medium.  

This background response is subtracted from each drug response. 
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Sample-to-sample variance is a key aspect of live-tissue measurements caused by sample heterogeneity.  

An important distinction is well-to-well variability among spectrograms for a given patient, compared to 

the patient-to-patient variability.  The first is analogous to homogeneous broadening, and the second is 

analogous to inhomogeneous broadening.  Standard deviations of the spectrograms are shown in Fig. S3.  

The average patient spectrogram standard deviation is shown in Fig. S3a, and the average standard 

deviation across all patients is shown in Fig. S3b.  The peak standard deviation in the latter case is 0.4 

about 8 hours after the medium refresh and in the former is 0.27.  Therefore, there is more variance patient-

to-patient than well-to-well for a given patient.  The standard deviations for the R-class and the S-class are 

given in Figs. S3c and S3d.  The S-class shows larger variability among patients than the R-class.  It is 

important to note that with 18 well-replicates per treatment, the maximum standard error on a drug-

response spectrogram is approximately 0.1, or a ±10% change in spectral density at low frequencies.  The 

standard deviation at the Nyquist floor is much smaller, which suggests that mid and high frequencies may 

be more reliable as biomarkers than lower frequencies. The maximum standard deviation for a given patient 

is 0.27 at low frequencies approximately 8 hours after treatment.  With 18 replicates per treatment per 

patient, this represents ±7% spectral density uncertainty at that time and frequency.  The average standard 

deviation over the entire time-frequency plane is 0.15 and the average standard error on 18 replicates is then 

about 4%.  This 4% change in spectral content is then the detection limit of a drug effect for a given patient. 
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Fig. S3.  Homogeneous versus inhomogeneous broadening of negative control spectrograms.  a) Patient-

based average standard-deviation of neg-control. This is the average well-to-well variability for a patient 

and represents the homogeneous broadening. b) Standard deviation of all negative control wells.  This is the 

patient-to-patient variability and represents inhomogeneous broadening.  c) Standard deviation of R-class 

negative control wells. d) Standard deviation of S-class negative control wells. 

 

Training-Set Stability for Predicting Chemosensitivity 
 

The chemosensitivity values for each patient in the study, presented in Fig. 3a in the main text, is based on 

a training set for only poly-lysine immobilization of sensitive and resistant primary tumor biopsies.  The 

metastatic samples (hov8b, 9, 11, 12, 18b, 20b, 26),  as well as the agar-immobilized samples (hov5, 7, 8, 

10), were then predicted using the trained algorithm.  Furthermore, the poly-lysine-immobilized training set 

was predicted using one-hold-out.   
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 This training subset was chosen because of the stability of the poly-lysine immobilization.  

However, other training subsets are possible.  For instance, one could train on all the samples and predict 

chemosensitivity using one-hold-out for each one.  The results are shown in Fig. S4 as the red bars (error 

bars are the standard error on the average of the ensembles).  Alternatively, the training set can be the agar 

and poly-immobilized samples, predicted using hold-out, and predicting the metastatic samples using the 

trained algorithm.  The results are shown as the green bars in Fig. S4.  These are reasonably disparate 

choices for the training set, and most of the patients share similar chemosensitivity values among all three 

training methods.  Notable exceptions are patients hov17, hov11, hov18b, hov10 and hov20.  Therefore, 

84% of the patients predict consistently among the different training subset methods. 
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Fig. S4  Comparison of three alternate training methods to measure patient chemosensitivity.  The red bars 

are when training using the full set of agar-immobilized, poly-immobilized and metastatic samples and 

predicting using one hold out.  The blue bars are when training only on the poly-immobilized samples and 

testing both agar and metastatic samples (the same as Fig. 3 in the manuscript).  The green bars are when 

training using both agar and poly immobilization, predicting the training patients using one hold out, and 

predicting the metastatic patients using the trained classifier.  The error bars are the error on the mean from 

the ensemble of hold-out prediction algorithms.  The patients who have inconsistent results among the 

different approaches are hov17, hov11, hov18b, hov10, hov20 and hov5.  Four of these patients are the ones 

with weak predictions from Fig. 3 in the main text. 

 

The statistical analysis of the poly-immobilized predictions are given in Table S5 based on the decision point 

that optimizes the sensitivity and specificity.   
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Table S5. Statistics for Assay Performance 
Mean R Mean S Std R Std S H p-value 

-0.5350 0.2309 0.2454 0.1540 1 < 0.001 

 

Max CI Min CI Mean Diff t-statistic Mut. Info. z-factor 

0.9456 0.5862 0.7659 8.9 5.2 1.8 

 

AUC ACC Sens Spec PPV NPV 

0.96 0.91 0.93 0.89 0.89 0.93 

 

 

Original Spectrograms and Features 
 

 

Fig. S5 Original DMSO-subtracted spectrograms for all 23 specimens for carboplatin, Taxol and 

carboplatin+Taxol.  The axes orientations have been switched for ease of viewing. Color scale is -60% to 

+60% 
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Fig. S6  All SVD feature vectors.  The features with the highest z-factors are selected for downstream 

analysis. 

 

Comparison of Human/Mouse/Cell-Line Drug Responses 

Our previous work (Ref. 23) studied human ovarian cell lines grown as spheroids or as mouse xenografts.  

The response to carboplatin for sensitive (A2780) and resistant (CP70) cell lines are shown in Fig. S7 

compared to the results from the current work on the human biopsies.  The biopsies share similarities with 

the spheroids, but not the mouse explants.  The spheroids and biopsies have only human ovarian 

constituents, while the explants have constituents from the mouse host (stroma, fibroblasts and possibly 

immune cells), which may contribute to the differences. 

SVD Features
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Fig. S7  Comparison of averaged spectrograms of three ovarian tissue types for 10 µM carboplatin 

treatment.  The explants are mouse xenografts grown from A2780 (sensitive) and CP70 (resistant) cell 

lines.  The spheroids are grown in bioreactors from the same cell lines.  The biopsies are the human 

biopsies from this study.  The human biopsies show similar responses to the spheroids but not the mouse 

explants.   
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