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Abstract 

Deep learning is very promising in solving problems in omics research, such as genomics, 

epigenomics, proteomics, and metabolics. The design of neural network architecture is very 

important in modeling omics data against different scientific problems. Residual 

fully-connected neural network (RFCN) was proposed to provide better neural network 

architectures for modeling omics data. The next challenge for omics research is how to 

integrate informations from different omics data using deep learning, so that information from 

different molecular system levels could be combined to predict the target. In this paper, we 

present a novel multimodal approach that could efficiently integrate information from 

different omics data and achieve better accuracy than previous approaches. We evaluate our 

method in four different tasks: drug repositioning, target gene prediction, breast cancer 

subtyping and cancer type prediction, and all the four tasks achieved state of art performances. 

The multimodal approach is implemented in AutoGenome V2 and is also powered with all 

the previous AutoML convenience to facilitate biomedical researchers. 
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Introduction 

With the development of sequencing technologies, researchers have extended the large 

scale whole genome profiling experiments from genomics to epigenetics, proteomics and 

metabolics. Obtain whole omics profiling data from a single sample/individual are more and 

more popular in biomedical researches1, it helps researchers to extract evidences from 

different molecular system levels, to explore and understand the underlying biological 

mechanisms. For example, in cancer research, researchers need to confirm evidences from 

cancer cell gene expression, gene mutations, gene copy number variations and gene 

methylations to form a proper hypothesis, tools like oncoplot is developed to help visualize 

and analyze the multi-omics data2.  

Deep learning is very popular in genomics research recently3. Previous work have proved 

the advantage of Deep Neural Network (DNN) against traditional machine learning methods, 

such as support vector machine (SVM), logistic regression and Xgboost4–6, in single-omics 

area. How to apply deep learning in multi-omics research, is a new challenging area for 

researchers.  

The simplest way to integrate multi-omics data is to concatenate all the omics data as the 

input to the DNN. For example, DeepSynergy7 concatenate fingerprints of molecular 

structures of chemicals and omics data of cancer cell lines directly as input for the Multi-layer 

perception neuron network (MLP). The problem is that the data distributions in different 

omics data vary a lot, some omics data even have different data type, which makes the DNN 

difficult to fit a good model.  

The advanced approach is to use sub-network for each omics data, and concatenate the 

output of the sub-networks to predict the targets. For example, MOLI8 uses three MLP 

sub-networks for the three omics data (GDSC9 cancer cell line gene expression, mutation and 

CNV), the three sub-networks are then concatenates together to predict the targets. 

PaccMann5 extended this approach by using three different sub-network to model molecular 

structure, omics data and gene interaction network separately. The limitation with this 

approach is that it cannot fine tuning or optimize the sub-networks independently.  

The more sophisticated approach is to train DNN separately for each omics data, and 

then concatenate the embedding layers together to make the final predictions, for example, 

DeepDR6 train autoencoder (AE) for gene expression and gene mutation separately, the latent 

space are then concatenated and forwarded with MLP to make the final prediction.  

The proposal of residual fully-connected neural network (RFCN) implemented in 

AutoGenome10 have shown us a good framework to model the single-omics data, we want to 
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go further to extend it to multi-omics research, by considering a. the advantage of RFCN 

neural network architectures; b. the AutoML features from AutoGenome; c. novel 

multi-model approaches to integrate different multi-omics data. In this paper, AutoGenome is 

further developed for this purpose, users specify the location of the input omics data and the 

learning targets, AutoML is then used to train the DNN model automatically, after an optimal 

model is trained, model interpretation module will be used to explain the influence of each 

gene to the learning targets. AutoGenome supports both regression and classification tasks, it 

doesn’t require the users to master tensorflow11 or pytorch12 to start with. 

We evaluate the performances of AutoGenome in four different multi-omics biomedical 

tasks: a. drug response prediction, b. gene dependency prediction, c. breast cancer subtype 

prediction and d. pan-cancer patient stratification, and AutoGenome outperformed all the 

existing methods. The results show that AutoGenome could efficiently integrate large scale 

multi-omics data and generate explainable AI models. We envision AutoGenome to become a 

popular tool in multi-omics research. 

Results 

Overview of AutoGenome 
Researchers from hospitals, pharmaceutical companies and academic institutes usually 

use patient tissues, animal models and cell lines in their research to study biomedical 

problems. To uncovering the molecular level mechanisms, high throughput sequencing 

technologies are then used to profiling multiple types of omics data, such as gene expression, 

gene mutation, copy number variation (CNV), DNA methylation, microRNA and histone 

modification (Figure 1). By analyzing the multi-omics data, researcher could formulate new 

hypothesis or create mathematical models for forecasting, such as drug sensitivity prediction, 

gene dependency prediction, patient stratifications, and so on. Multi-omics data represent 

molecular phenotypes at different molecular systems, each omics data have different 

distributions, which makes it very challenging to model with. 

AutoGenome provide a convenient framework to help researchers to build the best 

multi-model deep neuron network for their research. There are four steps in the pipeline 

(Figure 2). Step 1: Prepare DNN input, different omics data are prepared into normalized 

2-dimensional matrixes with samples and genes. Step 2: AutoML is used to search for the 

best DNN model for each single-omics data against the learning target, the neuron network 

architectures used in AutoML search space including MLP, RFCN-ResNet, RFCN-DenseNet 

and Random-wired RFCN10 (Methods). Step 3: The last layers from the single-omics models 
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are concatenate together as the input for the final multi-omics DNN model. Step 4: AutoML 

is used again to train the final multi-omics DNN model against the learning target.  

To help researchers investigated the DNN model and learn about the impacts of each 

gene toward each learning target, we implement SHapley Additive exPlanations (SHAP)13 – a 

popular model explanation module into AutoGenome, which calculates marginal contribution 

of each feature to overall predictions, and summarized as a SHAP value, indicating potential 

feature importance to final biological meanings of interest. 

To systematically evaluate the performances of AutoGenome, we apply AutoGenome on 

four different multi-omics tasks: a. drug response prediction, b. gene dependency prediction, c. 

breast cancer subtype prediction and d. pan-cancer patient stratification, the performances are 

compared both with popular multi-omics approaches and single-omics approaches, the results 

show us the significantly improvements of AutoGenome against the other approaches, and 

indicating AutoGenome to be a promising tool in multi-omics studies. 

 

Drug response prediction 
New complex diseases arise along with changes in lifestyles and environment, creating 

new challenges and demands for new biomedicine treatments14–16. Although billions of dollars 

and tens of years have been spent on per de novo drug R&D, the success rate remains quite 

low. The main reason comes from safety issues and unclear mechanisms of actions for new 

drug candidates14. Drug repositioning, discovering new uses for existing FDA-approved drugs, 

can avoid the safety issues and skip toxicity testing, shorten time cost in R&D and increase 

success rate15. Famous examples e.g. Sildenafil initially for pulmonary arterial hypertension 

treatment is later found to treat erectile dysfunction17.  

Large scale screen projects for cell lines under drug treatments offer rich resources for 

drug repositioning. Genomics of Drug Sensitivity in Cancers (GDSC)18 database measures 

half maximal inhibitory concentration (IC50). IC50 represented drug sensitivity scores for 

~900 cancer cell lines under each of 265 anticancer drug treatments. GDSC also provides 

basal gene expression, gene mutation, DNA methylation etc., multi-omics data for the ~900 

cell lines before drug treatments, including basal gene expression, gene mutation, DNA 

methylation etc. Based on GDSC, we aim to build an anticancer drug sensitivity prediction 

model. We take the gene expression and mutation profiles as features, and the IC50 values of 

265 drugs as learning targets for each cell line, and run AutoGenome.  

We implemented the optimal modelling by scanning structures of MLP, RFCN-ResNet 

and RFCN-DenseNet with various layer and neuron number setting, and found that 
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RFCN-DenseNet-based networks achieved best performance for both gene expression and 

mutation single-omics models than other structures. Both of these two networks harbor single 

dense blocks (Figure 3B) with a net growth rate of 128 and 512 respectively; for the optimal 

multi-omics model part, a direct FC (Figure 3B) of MLP rather than RFCN-ResNet and 

RFCN-DenseNet was searched to be the best option (Figure 3A). Search strategy and search 

space are summarized in Methods Section. The above three searched models in total 

comprised the anticancer drug sensitivity prediction model. 

Mean squared error (MSE) and spearman correlation coefficient (SCC) of the optimal 

single-omics models of gene expression were 1.532 and 0.8717, and 1.9 and 0.8463 for gene 

mutation model. MSE and SCC of the optimal multi-omics model were obviously improved, 

with an obviously decreasing MSE 0.3266 and increasing SCC 0.967 (Figure 3C). We 

utilized log-transformed IC50 < -2 (approximately 0.135 μM) as standard threshold19 to 

define drug sensitive (positive) and resistant (negative) groups, and found that the 

multi-omics model also outperformed single-omics models in area under the receiver 

operating characteristic curve (AUROC), precision, recall and accuracy (Supplementary 

Figure 3A). Our results demonstrate that there is a significant improvement by multi-omics 

data integration using AutoGenome than only using single omics data for deep learning 

modelling.  

 We compared the AutoGenome based drug response prediction model with popular 

existing models - DeepDR6, PaccMann5 and MOLI8. DeepDR reports MSE as 1.96 in the 

original paper6. We reproduced the network architecture of DeepDR and achieved a MSE as 

1.8793 and F1 as 0.7283 using the same data for the AutoGenome, which is significantly 

outperformed by the AutoGenome (MSE 0.3266, F1 0.8907, Figure 3C). For PaccMann, we 

randomly queried 28 drugs for IC50 predictions from its webserver to compare with 

AutoGenome predictions, and found that AutoGenome showed higher AUROC, AUPRC 

(area under precision recall curve) and accuracy in both cell-wise (AUROC 0.998 vs. 0.702, 

AUPROC 0.854 vs. 0.792, accuracy 0.982 vs. 0.768) and drug-wise (AUROC 0.987 vs. 0.708, 

AUPROC 0.764 vs. 0.742, accuracy 0.978 vs. 0.705) levels (Figure 3D). For MOLI, it trained 

response prediction models for 4 drugs (Paclitaxel, Gemcitabine, Cetuximab, Erlotinib) using 

GDSC data, and evaluated in a patient-derived xenograft (PDX) mice data set20. The PDX 

data includes gene expression, mutation and copy number variation (CNV) profiles for 399 

mice and tumor size reduction as drug response index to 63 drug treatments for each mouse. 

To compare with MOLI, we predicted responses for the 4 drugs by inputting the PDX mice 

gene expression and mutation into the AutoGenome model and fetching corresponding 

predictions for the 4 drugs from total 265 drugs. The results showed that AutoGenome 

achieved higher AUPRC value for the 4 drugs than MOLI (Paclitaxel 0.616 vs. 0.24, 

Gemcitabine 0.558 vs. 0.49, Cetuximab 0.771 vs. 0.11, Erlotinib 0.7 vs. 0.33, Figure 3E).  
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In addition, we compared AutoGenome with other strategies of omics data integration: 

concatenated raw input + MLP (F1: 0.707), VAE latent + MLP (F1: 0.728), VAE recon + 

MLP ((F1: 0.733), and raw input + AutoGenome (F1: 0.725), gene expression + AutoGenome 

(F1: 0.7315) and gene mutation + AutoGenome (F1: 0.708), and we found that AutoGenome 

showed the highest F1 score as 0.891 among all using the same data sets (Supplementary 

Figure 3B).Interestingly, the F1 scores were sorted as: AutoGenome > AutoGenome for gene 

expression > AutoGenome for gene expression and mutation concatenation > AutoGenome 

for gene mutation (F1: 0.8907 > 0.7315 > 0.7253 > 0.7075). It indicates that integrating 

multi-omics raw input data for modelling directly caused neutralization of good-performance 

data (gene expression, F1: 0.7315) and poorly-performance data (gene mutation, F1: 0.7075), 

leading to worse predictions (F1: 0.7253) than that of the good-performance one; But in 

contrast, AutoGenome largely promoted the performance for multi-omics data integration (F1: 

0.8907) better than each single data (Figure 3D).  

When analyzing importance of features contributing to the final prediction, we listed top 

gene expressions and gene mutations ranked by SHAP values that showed highest importance 

to all 265 drug response predictions (Figure 3E and 4F). Functional enrichment analysis 

showed that top-50 ranked gene expressions were enriched in doxorubicin or daunorubicin 

metabolic process, regulations of cell proliferation, growth factor activity and Wnt signaling 

pathway etc.; and the top-50 ranked gene mutations were enriched in regulations of gene 

expression, cell proliferation and apoptotic process and typical signal pathway in cancers. 

Genes of the expression features enriched in location of extracellular space and exosome. 

Interestingly, unlike gene expression, the mutation feature genes were enriched in location of 

mitochondrion and endoplasmic reticulum. 

 Besides, we tested AutoGenome on gene dependency prediction. With the help of 

single-gene perturbation techniques e.g. RNA inference (RNAi) and CRISPR gene editing, 

researchers can perturb genetics to study effect of single gene to diseases or biological 

processes (e.g. by measuring mortality rate of cancer cells following by a gene RNAi)21. 

Through integrating basal multi-omics data of samples of interest before gene perturbations 

and linking to learning targets of phenotype data after gene perturbation, researchers can train 

a gene dependency model to predict which genes play essential roles for the phenotype. In 

this way, the researchers don’t need to actual perturbation on that genes, and it aids in 

large-scale screening for identifying gene targets. The Cancer Dependency Map (DepMap)21 

includes CRISPR screen results on 17635 genes for cancer cell lines and corresponding basal 

omics datasets for each cell. To focus on cancer causal genes, we narrowed down the screen 

results to 610 studied pan-cancer or cancer-type-specific priority gene targets22, and used gene 

expression and mutation profiles as features to run AutoGenome. AutoGenome firstly 

scanned network structures of MLP, RFCN-ResNet and RFCN-DenseNet with different 
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numbers of layers and neurons, and outputted RFCN-DenseNet-based structures with 4 and 5 

dense blocks, with net growth rates as 16 and 8 respectively, as the best models for gene 

expression and mutation profiles (Supplementary Figure 4A), which achieved MSE as 

0.04011 and 0.04495, and SCC as 0.8610 and 0.8521 respectively. Then AutoGenome 

scanned best net structures following concatenating the last hidden layers of the above two 

models, and returned a three-layer MLP with neuron numbers of 32, 32 and 610 

(Supplementary Figure 4A), which achieved a better MSE and SCC as 0.03428 and 0.8777 

(Supplementary Figure 4B). Gene dependency score < -0.6 standard threshold21 were set to 

define gene perturbation sensitive (positive) and resistant (negative) groups. And the 

multi-omics model also outperformed single-omics models in five classification evaluation 

indexes, which demonstrates improvement by multi-omics data integration using 

AutoGenome for the task than only using single omics data. For performance comparison, we 

constructed trials same to that of drug sensitivity prediction, and it showed 

AutoGenome-based model outperformed all other methods for gene dependency prediction 

task (Supplementary Figure Figure 4C).  

We also listed top gene expressions and gene mutations ranked by SHAP values that 

showed highest importance to all 610 gene dependency predictions (Supplementary Figure 

4D and 4E). Functional enrichment analysis showed that top-50 ranked gene expressions were 

enriched in regulations in signal transduction and cell proliferation, immune response and 

renin-angiotensin system etc, and the location was enriched in extracellular exosome and 

space. The top-50 mutation feature genes were enriched in location of cortical cytoskeleton. 

 

Breast cancer subtype prediction 
Large-scale accumulation of multi-omics data and electronic medical records for patient 

individuals makes it possible to study precision medicine, that is, to specify medicine 

treatments for each patient according to their personal clinical responses and physiological 

and genomics features. These features may include susceptibility to diseases, mechanisms of 

onsets, prognosis conditions, responses to specific treatments and genetics background etc23. 

For complex diseases e.g. cancer, although patients may belong to the same cancer types 

based on pathology, their response to drugs or immune therapy often vary largely. This is may 

be due to theirs difference in genetics background24. Therefore, it is necessary to take 

advantage of patients’ multi-omics data for cancer subtyping. 

The Cancer Genome Atlas (TCGA) database includes six types of omics data in patient 

individual level for more than 20 cancer types25. Here we implemented AutoGenome to build 

a classification model for breast cancer subtype prediction using patients’ gene expression, 
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gene mutation and protein expression profiles as features, and focused on four subtypes of 

PAM50-profiling-test based, luminal A, luminal B, triple-negative and HER2-enriched26. 

Apart from searching optimal models using MLP, RFCN-ResNet and RFCN-DenseNet 

structures, we also included ENAS randomly-generated structures for this classification task, 

and found it showed outstanding performance than RFCN-DenseNet/ResNet. For optimal 

single-omics model of gene expression, AutoGenome returned an ENAS-based model 

containing 4 FC layers with 2048, 128, 256 and 256 neurons per layer and one skip 

connection concatenating the 128- and 256-neuron layer outputs as input of the 256-neuron 

layer (Figure 5A). It achieve top-1 accuracy 0.8533 for breast cancer subtyping (Figure 5B), 

better than published graph deep learning based model using the same origin of dataset and 

learning targets (with an accuracy of 0.8319)27. For optimal single-omics models of gene 

mutation and protein expression, AutoGenome returned both ENAS models with three layers 

and one skip connections (Figure 5A), showing top-1 accuracy as 0.573 and 0.787 

respectively, lower than that of gene expression (Figure 5B). Then AutoGenome linked all the 

three models and again generated an optimal model for data integration as an ENAS-based 

three-FC-layer network with 512, 64 and 16 neurons (Figure 5A), with an improved top-1 

accuracy as 0.907 (Luminal A: 0.939, Luminal B: 0.778, HER2-enriched: 0.889, Basal-like: 

1), significantly better than each of the single-omics model (Figure 5B and 5C). It 

outperformed a published approach using SMO-MKL, which achieved a 0.798 average 

accuracy of any two immunohistochemistry-marker-based subtypes28. When direct 

concatenating three omics data together, the top-1 accuracy is 0.773, better than that of gene 

mutation and worse than gene expression and protein expression (Figure 5B).  

Then we analyzed importance scores represented by SHAP values for each feature to the 

model outputs. SHAP value in gene expression showed that RBM20 gene expression 

contributed more in luminal B subtype than other subtypes (Figure 5D). The finding is 

accordant with the public results which proves that RBM20 gene expression is correlated with 

PDCD4-AS1/PDCD4, a tumor suppressor in TNBC cell lines29 and a subset of TNBC 

potentially benefit therapy targeting luminal subtype’s typical pathways30. In other examples, 

the SHAP value of TFAP2B shows it is an important gene feature in breast cancer (Figure 

5D). It is proven by the HMAN PROTEIN ATLAS which shows TFAP2B 

(ENSG00000008196) is a cancer-related gene and its expression is highest in breast cancer 

pathology data and enriched in breast cancer. Besides, SHAP value of TFAP2B is highest in 

luminal A, which is agreement with that TFAP2B is associated with WNT/ß-catenin pathway 

in luminal breast cancer, and its encoding protein AP-2 transcription factor regulates luminal 

breast cancer genes31.  

In protein expression level, based on SHAP values, ER-alpha ranked top 1 among all 

protein expression and showed important contribution to all four subtype in breast cancer 
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(Figure 5D). This phenomenon also is accordance with the research of estrogen receptors 

which is a very important marker for prognosis and a marker that is predictive of response to 

endocrine therapy in breast cancer32. The loss of ER expression portends a poor prognosis and, 

in a significant fraction of breast cancers, this repression is a result of the hypermethylation of 

CpG islands within the ER-alpha33. 

To systematically analyze the reliability of feature importance results, we used 

SHAP-ranking top features to represent samples and checked inner- and intra-subtype 

similarity of samples. It showed that compared to using all features representing samples, 

SHAP-top-ranked features could better cluster samples of the same subtypes together and 

distinguish between intra subtypes, which was quantified by silhouette score (Supplementary 

Figure 4). The scores achieved highest using top features (top 70, 40 and 10 for gene 

expression, gene mutation and protein expression), and then decreased when more 

bottom-ranked features were included (Supplementary Figure 4). It demonstrates that 

top-ranked features by SHAP values show the direct role to improve breast cancer subtype 

classification.  

Additionally, we built a 24 cancer type prediction model using TCGA pancancer omics 

data. AutoGenome trained a 6-FC-layer and 4-skip-connection ENAS network for gene 

expression profiles with top-1 accuracy 0.963, and a 4-FC-layer and 2-skip-connection ENAS 

network for gene mutation profiles with top-1 accuracy 0.681 (Supplementary Figure 9A and 

9B). AutoGenome linked the two networks using a 3-FC-layer and 1-skip-connection ENAS 

network, achieving an improved top-1 accuracy 0.973 (Supplementary Figure 9A and 9B). 

For comparison, we also performed stacked ensemble learning to link the two networks by 

using their softmax target layers rather than last hidden layers as a new network input. We 

tested both ENAS and MLP for the ensemble learning way, and the top-1 accuracy was 

consistently round 0.857, which lied in between that of gene expression ENAS network and 

the gene mutation ENAS one, lower than that of AutoGenome (Supplementary Figure 9B). It 

demonstrated that AutoGenome outperformed stacked ensemble learning in this task. 

 

Discussion 

 Genomics data are widely accumulated using high-throughput sequencing for cell lines, 

animal models and patient individuals. Different omics data types can reflect different aspects 

of features for samples, thus it is important to integrate all omics data for one sample at the 

same time. To address it, we developed a new version with multimodal data integration 

function for – AutoGenome. AutoGenome firstly builds single-omics models for each single 
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data, and the latent spaces extracted from single-omics models were combined together and 

then are subjected to deep learning modeling for the same learning target as single-omics.  

Weights of single-omics models are frozen once finished training. They are no longer 

updated in the stage of multi-omics modelling using combined latents. Unlike AutoGenome, 

published methods treat each of single-omics data as a branch of networks (subnetworks)5, 

that is to say, weights of certain subnetwork are dependent on other’s subnetworks, and they 

are kept updating simultaneously following the whole network training. This difference may 

be the reason why AutoGenome is outstanding for efficient data integration. AutoGenome 

may maximally extract latent that can best represent learning targets for each data 

individually. Our three prediction tasks also demonstrate the excellent performance of 

AutoGenome over other methods. 

Our data integration idea is similar to stacking ensemble learning34 but not the same. 

Stacking ensemble emphasizes combining predictions of individual models not the latent 

spaces as we have proposed.. Furthermore, traditional methods take all the multi-omics data 

as a whole input for a model, but in this paper, we demonstrate that taking each of 

single-omics data to build independent models and then performing combination as a whole 

are  better choices. The effectiveness of our method is probably because that batch effect, 

difference in source of data and value ranges among data cannot be well removed by 

normalization. Direct combining raw values of different data types will lead to unexpected 

bias, thus degrade performance of the model (Figure 3D, Figure 4C and Figure 5B). 

As we have claimed on AutoGenome10, CNN and RNN are not suitable to modeling 

genomics profiles because features of genomics data are non-Euclidean, thus pure FC is better. 

Published methods mainly utilize MLP, where layers only link neighboring layers4–6. It is not 

efficient to model biological regulations and feedback loops between different levels. Thus 

we introduced skip connections in our network design. We tried RFCN-ResNet and 

RFCN-DenseNet – two classical network structures with skip connections. In our experiments, 

RFCN-DenseNet was proved to be better than RFCN-ResNet in both drug sensitivity and 

gene dependency tasks. This is may be due to that densly skip-connections in 

RFCN-DenseNet may cover more possible interaction combinations than RFCN-ResNet. 

Interestingly, RFCN-DenseNet for drug sensitivity is wider (with more number of neurons per 

layer) and shallower (with less number of layers) than that for gene dependency task, no 

matter using gene expression or mutation data (Figure 3A and Figure 4A), which may imply 

that these anticancer drugs can influence more targets and pathways initially than single gene 

perturbations, but the latter one can expand deeply in biological network. However 

RFCN-DenseNet cannot keep good performance in cancer subtyping classification task, both 

RFCN-ResNet and RFCN-DenseNet showed low accuracy and ENAS-based 
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randomly-generated network significantly outperformed them. It imply that ENAS can 

achieve a larger searchable space than RFCN-DenseNet, where the structure of the latter one 

can only be extended in a fixed manner.  

Taking all above, AutoGenome is the first automated machine learning tool for 

multi-omics research. It comprises novel network units and network architectures specificly 

designed for genomics data. And it also integrate built-in novel multimodal integration 

method for efficiently taking advantages of multi-omics data. Besides, AutoGenome also will 

provide more biological explanation for predicted results by sharp, which can help biologist 

to discovery more interesting biological marker to do research. AutoGenome surely speed up 

bioinformatics and genomics study and aid in dissecting important findings for biological 

researchers. 

 

Methods 

Hyper-parameter search. Hyper-parameter search method refers to our previous described 

approach in AutoGenome10. The hyper-parameters in search space are learning rate, total 

batch size, momentum, weight decay, number of layers in neural networks and number of 

neurons in each layers.  

RFCN-ResNet Search Space. Search space are as followings. 1) The number of blocks 

for ResNet, default value is [1, 2, 3, 5, 6]. 2) The number of neuros in each layer, default 

value is [8, 16, 32, 64, 128, 256, 512, 1024, 2048]. 3) The drop-out ratio of the first layer 

compared with the input layer, selected from [0.6, 0.8, 1.0] 

RFCN-DenseNet Search Space. Search space are as followings. 1) The blocks structure 

for DenseNet, default value is [[2, 3, 4],[3, 4, 5]]. 2) The growth rate of neuros in each block, 

default value is [8, 16, 32, 64, 128, 256, 512, 1024, 2048]. 3) The drop-out ratio of the first 

layer compared with the input layer, selected from [0.6, 0.8, 1.0]. 

Efficient Neural Architecture Search. ENAS search method refers to our previous 

described approach in AutoGenome10. Search space are as followings. 1) The number of 

neurons in from the 2rd layer to the last layer, selected from [16, 32, 64, 128, 256, 512, 1024, 

2048]. 2) The connection relationship between different layers. 

Data collection and preprocessing. For drug sensitivity and gene dependency prediction 

tasks, we downloaded gene expression and mutation data, drug response data and 

CRISPR-based gene dependency data from GDSC (https://www.cancerrxgene.org) and 
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DepMap (https://depmap.org/portal/download/) web resources. Gene expression profile 

includes 1018 cancer cell lines and 17418 genes. Values were log2-transformed. Gene 

mutation data covers 974 cancer cell lines. We set discrete values of 1 and 0 indicating 

somatic mutated or wide-type status and removed silent mutation cases, remaining union set 

of 19350 genes for analysis. Drug response data includes log-transformed IC50 values for 990 

cancer cell lines representing response to 265 single anticancer drug treatments. 

K-nearest-neighbor algorithms was performed to fill in missing values for the IC50 response 

data by R function knn. Gene dependency data covers 558 cancer cell lines and response to 

CRISPR perturbation of 17634 human genes. To focus on cancer priority gene targets22, 610 

gene CRISPR cases were remained for analysis. Cell lines were mapped using identifiers of 

Catalogue Of Somatic Mutations In Cancer (COSMIC) between datasets, thus remained 936 

cell lines for drug sensitivity task and 324 for gene dependency task.  

For cancer subtyping prediction task, breast cancer patients’ gene expression, mutation 

and protein expression data were downloaded from TCGA (https://gdac.broadinstitute.org/), 

where feature numbers were 20531 genes, 16806 somatic mutated genes and 226 proteins 

respectively. Gene expression values were log2-transformed and silent mutations were 

removed from gene mutation data. PAM50-based subtypes for patients were downloaded 

from published paper35. 396 patients shared between the feature data and subtype data were 

used for cancer subtyping prediction task. For pancancer type prediction, 5,780 patient 

samples with gene expression and somatic mutated gene profiles were used for modelling. 

Model training, evaluation and explanation. For drug sensitivity and gene dependency 

tasks, data were randomly separated into 8:1:1 ratio for training, evaluation and test data. 

Evaluation was performed based on 10-fold cross validation to calculate MSE and SCC. 

Precision, recall, accuracy and AUROC were calculated when using a threshold to group 

positives and negatives. For cancer subtyping task, the ratio was set as 6:2:2 in ENAS-based 

modelling, since evaluation data was used to update and determine net architectures for 

ENAS. Data were splitted in a stratified manner to make percentage of subtypes equal 

between data sets. Top-1 accuracy for the test data was used as final evaluation. All 

evaluation scores were calculated using python sklearn module. Model explanation is 

performed by “SHAP” module implemented within AutoGenome. AutoGenome take the best 

model and raw data as input, when calling with “autogenome.explain()”. And then 

AutoGenome will automatically return the SHAP value of each feature for each sample for 

further interpretation. 

Software Availability 
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We will open the utilization of AutoGenome package to the public upon the acceptance of 

manuscript. 
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Figure legends 

Figure 1. Integrative analysis of multi-omics data from multiple-origin samples and 

building AI models for biomedicine research. 

 

Figure 2. Scheme of AutoGenome for automatic multi-omics integration for AI model 

construction. Step 1: Collecting multi-omics data. Take multi-omics data of 4 data types as 

example, a gene expression matrix, a gene mutation matrix, a copy number variation (CNV) 

matrix and a DNA methylation matrix. Step 2: Use each single-type omics data respectively 

as input to train a model for the learning targets. Four network structure classes (MLP, 

ResNet, DenseNet and ENAS), numbers of layers, numbers of neurons per layer and 

hyperparameter combinations (batch size, learning rate and optimizers) was performed to 

search for a model with the highest performance evaluation scores as optimal single-omics 

models for this single-type omics data. Then, weights of the all optimal models were fixed, 

and stopped updating in the following steps. Step 3: Concatenate latent layers from all the 

optimal single-omics models. Here we chose all the last latent layers and extract the 
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corresponding vector values into a concatenated vector as the input for Step 4. Step 4: Use 

the concatenated vector as input to train a model for the learning targets again. Same to the 

process in Step 2, search for optimal multi-omics model. Then, weights of this optimal model 

was fixed. All the optimal single-omics (from Step 2) and multi-omics (from Step 4) models 

were combined together into a whole network, as the final AutoGenome-based AI model. 

 

Figure 3. AutoGenome-based drug response prediction model. 

(A) Illustration of AutoGenome-based drug sensitivity prediction model using GDSC cancer 

cell line gene expression and mutation profiles to predict sensitivity scores to 265 anticancer 

drugs. 

(B) Illustration of Automics basic net units – dense layer units for DenseNet and FC units. 

(C) Comparison of AutoGenome based drug sensitivity model to DeepDR using GDSC data. 

GDSC IC50 values were used as golden-standard positives. F1 score and MSE score were 

used for evaluation comparison. 

(D) Comparison of AutoGenome based drug sensitivity model to PaccMann using GDSC data. 

We used SMILES of 28 drugs and 936 cell lines shared in training sets of both our model and 

PaccMann for comparison. GDSC IC50 values were used as golden-standard positives. 

Evaluation comparison were performed in both cell-wise and drug-wise. 

(E) Independent validation of AutoGenome based drug sensitivity model in a PDX mice data 

set and comparison to MOLI. Independent validation of AutoGenome in a mice PDX data set. 

We tested the GDSC-IC50-trained AutoGenome model on a mice PDX data, which uses 

tumor size reduction as learning targets. Here tumor size reduction quantity was used as 

ground truths for performance evaluation. 4 drugs shared between our model and MOLI were 

used for comparison.  

(F) Top-10 gene expression ranked by impact on model output for AutoGenome based drug 

sensitivity model.  

(G) Top-10 gene mutation ranked by impact on model output for AutoGenome based drug 

sensitivity model.  

 

Figure 4. AutoGenome-based cancer subtyping and pancancer type prediction models. 
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(A) Illustration of AutoGenome-based cancer subtyping prediction model using TCGA breast 

cancer patient gene expression, gene mutation and protein expression profiles to predict four 

breast cancer subtypes. 

(B) Performance comparison between AutoGenome steps using top-1 accuracy. Total data 

were randomly separated in 7:2:1 ratio for training, evaluation and test datasets. The test 

dataset was used for top-1 accuracy calculation.  

(C) Confusion matrix using predictions of AutoGenome-based cancer subtyping prediction 

model. True labels are in the row and predictions are in the column. Top-1 accuracy for each 

of the four breast cancer subtypes and total top-1 accuracy are indicated.  

(D) Feature importance analysis. Top-10 features ranked by impact on model output are 

performed for gene expression (left), gene mutation (middle) and protein expression (right). 
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Figure 1. Integrative analysis of multi-omics data from multiple-origin samples and 

building AI models for biomedicine research.
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Figure 2. Scheme of AutoGenome for automatic multi-omics integration for AI model 

construction.
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Figure 3. AutoGenome-based drug response prediction model.
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Figure 4. AutoGenome-based cancer subtyping prediction model.
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Supplementary Figure 1.  Process of searching for optimal model structures and 

hyperparameters (Related to Figure 2).
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Supplementary Figure 2.  Existing methods for integrative analysis of multi-omics data 

(Related to Figure 3).

Here we take multi-omics data of two data types (gene mutation matrix and gene expression 

matrix). (A) Existing method 1: Direct concatenate two data matrix together as input to train a 

MLP against learning targets. (B) Existing method 2: Firstly train two autoencoders (AEs) for 

gene mutation and gene expression respectively, then extract the output vectors of their 

encoders (latentMutation and latentMutation) and concatenate together as input to train a MLP 

against the learning targets.
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Supplementary Figure 3.  Comparison of AutoGenome-based drug response model to 

other methods (Related to Figure 3).

(A) Performance comparison between AutoGenome steps using 7 evaluation scores. All scores 

were calculated in 10-fold cross validation manner using GDSC IC50 values as ground truths. 

For SCC and average AUROC per cell, values were firstly calculated for each cell line and then 

averaged across cell lines. For global AUROC, prediction matrix of cells vs. 265 drugs were 

expanded to a vector, then performed for calculation globally.

(B) Performance comparison between AutoGenome and other data integration strategies using 

F1 score. 
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Supplementary Figure 4. AutoGenome-based gene dependency prediction model 

(Related to Figure 3).
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Supplementary Figure 4. AutoGenome-based gene dependency prediction model 

(Related to Figure 3).

(A) Illustration of AutoGenome-based gene dependecy prediction model using DepMap

cancer cell line gene expression and mutation profiles to predict dependency scores to 610 

cancer target genes.

(B) Performance comparison between AutoGenome steps using 7 evaluation scores. All 

scores were calculated in 10-fold cross validation manner using DepMap gene dependency 

scores as ground truths. For SCC and average AUROC per cell, values were firstly 

calculated for each cell line and then averaged across cell lines. For global AUROC, 

prediction matrix of cells vs. 610 genes were expanded to a vector, then performed for 

calculation globally.

(C) Performance comparison between AutoGenome and existing methods using F1 score. 

Feature importance analysis for AutoGenome are shown in (D) and (E). (D) Top-10 gene 

expression ranked by impact on model output. (E) Top-10 gene mutation ranked by impact 

on model output. 
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Supplementary Figure 5. Silhouette scores calculated using top features ranked by 

SHAP values (Related to Figure 4).

Silhouette scores of breast cancer patient samples to four subtyping classification calculated by 

top-ranked features by SHAP (orange) and all features (blue) of gene expression (A), gene 

mutation (B) and protein expression (C). Top 70, 40 and 10 features show the highest silhouette 

scores for gene expression, gene mutation and protein expression respectively.
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Supplementary Figure 6. Hierarchical clustering of breast cancer samples using all gene 

expression features (A) and top-70-SHAP ranked gene expression features (B) (Related 

to Figure 4).
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Supplementary Figure 7. Hierarchical clustering of breast cancer samples using all gene 

mutation features (A) and top-40-SHAP ranked gene mutation features (B) (Related to 

Figure 4).
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Supplementary Figure 8. Hierarchical clustering of breast cancer samples using all 

protein expression features (A) and top-10-SHAP ranked protein expression features (B) 

(Related to Figure 4).
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Supplementary Figure 9. AutoGenome-based gene dependency prediction model 

(Related to Figure 4).

(A) Illustration of AutoGenome-based cancer type prediction model using TCGA pancancer

gene expression and gene mutation profiles to predict 24 cancer types. 

(B) Performance comparison between AutoGenome steps and ensemble learning using 

top-1 accuracy. Stacked ensemble learning was performed by concatenating softmax

vectors of target prediction layers and to train ENAS or MLP prediction networks.
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