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Abstract 39 

Little is known about the emergence and persistence of HIV-infected T cell clones in 40 

perinatally-infected children. We analyzed peripheral blood mononuclear cells for clonal 41 

expansion in 11 children who initiated antiretroviral therapy (ART) between 1.8-17.4 months of 42 

age and with viremia suppressed for 6-9 years. We obtained 8,662 HIV-1 integration sites from 43 

pre-ART and 1,861 sites on ART. Expanded clones of infected cells were detected pre-ART in 44 

10/11 children. In 8 children, infected cell clones detected pre-ART persisted for 6-9 years on 45 

ART. A comparison of integration sites in the samples obtained on ART with healthy donor PBMC 46 

infected ex-vivo showed selection for cells with proviruses integrated in BACH2 and STAT5B. Our 47 

analyses indicate that, despite marked differences in T cell composition and dynamics between 48 

children and adults, HIV-infected cell clones are established early in children, persist for up to 9 49 

years on ART, and can be driven by proviral integration in proto-oncogenes. 50 

 51 

 52 

  53 
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Introduction 54 

Human Immunodeficiency Virus (HIV) remains a worldwide health crisis. Approximately 55 

37.9 million people are living with HIV globally and about 1 million die each year (1). Although 56 

current antiretroviral therapy (ART) is able to fully suppress HIV-1 replication in the blood (2-5), 57 

lymph nodes (6-9), and other tissues (10, 11), it does not cure the infection. If treatment is initiated 58 

before the immune system is heavily compromised and if there is lifelong adherence, ART can 59 

lead to a partial restoration of CD4+ T cell numbers (12, 13) and can prevent immunodeficiency 60 

in most individuals.  61 

The main obstacle to a cure for HIV-1 is the persistence of replication-competent 62 

proviruses in long-lived and/or proliferating populations of infected T cells (14, 15). Most of the 63 

infected cells that persist on ART contain defective proviruses that are incapable of producing 64 

infectious virus (16, 17), although they may be complemented to generate infectious virus upon 65 

ART interruption (18, 19). These defective proviruses do not directly contribute to the HIV-1 66 

reservoir that persists on ART but complicate its measurement and may contribute to persistent 67 

immune activation. The fraction of infected cells that contains replication-competent 68 

(intact/infectious) proviruses has been estimated to be between 1 and 5% in individuals on long-69 

term ART (16, 17, 20). Although the fraction of intact proviruses is small relative to the total 70 

number of infected cells, there are sufficient replication-competent proviruses, or defective 71 

proviruses that can be readily complemented, to fuel rapid viral rebound if ART is interrupted (21, 72 

22). In both adults and children, when ART is initiated soon after infection, the number of infected 73 

cells is reduced, sometimes to levels below the detection limit of current assays (20, 23, 24) and 74 

rebound viremia can be significantly delayed (25-28).  75 

Studies of HIV-1 integration sites were initially performed in cell lines and showed that 76 

sites were widely distributed but favored highly expressed genes (29-31). Two studies in 2014 77 

were the first to demonstrate expansion of HIV-infected T cells in vivo (32, 33). These clones of 78 

infected T cells can be detected as early as Fiebig IV in acute infection (34), can persist in adults 79 

for at least 3 years on ART (35), and are distributed among different tissues (6). Studies of clones 80 

persisting in adults on ART revealed selection against proviruses in expressed genes with a 81 

stronger selection against those that are integrated in the same orientation as the host gene (32, 36) 82 

and selection for proviruses integrated into some proto-oncogenes—e.g. BACH2, MKL2, and 83 

STAT5B (32, 33). Although much is now known about the HIV-1 integration site landscape in 84 

adults prior to and on ART, there is little information on clonal expansion of infected cells in 85 

children who acquired HIV perinatally (PHIV). The largely anti-inflammatory and 86 

immunoregulatory environment of the immune systems in children (37, 38) could affect the 87 

behavior of infected T cells in ways that would alter the integration site landscape and selection of 88 

proviruses at specific sites in children, leading to differences compared to adults. Furthermore, 89 

infants have a high fraction of naïve T-cells and fewer clonally expanded T-cells than adults (39, 90 

40), a difference that could affect integration site selection and clonal expansion of infected cells. 91 
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To our knowledge, only two reports have investigated clonal expansion of infected cells in 92 

children, to date (33, 41). However, only a few children were studied and the integration site 93 

sampling in these studies was shallow because it is difficult to collect large numbers of PBMC 94 

from infants and children. One study reported clones of infected cells in 3 children initiating ART 95 

during chronic infection (33) and the other in 3 neonates on ART who were followed for 2 years 96 

(41). Here, we expand on these studies to perform a deep look at the integration site landscape in 97 

11 children initiating ART early and followed for 6-9 years of continual suppression of viremia. 98 

We performed a detailed analysis of the integration site landscape by comparing the findings to 99 

those in ex vivo infected adult PBMC and to those in infected adults on ART (6, 32). To study the 100 

emergence of infected CD4+ T cell clones before ART initiation, the dynamics of their long-term 101 

persistence, and their potential survival within select genes, we obtained 10,523 integration sites 102 

from CD4+ T cells in the perinatally-infected children using samples obtained prior to and during 103 

long-term ART. We compared longitudinal integration site datasets to look for evidence of long-104 

term persistence of clones of infected T cells and to investigate the frequency and size of the 105 

infected cell clones in the children. Finally, to determine if there exists selective maintenance of 106 

infected cells within single genes, we analyzed the integration sites in children compared to sites 107 

obtained from ex vivo-infected, CD8-depleted PBMC (deposited at rid.ncifcrf.gov) (42, 43). 108 

We report here that clones of infected cells are found in children as early as 1.8 months 109 

after birth and that some of the clones that arose early persisted for up to 9 years on ART. 110 

Strikingly, although there are noted differences between the immune environments in children 111 

compared to adults, our findings on the population of infected T cell clones are similar to what has 112 

been reported for adults, suggesting that clonal expansion is the main mechanism for persistence 113 

of HIV-1 in children whose viremia is suppressed by ART. We also found that the selection for 114 

proviruses integrated in certain genes is similar in adults and children and, importantly, that this 115 

selection occurs pre-ART. Integration events and selection for proviruses in these genes in children 116 

born with HIV-1 could have long-term effects in adulthood that have not been investigated and 117 

are not observed in adults who were not born with HIV infection.  118 

  119 
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Results 120 

Participants and Sampling 121 

PBMC were obtained from children enrolled in the Children with HIV and Early 122 

Antiretroviral therapy (CHER) randomized trial and post-CHER cohort (44) who were identified 123 

as plasma HIV-1 RNA positive by 7 weeks of age, initiated ART within 18 months of age (median: 124 

5.1 months; range: [1.8 to 17.4] months), and had long-term, sustained suppression on ART (3) 125 

(Table S1). Children were included based on the availability of pre-ART PBMC and PBMC 126 

obtained after at least 6 years of continuous suppression of viremia (median: 8.1 years; range 6.8 127 

to 9.1 years). The sex, pre-treatment plasma HIV-1 RNA, ART regimen, time to viral load 128 

suppression, and CD4 percentage after long-term ART are shown in Table S1. The pre-ART and 129 

on-ART enchriched-CD4+ T cells were analyzed for the presence and persistence of clones of 130 

infected cells. We obtained between 197 and 1386 (median: 655) integration sites from each of the 131 

samples taken before ART was initiated and between 77 and 432 (median: 137) integration sites 132 

from those after at least 6 years on ART (Table 1).  In total, we obtained 10,523 HIV-1 integration 133 

sites from the 11 children. 134 

 135 

Clones of HIV-1 infected cells are detected in children pre-ART and persist on long-term ART 136 

Clonal expansion of cells infected with replication-competent proviruses or defective 137 

proviruses that can be complemented during active replication (45, 46), is an important mechanism 138 

for HIV-1 persistence on ART (6, 14, 35, 47, 48). The detection of identical integration sites within 139 

a sample is the hallmark of clonal expansion of an infected cell, independent of the replication-140 

competence of the integrated provirus. We defined an integration site as being from a clone using 141 

three separate criteria: 1) detection of the same integration site at least 3 times in pre-ART samples 142 

(to account for recently-infected cells that had duplicated their DNA but would die before 143 

establishing a clone), 2) detection of the same integration site at least twice in an on-ART sample 144 

(if a cell is dividing after long term ART, it is almost certainly part of a clone), and 3) detection of 145 

the same integration site in two different samples from the same donor. Additionally, the method 146 

we use to identify integration sites recovers the host-virus DNA junctions from both the 5’ and 3’ 147 

LTRs (32). Therefore, integration sites observed at both junctions were considered as a single 148 

integration site under the conservative assumption that they could have originated from the same 149 

provirus. In all but one of the 11 donors [Participant Identifier (PID) ZA009], we found at least 150 

one clone of infected cells in the pre-ART samples (range: [1 to 27]) (Table 1, column 4). We 151 

found at least 3 clones of infected cells in all on-ART samples (range: [3 to 32]) (Table 1, column 152 

9). Although we did not detect any clones of infected cells in the pre-ART samples from donor 153 

ZA009 by the stringent criteria described above, 16 of the integration sites were detected twice, 154 

suggesting that clones of infected T cells could have been present in this donor pre-ART (Table 1, 155 

column 4 parenthetical). We identified clones of infected cells in the pre-ART samples that 156 

persisted for up to 6-9 years on ART in 8 of the 11 children (range: [1, 7] clones) (Table 1, column 157 
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11). These data show that clonal expansion contributes to the persistence of total HIV-1 DNA in 158 

children, as was shown previously for adults (6, 15, 32, 35, 47).  159 

 160 

Size of infected cell clones is similar in children and adults  161 

We analyzed the size and frequency of infected cell clones using a modified Gini 162 

coefficient called the “oligoclonality index” (OCI) (49). Briefly, the OCI, which has a value 163 

between 0 and 1, is a measure of the non-uniformity of a given dataset; 0 indicates complete 164 

heterogeneity and 1 indicates complete homogeneity. In our analysis, 0 would mean each detected 165 

integration site was detected only once while a value of 1 would mean that all the integration sites 166 

would be from a single large clone. In the pre-ART samples, most integration sites were detected 167 

only once (Table 1, column 5). The pre-ART samples contained large numbers of recently infected 168 

cells that had not undergone clonal expansion. Thus, all pre-ART OCI values were less than 0.1 169 

(range: 0.006 to 0.085; median: 0.027). The pre-ART OCI positively correlated with the age at 170 

which ART was initiated – presumably because clones increase in size with time, which makes it 171 

easier for us to detect them (Adj. R2=0.53; p=0.011) (Figure 1A). Stated differently, although 172 

clones can arise soon after infection (35, 50), they may require time to expand to a size that can be 173 

detected using the integration sites assay (35). As expected, the OCIs were significantly higher 174 

during long-term suppression on ART (range: 0.055 to 0.403; median: 0.161; p=0.002) (Table 1, 175 

column 10, Figure 1B), suggesting that the short survival of most recently-infected T cells makes 176 

it easier to detect clones of infected cells after long-term ART (32, 35). It should be noted; 177 

however, that the on-ART OCI does not correlate with time on ART (Adj. R2=-0.08; p=0.63), 178 

suggesting that clonal expansion during ART is not just a function of time, but rather a complex 179 

dependence on homeostatic, antigen-driven, and integration-driven proliferation (Figure 1B). We 180 

further compared the on-ART OCI in children to published datasets from 9 infected adults (6, 32) 181 

on long-term ART and found no statistical difference (p>0.99; Figure 2; numerical data found in 182 

Jupyter Notebook – see methods) (51).  183 

 184 

Selection for cells with proviruses integrated in certain genes  185 

Recent reports show that HIV-1 proviruses integrated in one of a small number of genes 186 

(15, 32, 33, 35, 52) contribute to the growth, survival, and persistence of the infected cell clones  187 

in vivo. To look for evidence of similar selection in children born with HIV-1 and treated early 188 

with ART, we compared the distribution of integration sites from the children (pre-ART and on-189 

ART) to integration sites obtained from ex vivo HIV-1 infected, CD8-depleted PBMC from healthy 190 

donors [deposited at rid.ncifcrf.gov; (42)]. We asked if there was evidence for enrichment of 191 

proviruses in specific genes in vivo (relative to ex vivo). We also analyzed the orientation of the 192 

proviruses relative to the host gene. Enrichment in the fraction of proviruses within, and oriented 193 

in the same direction as, the gene are evidence of post-integration selection. Enrichment of the 194 
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integration sites was determined by comparing the ex vivo-infected PBMC dataset against the in 195 

vivo datasets. For this analysis, clonally amplified sites were removed from the in vivo datasets by 196 

collapsing identical integration sites. Integration sites in intergenic regions (mapped to hg19) were 197 

not included in the analysis. The resulting datasets consisted of 335,614 integration sites from the 198 

ex vivo infected PBMC (87.2% of the initial data), 7039 sites from the pre-ART dataset from the 199 

children (83.9%), and 1202 (76.8%) sites from the on-ART dataset from the children. To detect 200 

enrichment in both the pre-ART and on-ART datasets relative to the ex vivo PBMC dataset, 201 

Fisher’s Exact Tests were performed on genes in each library with post-hoc multiple tests 202 

correction. Adjusted p-values are reported with padj ≤ 0.05 being considered significant.  203 

Consistent with what has been observed in virally suppressed adults (32), we found a strong 204 

enrichment for proviruses during ART integrated into both BACH2 (padj=2.7*10-15) and STAT5B 205 

(padj=4.0*10-29) (Table 2), but not MKL2 (padj>0.05) during ART. The question of enrichment in 206 

samples prior to ART initiation in either adults or children has not previously been addressed. 207 

Strikingly, we observed a signal for enrichment of integrations into BACH2 in children even prior 208 

to ART initiation (padj=8.9*10-17) showing that selection can occur early in PHIV infection. 209 

Although not statistically significant, we also observed a trend toward selection for integration 210 

events in STAT5B (padj=0.14) (Table 2) prior to ART initiation.  211 

Previous studies in adults have shown that, if there is post-integration selection for an HIV 212 

provirus in a gene, like STAT5B and BACH2, the proviruses are highly enriched for the same 213 

orientation as the gene (32, 33). We analyzed the genes for which there were at least 15 unique 214 

integrations in the ex vivo dataset and at least 1 integration in the in vivo dataset so that there would 215 

be a signal sufficient to detect selection. Although 18 genes were retained for analysis in the pre-216 

ART dataset, only 2 met these criteria in the on-ART dataset (Table S2, S3). Despite the global 217 

preference for proviruses detected on ART to be integrated against the gene (ex vivo PBMC: 50.0% 218 

vs. children on-ART: 54.7%; p=0.0011), there was no evidence for such global selection prior to 219 

initiation of ART (ex vivo PBMC: 50.0%; children pre-ART: 50.7%; p=0.26 for the difference) 220 

(Figure 3A). However, of the 18 genes in which there were sufficient numbers of integrations in 221 

pre-ART samples, we found selection for with-the-gene integration in both BACH2 (padj=2.0*10-222 
3) and STAT5B (padj=7.8*10-3) (Table S2, Figure 3B) and an against-the-gene bias in an ankyrin 223 

repeat protein, ANKRD11 (padj=0.028) (Table S3). Although these data provide evidence for strong 224 

selection for both BACH2 and STAT5B pre-ART, we do not consider the against-gene bias for 225 

ANKRD11 to be evidence of  selection specific to that gene because of the global bias for against-226 

gene integrations and the lack of an enrichment signal in this and previous datasets.  227 

Likewise, integration sites recovered from children on ART in BACH2 and STAT5B were 228 

significantly selected for with-the-gene orientation (pBACH2=0.034; pSTAT5B=6.2*10-5) (Table S3, 229 

Figure 3B). Taken together with the enrichment analyses, we conclude that cells containing 230 

proviruses integrated in BACH2 and STAT5B in the same orientation as the genes were selected in 231 

children both prior to and on-ART.  232 
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We also compared the within-gene distribution of proviruses in BACH2 and STAT5B in the 233 

children vs. the ex vivo-infected PBMC using an in-house mapping application (36) (Figure 4). In 234 

both genes, clearly visible clusters of integration sites in the same orientation as the gene (shown 235 

in blue) in a single intron upstream of the start of translation were observed in the children both 236 

before and during ART (Figure 4B, C, E, F). The ex vivo-infected PBMC have a broader, randomly 237 

oriented (equal red to blue) distribution (Figure 4A, D) in comparison. The different distributions 238 

highlight the selection for directional and clustered integration events into BACH2 and STAT5B in 239 

children both prior to and on-ART. 240 

 241 

Sub-genomic sequencing datasets do not accurately characterize clonality within individuals 242 

Proviruses in a subset of the children in this study were previously characterized using 243 

single-genome sequencing (SGS) of the gag-pol genes (encoding P6, protease, and the first 900 244 

nucleotides of reverse transcriptase) (3). We assessed the clonality of the infected cells using 245 

integration site analysis compared to the identical sequences found in the SGS analysis. We found 246 

that proviruses with identical sub-genomic sequences were more common and constituted larger 247 

fractions of the data than the clones detected by sequencing integration site analyses (Figure 5, 248 

Figure S1). We also calculated the OCI for each set of data and found that the OCIs were 249 

significantly higher (average fold difference: 3.4x) for the sub-genomic single-genome sequences 250 

than for the integration site datasets (p = 0.0078) (Figure 5). These data suggest that either 251 

proviruses with identical sub-genomic sequences have different sites of integration, as has been 252 

shown for adults (47), or that many of the integration sites that were detected contained proviruses 253 

for which the gag-pol regions could not be amplified and sequenced due to deletions, PCR primer 254 

mismatches, or both.   255 
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Discussion 256 

Despite effective therapies, which have reduced the rate of mother-to-child HIV-1 257 

transmission (53-55), approximately 180,000 infants were infected worldwide in 2018 (53). These 258 

children must be included in the larger quest for effective HIV-1 curative interventions and such 259 

interventions may need to be tailored to their developing immune systems. Although the 260 

contribution of clonal expansion to HIV-1 persistence is well-studied in adults (6, 32, 35), this 261 

mechanism has not been well-described in children. Additionally, no analysis has been done in 262 

children on the clonal expansion of infected cells prior to the initiation of ART. To compare the 263 

mechanisms that underlie the persistence of HIV-1 infected cells during ART in adults and 264 

vertically-infected children, we performed HIV-1 integration site analysis on samples obtained 265 

from perinatally infected infants (prior to ART initiation) and from the same children during long-266 

term suppression of viremia on ART (6-9 years of full suppression on ART). Despite inherent 267 

differences in T cell composition between children and adults (40) the clones of HIV-1 infected 268 

cells obtained from the blood of PHIV children in our study were not statistically different from 269 

adults (6, 32).  270 

 A study by Coffin et al. showed that infected cell clones can arise in adults in the first few 271 

weeks post-infection (35). In this study, we found that infected cell clones were detectable, using 272 

the integration sites assay, in 4 of the 5 samples collected from infants <3 months of age, consistent 273 

with early detection of clones in adults (35). In 2 of the 5 infants first sampled at <3 months old, 274 

we detected multiple proviruses with identical integration sites in both the pre-ART sample and 275 

the 6-9 years on-ART sample, demonstrating that clones of cells arose prior to ART initiation and 276 

persisted for years on ART. The other 7 donors, who were >3 months of age when initiating ART, 277 

also had detectable infected cell clones that persisted for at least 6 years of treatment. The 278 

frequency of clonal detection in the pre-ART populations tracked linearly with the estimated 279 

duration of infection prior to ART – using age as a surrogate – suggesting that the number of 280 

infected cell clones that expanded to detectable levels increased with the time of untreated 281 

infection, at least during the relatively short periods our donors were infected pre-ART. Our 282 

finding that infected cell clones had expanded and become large enough to be detected before two 283 

months of age supports the idea that the HIV-1 reservoir is generated rapidly, in actively dividing 284 

cells, in both adults and children (35, 56). 285 

 These results, in conjunction with previous studies showing that ongoing HIV-1 replication 286 

does not occur in children when viremia is fully suppressed on ART (3, 57, 58) and the fact that 287 

intact proviruses persist for years both in adults treated early (16) and in children treated early (20), 288 

supports the conclusion that the HIV-1 reservoir is maintained in vertically-infected children 289 

through the proliferation of cells infected prior to ART initiation, as it is in adults (6, 32, 35, 59). 290 

However, the available data are limited by the rarity of infected cells and the very small subset of 291 

HIV-infected cells that harbor intact, replication-competent proviruses in children (20). Although 292 

further studies are required to increase our understanding of the clonal expansion of intact 293 

proviruses as a mechanism by which the reservoir persists in both children and adults, it is possible 294 
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that defective proviruses can undergo complementation upon ART interruption and contribute to 295 

viral rebound (60).    296 

Although the number of infected cells in children on ART is small, we were able to detect 297 

an enrichment in the number and the orientation of proviruses in both BACH2 and STAT5B in the 298 

pre-ART and on-ART samples, suggesting that proviruses in a specific intron and oriented with 299 

these genes can promote the survival of these clones in vivo, as in adults (32). While the selection 300 

for the survival of cells harboring BACH2 and STAT5B proviruses has been previously described 301 

in adults on-ART (32, 33), no data had been presented to show that such selection exists prior to 302 

ART initiation. In both pre- and on-ART, we saw clear evidence for selection of cells containing 303 

proviruses in the exon immediately upstream of the start site of translation in BACH2 and STAT5B. 304 

Although the selection of BACH2 integrants pre-ART was largely driven by a single child 305 

(ZA002) who did not initiate ART until 17 months of age, this single example nonetheless shows 306 

that clonal selection due to integration in specific genes is not strictly an on-ART phenomenon. 307 

The duration of untreated infection in this child may have allowed enough time for the selection 308 

of the cells with the BACH2 proviruses to become detectable. Similar conclusions can be drawn 309 

for selection for proviruses integrated in the first intron of STAT5B, where there was clear 310 

evidence of selection for cells containing proviruses in the first intron, despite it’s being a very 311 

strong target for integration ex vivo.  The trend towards enrichment of STAT5B integrants in pre-312 

ART samples was due to the high level of sampling required to overcome the background of 313 

integration events in this gene compared to the ex vivo-PBMC infected dataset; however, the 314 

statistically significant orientation bias prior to ART demonstrates that pre-ART selection exists 315 

for STAT5B.  316 

 Samples from a subset of the children studied here were previously characterized in 317 

experiments that showed that ART is effective in suppressing on-going cycles of viral replication 318 

in children (3). Thus, proviral SGS data were available at the same on-ART timepoint. The OCIs 319 

obtained using the P6-PR-RT SGS results were significantly higher than the OCIs obtained from 320 

the on-ART integration site data. The observation that a higher OCI was obtained from the SGS 321 

data than the ISA data adds to the growing number of studies (15, 47, 50) suggesting that viruses 322 

with identical sub-genomic sequences may not all come from a clonal population of infected cells. 323 

These data strongly suggest that sub-genomic sequencing does not always accurately identify 324 

clones of infected cells or sufficiently characterize the genetic diversity of  the intra-patient HIV-325 

1 populations that persist on ART (47). Although the results here are consistent with previous 326 

studies showing that sub-genomic sequences are not sufficient to define clonality, it should be 327 

noted that calculating an OCI for small-N datasets can result in artificially high OCI values. Studies 328 

that are based on integration site analysis, rather than SGS, are more appropriate to study the clonal 329 

expansion of infected cells.  330 

It is important to note that because these children were diagnosed within a few weeks of 331 

birth it is not known whether the transmission of HIV-1 occurred at birth or in utero. Because of 332 

this ambiguity, the age of the participant may not accurately reflect the duration of infection, 333 
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although we found evidence of clonal expansion as early as 1.8 months after birth. Furthermore, 334 

the integration site libraries only represent a small fraction of the total number of infected cells in 335 

the blood. It is therefore likely that many of the integration sites that were recovered only once 336 

belong to clones of infected cells.  337 

Despite these caveats, we have presented here the largest dataset yet of integration sites 338 

from pediatric HIV-1 infections both prior to ART and after durable suppression on ART. Because 339 

children primarily have naïve T cells, which do not have the HIV coreceptor CCR5 as a surface 340 

marker (40), as well as an immune environment that promotes quiescence (37, 38), and a more 341 

diverse T cell receptor repertoire (39), it is important to determine if there are differences between 342 

the observed frequency of clones and patterns of integration and post-insertional selection in 343 

children and adults. However, despite the differences in the immune systems of adults and 344 

children, our data suggest that these differences do not influence the infection and clonal expansion 345 

of T cells to a degree that is detectable by our integration site analysis. It is possible that by 6 to 9 346 

years of age the immune system may be similar enough to that of an adult to account for the striking 347 

similarities in the on-ART libraries of these children and the published data from adults. Although 348 

these data suggest that the role of clonal expansion as the mechanism for HIV-1 persistence during 349 

ART is similar in children and adults, further studies are warranted to better understand how the 350 

developing immune system affects clonal expansion and what effects proposed curative 351 

interventions might have in both children and adults. 352 

 353 

 354 

  355 
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Materials and Methods 356 

Study Approval and Ethics Statement 357 

The CHER trial is registered with ClinicalTrials.gov (NCT00102960). Guardians of all 358 

donors provided written informed consent and the study was approved by the Stellenbosch 359 

University Internal Review Board.  360 

 361 

Total HIV-1 DNA quantification 362 

HIV-1 DNA levels were determined using the integrase cell-associated DNA (iCAD) assay 363 

as previously described (61) with the following primers for use with HIV-1 Subtype C: 364 

Forward primer HIV_Int_FP CCCTACAATCCCCAAAGTCA 4653 → 4672 365 

Reverse primer HIV_Int_RP CACAATCATCACCTGCCATC 5051 → 5070 366 

 367 

Integration Sites Assay 368 

ISA was performed and analyzed as previously described (32, 62) using patient-specific 369 

primers to the 5’ and 3’ LTRs. Importantly, our protocol includes a shearing step (63) that 370 

effectively tags each DNA molecule, allowing determination of the relative numbers of cells in the 371 

initial pool with identical sites of integration (i.e., clonality).  The full set of integration sites 372 

obtained has been submitted to the Retroviral Integration Sites Database (https://rid.ncifcrf.gov/) 373 

(43) and the primer sequences are available in Supplemental Table 5. 374 

A comparison integration site dataset was prepared from CD8-depleted PBMC isolated 375 

from two HIV negative human donors infected in vitro with replication-competent HIV-1, subtype 376 

B (BAL) (64). After 2 days the cells were harvested and DNA was prepared and integration sites 377 

analyzed as previously described (36). The global distribution of the integration sites from the two 378 

donors, was indistinguishable; therefore all comparisons were performed with combined data from 379 

the two donors.  380 

 381 

Oligoclonality Index 382 

 The oligoclonality Index (OCI) was calculated using a python script available at 383 

https://github.com/michaelbale/python_stuff/.  Full details of the calculation are described in the 384 

supplemental text of Gillet, et al (49). Briefly, the LTR-corrected counts of all unique integration 385 

sites are sorted into descending order and the cumulative abundance of the clones are summed as 386 

a fraction of the total number of unique integration sites and normalized to have a maximal value 387 

of 1. Mathematically, the OCI is calculated as below: 388 
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𝑠𝑖 – LTR-corrected count of integration site 𝑖 389 

𝑆 – Number of unique integration sites in library 390 

𝑁 = Σ𝑖=1
𝑆 𝑠𝑖 – Total number of integration sites in library 391 

𝑝𝑖 =
𝑠𝑖

𝑁
 – Relative abundance of integration site 𝑖 392 

𝑋𝑖 = Σ𝑘=1
𝑖 𝑝𝑘 – cumulative abundance of all integration sites of size {𝑠𝑖} or greater 393 

𝑂𝐶𝐼 = 2 ∗ (Σ𝑘=1
𝑆 (

𝑋𝑘

𝑆
) − 0.5) – Olignoclonality index of library 394 

 395 

Statistical Analysis 396 

 Clonality was assessed by grouping sequenced integration sites with identical pseudo-397 

3’LTR genomic coordinates and different shear points into count data in R. These count data were 398 

used to generate the OCI. Independent integration sites into genes were pooled and assessed for 399 

selection by Fisher’s Exact test by either the pre-ART or on-ART library vs. the ex vivo infected 400 

PBMC library as null set. P-values for this gene-enrichment analysis were corrected post-hoc by 401 

the Benjamini-Hochberg method. Orientation biases were assessed in a similar manner with post-402 

hoc corrections only in the pre-ART comparison. All adjusted p-values are presented as padj where 403 

appropriate. All other statistical analyses are noted where appropriate and performed in R v3.5.2. 404 

A Jupyter notebook (51) with the R commands and visualizations for the unedited figures available 405 

at github.com/michaelbale/cher_bale/.   406 

 407 

Phylogenetic Analyses 408 

 HIV-1 P6-PR-RT sequences were aligned to HIV Consensus C using MUSCLE  and 409 

neighbor joining phylogenetic p-distance trees were built using MEGA 7 410 

(https://www.megasoftware.net/) (65) and outgroup rooted to Consensus C. Distance matrix 411 

generation for calculation of the sequence-based OCI was performed using Hamming distance. 412 

 413 

 414 

 415 

 416 

 417 

 418 
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Figures and Tables 723 

 724 

Figure 1. Oligoclonality indexes correlate both with time on ART and duration of infection 725 

prior to ART.  726 

 727 

Oligoclonality indexes (OCI) were calculated from the pre-ART and on-ART libraries plotted 728 

against Donor Age in months. Pre-ART OCIs were evaluated via linear regression and F-test 729 

against donor age (A) while change in OCI as a function of ART status was evaluated by Wilcoxon 730 

Signed-Rank test (B). 731 

 732 
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Figure 2. Oligoclonality indexes are comparable between ART-suppressed adults and 735 

children.  736 

 737 

Integration site data from donors whose viremia was suppressed on ART were downloaded from 738 

the Retrovirus Integration Database (rid.ncifcrf.gov) (43) from two studies totaling 9 individuals 739 

(6, 32) and the OCIs were calculated. OCIs were compared using Mann-Whitney test. Median 740 

values for each patient group are marked by red lines. 741 
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Figure 3. Global selection against proviruses oriented with-the-gene and selection in two 751 

genes for with-the-gene proviruses.  752 

 753 

For each of the integration site libraries, unique integration sites for all genes (A) and for proviruses 754 

integrated in BACH2 and STAT5B (B) were plotted as the percentage of integrations against-the-755 

gene (orange) and with-the-gene (green). Significance was assessed via Fisher’s Exact test 756 

between the ex vivo infected PBMC library and the pre-ART and on-ART integration site libraries 757 

from children. p-Values for pre-ART comparisons were post-hoc adjusted. The on-ART 758 

comparisons were not adjusted because of the differences in the number of independent statistical 759 

tests against each library. 760 
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Figure 4. Distribution of Integration sites in BACH2 and STAT5B.  768 

 769 

The maps show the integration sites of the proviruses in ex vivo infected PBMC (A, D) (36), infants 770 

sampled pre-ART (B, E), and children sampled on ART (C, F).  Each graph shows the entire gene, 771 

divided into 250 bins. For BACH2 (A-C), each bin corresponds to ca 1500 NT; and for STAT5B 772 

(D-F), ca 300 NT. Exons (labeled on the X axis, with orientation of transcription shown) are shown 773 

as grey bars, whose height indicates the level of expression, in transcripts per million (TPM), as 774 

shown on the scale on the right. Note that the resolution of the text sometimes leads to loss of 775 

labels of closely spaced exons. The numbers of integration sites in each bin are indicated by the 776 

stacked bars, according to the scale on the left, with red indicating the same transcriptional 777 

orientation as the chromosome numbering and blue indicating the opposite orientation. In these 778 

two genes, blue indicates the number of proviruses in each bin integrated in the same orientation 779 

as the gene. 780 
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Figure 5. OCIs for single-genome sequencing datasets are significantly higher than OCIs 788 

derived from integration sites analyses.  789 

 790 

OCIs were calculated from single-genome sequencing and integration sites data obtained from 791 

PBMC of children suppressed for 6-9 years on ART. Significance was assessed by Wilcoxon 792 

Signed-Rank Test. Median values are noted by red dash for each group. 793 
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Table 1. Number of Integration Sites and Infected Cell Clones Detected in Children Prior to and On ART. 795 

Donor 

 ID 

Age at 

ART 

initiation 

(months) 

No. of 

integration 

sites 

obtained 

pre-ARTa 

No. of 

integration 

sites 

detected 

with >2 

breakpoints 

pre-ART 

(>1 

breakpoint)  

Oligoclonality 

indexb  

(pre-ART) 

Years 

suppressed 

on-ART 

HIV 

DNA 

cps/106 

PBMC 

on-

ARTc 

Number of 

integration 

sites 

obtained 

on- ARTa 

No. of 

integration 

sites 

detected 

with >1 

breakpoint 

on-ART 

Oligoclonality 

indexb  

(on ART) 

No. of Integration site 

matches between  

pre- and on- ARTd 

ZA002 17.4 1064 27 (50) 0.085 6.87 33 113 9 0.079 7 

ZA003 1.8 1386 7 (30) 0.04 8.06 2 148 16 0.161 0 

ZA004 2.7 655 5 (13) 0.024 7.92/8.76 24/-- 255 25 0.223 3 

ZA005 6.0 583 2 (14) 0.027 8.04 9 77 4 0.166 1 

ZA006 9.0 486 1 (6) 0.012 7.45 47 137 20 0.313 1 

ZA007 9.9 197 4 (5) 0.07 8.24 21 85 8 0.403 2 

ZA008 2.2 1293 1 (8) 0.006 6.77 42 225 11 0.065 1 

ZA009 2.0 809 0 (16) 0.021 9.13 186 125 5 0.055 0 

ZA010 1.8 514 1 (12) 0.027 8.35 5 115 3 0.173 0 

ZA011 9.3 432 5 (9)  0.037 7.35 182 149 8 0.092 3 

ZA012 5.1 1243 3 (12) 0.01 8.41 12 432 32 0.126 2 
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Median 

Values 

5.1 655 3 (12) 0.027 8.04 24 137 9 0.161 1 

 796 

aValue obtained by counting an integration from both the 5’ and 3’ LTR as a single integration site 797 

bAs described in Gillet, et al. and Bangham (41). This value ranges in the interval [0, 1] dependent on the relative size and contribution 798 

of integration site clones to the dataset where 0 signifies a completely uniform distribution while 1 signifies a single integration site. 799 

cIntegrase cell-associated DNA (iCAD) protocol (51) 800 

dMatches between pre-ART and on-ART are counted as clones in columns 4 and 9.801 
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Table 2. Analysis of Enrichment of Integration into Specific Genes in vivoa 802 

Chromosome Gene 

nameb 

Independent 

integrations  

ex vivoc 

Independent 

integrations  

in CHER 

cohort pre-

ART 

Adjusted 

p-valued 

Independent 

integrations  

in CHER 

cohort on-

ART 

Adjusted 

p-valued 

17 STAT5B 562 29 0.14 37 4.0E-29 

6 BACH2 132 31 8.9E-17 16 2.7E-15 

All All 

other 

genes 

334,920 6,979 >0.05 1,149 >0.05 

aData shown only for integrations into genes and for which at least 1 integration was detected in 803 

both libraries 804 

bGenic coordinates mapped to hg19 805 

cEx-vivo dataset contains integration sites from CD8-depeleted PBMCs from two healthy donor 806 

patients infected and PHA-stimulated ex vivo 807 

dAdjusted p-value determined by Fisher’s Exact Test with post-hoc Benjamini-Hochberg 808 

Correction 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 
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Supplementary Materials 823 

Table S1. Donor Characteristics. 824 

PID Sex Time to viral 

load 

suppression 

in years 

Pre-ART 

plasma HIV 

RNAa  

ART regimenb Years 

suppressed on 

ART 

CD4% at on-

ART time 

point 

ZA002 Male 1.37 654000 AZT/3TC/LPV/r 6.87 33 

ZA003 Male 0.46 >750000 ABC/3TC/LPV/r 8.06 21 

ZA004 Male 1.38 >750000 AZT/3TC/LPV/r 7.92/8.76 46 

ZA005 Male 0.47 >750000 AZT/3TC/LPV/r 8.04 41 

ZA006 Female 0.44 635000 AZT/3TC/LPV/r 7.45 50 

ZA007 Male 0.92 >750000 AZT/3TC/EFV 8.24 35 

ZA008 Female 0.44 >750000 AZT/3TC/LPV/r 6.77 36 

ZA009 Female 3.76 >750000 AZT/3TC/EFV 9.13 29 

ZA010 Female 0.46 510000 AZT/3TC/LPV/r 8.35 39 

ZA011 Female 2.29 >750000 AZT/3TC/LPV/r 7.35 54 

ZA012 Male 0.93 277,000 AZT/3TC/LPV/r 8.41 31 

aDetermined by Roche Amplicor HIV Monitor assay v1.0 825 

bART abbreviations: Zidovudine (AZT), Lamivudine (3TC), Ritonavir-boosted Lopinavir 826 

(LPV/r), Efavirenz (EFV) 827 

 828 

 829 

 830 
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 833 

 834 

 835 

 836 

 837 
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Table S2. Orientation Bias for Genic Integrations Pre-ARTa. 838 

Chromosome Gene 

nameb 

Unique 

integrations  

with the 

gene 

(CHER)c 

Unique 

integrations 

against the 

gene 

(CHER)c 

Unique 

integrations  

with the 

gene (ex 

vivo) c 

Unique 

integrations 

against the 

gene (ex 

vivo) c 

Adjusted 

p-valued 

chr6 BACH2 26 5 60 72 0.0019 

chr17 STAT5B 24 5 284 278 0.0078 

chr16 ANKRD11 3 16 380 403 0.0281 

chr22 HORMAD2 11 4 192 241 0.15 

chrX MECP2 4 12 228 267 0.45 

chr17 VMP1 6 12 376 374 0.52 

chr17 GRB2 11 5 339 336 0.52 

chr17 NPLOC4 5 10 418 408 0.52 

chr17 POLR2A 6 10 161 177 0.82 

chr11 MALAT1 6 9 113 96 0.82 

chr11 PACS1 18 21 852 821 0.84 

chr11 KDM2A 9 10 806 724 0.84 

chr19 CARD8 10 7 331 315 0.84 

chr19 VAV1 7 8 255 222 0.84 

chr17 RPTOR 14 12 820 807 0.89 

chr17 CYTH1 10 9 352 363 0.89 

chr22 TNRC6B 9 10 444 435 0.89 

chr1 ASH1L 8 9 378 385 >0.99 

aData shown only for integrations into genes for which at least 15 unique integrations were 839 

detected 840 

bGenic coordinates mapped to hg19 841 

c“With” gene and “Against” gene defined as orientation of integrated provirus compared with the 842 

sense of the host gene it’s integrated into 843 

dAdjusted p-value determined by Fisher Test with post-hoc Benjamini-Hochberg Correction 844 

 845 

 846 
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Table S3. Orientation Bias for Genic Integrations On-ARTa. 847 

Chromosome Gene 

nameb 

Unique 

integrations  

with the gene 

(CHER) c 

Unique 

integrations 

against the 

gene (CHER) c 

Unique 

integrations  

with the gene 

(ex vivo) c 

Unique 

integrations 

against the 

gene (ex vivo) c 

p-valued 

chr17 STAT5B 31 6 284 278 6.2E-05 

chr6 BACH2 12 4 60 72 0.034 

aData shown only for integrations into genes for which at least 15 unique integrations were 848 

detected in vivo and at least 1 unique integration ex vivo 849 

bGenic coordinates mapped to hg19 850 

c“With” gene and “Against” gene defined as orientation of integrated provirus compared with the 851 

sense of the host gene it’s integrated into 852 

dp-Value determined by Fisher Test – no post-hoc adjustments performed 853 
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Figure S1. Number of Detections of Integration Sites. 870 

FF871 

 872 

For each study participant, a neighbor-joining phylogenetic tree representing gag-pol single 873 

genome sequences with its respective OCI value is shown on the left; on the right, a pie chart 874 

representing the number of detections of integrations sights by ISA and the respective OCI value. 875 
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