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Abstract

It has extensively been documented that human memory exhibits a wide range of
systematic distortions, which have been associated with resource constraints. Resource
constraints on memory can be formalised in the normative framework of lossy
compression, however traditional lossy compression algorithms result in qualitatively
different distortions to those found in experiments with humans. We argue that the
form of distortions is characteristic of relying on a generative model adapted to the
environment for compression. We show that this semantic compression framework can
provide a unifying explanation of a wide variety of memory phenomena. We harness
recent advances in learning deep generative models, that yield powerful tools to
approximate generative models of complex data. We use three datasets, chess games,
natural text, and hand-drawn sketches, to demonstrate the effects of semantic
compression on memory performance. Our model accounts for memory distortions
related to domain expertise, gist-based distortions, contextual effects, and delayed recall.

Author summary

Human memory performs surprisingly poorly in many everyday tasks, which have been
richly documented in laboratory experiments. While constraints on memory resources
necessarily imply a loss of information, it is possible to do well or badly in relation to
available memory resources. In this paper we recruit information theory, which
establishes how to optimally lose information based on prior and complete knowledge of
environmental statistics. For this, we address two challenges. 1, The environmental
statistics is not known for the brain, rather these have to be learned over time from
limited observations. 2, Information theory does not specify how different distortions of
original experiences should be penalised. In this paper we tackle these challenges by
assuming that a latent variable generative model of the environment is maintained in
semantic memory. We show that compression of experiences through a generative model
gives rise to systematic distortions that qualitatively correspond to a diverse range of
observations in the experimental literature.
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Introduction

It has long been known that human memory is far from an exact reinstatement of past
sensory experience. In fact, memory has been found surprisingly poor for even very
frequently encountered objects such as coins [1], traffic signs [2] or brand logos [3].
Rather than being random noise however, the distortions in recalled experience show
robust and structured biases. A great number of experiments have shed light on
systematic ways in which the distortions in recalled memories can be influenced both by
past and future information, as well as the context of encoding and recall. Canonical
examples of past knowledge influencing recall include experiments of Bartlett [4] where
for folk tales recalled by subjects of non-matching cultural background, the recalled
versions were found to be modified in ways that made the stories more consistent with
the subjects’ cultural background, leading to the suggestion that memory seems to be
more reconstructive than reproductive. Various manipulations of the encoding context
have been shown to influence the recalled memory; for example, presenting a label or
theme before ambiguous sketch or text stimuli modulates both recall accuracy and the
kinds of distortions that appear in the recalled memory [5–7]. Finally, paradigmatic
examples of memory disruptions due to information obtained after the experience being
recalled include post-event misinformation [8], imagination inflation [9], hindsight
bias [10], or leading questions [11]. The rich set of systematic distortions provides
insights into the principles governing memory formation, which ultimately provides a
means to predict how experiences are transformed in memory.

Traditionally, systematic biases in recalled memories have been interpreted as
failures, confabulations of an unreliable memory system [12]. In contrast, adaptive
accounts have been proposed that view these biases as being regrettable but necessary
byproducts of adaptive processes in the brain such as generalisation, fast recognition or
creativity [13–15]. Going even further, Bayesian accounts of reconstructive memory
argued that in some cases, the memory distortions can be adaptive even if the goal is
accurate recall, since previous knowledge can be used to correct for inaccuracies and fill
in missing details in incomplete memories [16–18]. The Bayesian account provides a
principled way of decoding memory traces by combining prior statistical knowledge with
noise-corrupted information retained from the observation. However, it leaves a
fundamental question open: in a normative model of memory what information needs to
be retained and what pieces of information should be sacrificed to satisfy constraints on
memory resources?

In this paper we argue that viewing the transformation of sensory experiences into
memory traces as compression provides a normative framework for memory distortions.
Specifically, we consider lossy compression, a form of compression where
limited-capacity encoding is achieved at the price of imperfect decodability of original
data, to characterise information loss during encoding. We point out that by adapting
the mathematical framework for lossy compression, called rate distortion theory, to the
constraints faced by the brain, we obtain semantic compression. Key to semantic
compression is the assumption that a generative model of the environment is
maintained in the brain. This generative model describes how the observed statistics of
the environment has been generated from variables not directly observed through our
senses [19]. According to semantic compression, it is the latent variables of this
generative model of the environment that are used to compress experiences. If memory
is optimised for natural observation statistics, then assessing the predictions of lossy
compression regarding memory distortions requires generative models capable of
handling such complex structured data. Constructing such generative models and
performing inference in them can be challenging therefore we capitalise on recent
advances in machine learning: we use variational autoencoders to learn approximate
generative models of structured data [20]. Importantly, a form of variational
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autoencoders, the beta-variational autoencoders can be viewed as a variational
approximation to rate distortion theory, and we use this link between rate distortion
theory and generative models to provide a theoretical framework for a unifying
explanation of a large body of experimental data in the domain of memory distortions.

In the following, we introduce the theoretical background for semantic compression
and then apply semantic compression to three different domains in memory distortions.
First, we introduce basic concepts of rate distortion theory. Second, we introduce
variational autoencoders and their relationship to lossy compression. Next, a
paradigmatic example of memory distortion induced by past experience, domain
expertise is investigated. In the coming section we discuss contextual effects through
semantic compression. Finally, we discuss how gradual change of compression as time
progresses incurs changes in memory traces.

Theoretical framework

Rate distortion theory

The branch of information theory that deals with data compression where information is
lost during the process is rate distortion theory (RDT). According to RDT, a compact
code is constructed that can be used to encode any data point in the dataset. A central
insight of RDT is that there is no single optimal encoding: a trade-off emerges between
the memory resources (rate, R) that are used for storing a given observation, i.e. the
length of the code and the expected amount of distortion (D) in the recalled memory,
i.e. the reconstruction of the original data from the stored code. Any given compression
algorithm can be characterised by the trade-off it makes between these two quantities,
and thus defines a point in the rate distortion plane (RD plane). An encoding, Q, can
be improved by decreasing the expected distortion, DQ, without increasing the rate, RQ.
Thus, the best encoding under any given memory resource constraint R is the one that
minimises the expected distortion when the rate is maximised at a specific value, R:

D(R) = inf
Q

(DQ), s.t. RQ < R,

or alternatively, by achieving a lower rate without increasing the expected distortion.
Achieving the lowest possible distortion for each possible rate traces out the RD curve,
establishing the range of possible optimal encoding schemes for a given distribution over
observations.

Under any given encoding, the distortion of an individual observation (d(x, x̂))
between the observation (x) and its reconstruction (x̂) can change across observations.
The distortion term measures the expected amount of error that the encoding algorithm
makes over the whole set of observations. The function d(x, x̂) characterises how
acceptable the distortion is and thereby defines an ordering across pairs of observations
and their reconstructions, which defines the contribution of an observation to the the
distortion term of RDT, DQ = Ex[d(x, x̂)]. An optimal lossy compression algorithm will
selectively prioritise information such that alterations that are inconsequential according
to this measure are discarded first.

An alternative formulation of finding the best distortion, DQ, under the constraint
of limited rate, RQ can provide additional insights into the continuum of solutions
obtained at different rates. The Lagrange-multiplier formalism is used for constrained
optimisation of the distortion such that instead of minimising DQ one needs to minimise

L = DQ + βRQ,

where the constraint of fixed rate when optimising the distortion is formulated through
the Lagrange-multiplier β, which sets the trade-off between two terms. This formulation
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of the objective is only applicable when the RD curve is strictly convex but this
requirement is often fulfilled in practical cases. According to this Lagrangian
formulation, any compression method can be associated with a point on the RD plane,
with optimal algorithms lying on the curve. Every point on it can be identified with a
single value of β, which is the local slope of the curve. Thus, β directly corresponds to a
particular point on the rate-distortion trade-off continuum: for example a high value of
β is associated with strong compression, yielding a low rate but high distortion.

While RDT provides a normative framework for lossy compression, the errors or
compression artefacts resulting from traditional lossy compression algorithms of images
or video (such as block boundary artefacts characteristic of JPEG) look qualitatively
different from the errors committed by human memory [21,22]. If one intends to use
RDT as a normative framework of human memory errors then such mismatch ostensibly
casts doubt on the applicability of the framework to memory phenomena. However,
compression of sensory experience for the human brain is characterised by a number of
constraints which distinguish it from the traditional problem of compression of image
and video data. We propose to accommodate these constraints in the framework of
RDT to obtain semantic compression.

Semantic compression

A fundamental difference between RDT and the form of compression required by the
brain is that while the former produces optimal reconstructions given a known source
distribution, the distribution of observations is not known for the brain but has to be
learned from experience over time. Specifically, natural observation statistics define
richly structured and high dimensional distributions, which have to be learned from a
comparatively limited set of observations. In machine learning, this challenge is
addressed by generative models. In order to cope with severely limited training data,
generative models include inductive biases such as restrictions on hypothesis spaces,
priors or hyperparameters. These biases influence decisions regarding what features of
the data are generalisable to future observations and what features should be deemed
random noise. We argue that since the problem of generalising from a small amount of
observations to the true underlying distribution is a fundamental challenge in both
generative models and compression in memory, similar inductive biases have to be
incorporated in both. Therefore, we propose that the normative approach for adapting
RDT to the problem of human memory is through compression via generative models.

Probabilistic generative models have been implicated in understanding human and
animal behaviour in a multitude of cognitive tasks [23–26]. For example, perception has
been previously cast as a process of unconscious inference, which is aimed at inferring
the latent state of the environment based on noisy sensory observations [19,27]. This
inference can be accomplished optimally by inverting the generative model which
describes the way latent variables give rise to observations. Another domain where
generative models have found support is action planning, where the model is used as an
environment simulator to predict likely consequences of actions [28]. Following previous
research, we assume that a statistical model of the environment is maintained in
semantic memory and formalise semantic memory as a probabilistic generative latent
variable model of the environment [29–31]. We argue that semantic memory represents
the best estimate the brain has of environmental statistics, and therefore assume that it
is this approximate model of the environmental statistics that compression is optimised
for.

When the RDT framework is applied to the compression problem faced by the brain,
a further issue needs to be considered: RDT does not specify how distortion should be
measured, leaving it to be defined by the application. The distortion function represents
the agent’s judgements on how relevant particular features of the observation are and
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efficient compression hinges on selectively retaining this information. Thus, the
definition of the distortion function raises the question of what parts of experience are
relevant for the human brain. We argue that this problem is identical to that
encountered in perception, where computations aim at extracting the latent variables
underlying the activity of sensory neurons. In semantic compression the distortion
function is defined by the generative model maintained by semantic memory, and the
relevant features of observations are those that are extracted into the latent variables of
this model. Importantly, such a choice for the distortion function and optimising for the
complex structure in natural observation statistics can yield qualitatively different
errors from those made by traditional compression algorithms, which only exploit
simple, low-level regularities in image statistics.

Variational approach

Generative models and rate distortion theory are separate frameworks developed with
largely different goals, however there has been a flurry of recent work pointing out
connections between the two [32–34]. A recent development in machine learning is the
introduction of variational autoencoders, which can effectively learn a generative model
of complex, high dimensional distributions as well as perform approximate inference
over the latent variables. Interestingly, recent studies have established a link between a
variant of variational autoencoders and rate distortion theory. Here we briefly describe
the variational framework in which rate distortion theory and generative models can be
jointly discussed.

Learning probabilistic latent variable generative models of natural stimuli such as
images, videos and sound has been a major challenge in machine learning and requires
approximate methods. Many of these models utilise latent variables, z, to factorise the
distribution over observations, x. The set of latent variables can be thought of as the
factors that contribute to the structure of the input data and constitute a representation
of the data, often with lower dimensionality. These latent representations often show
desirable qualities such as disentangling independent factors of variation. One of the
most successful approaches to learning approximate latent variable generative models is
a class of models called variational autoencoders (VAE) [20]. VAEs are capable of
jointly learning the parameters of the generative model as well as performing inference
by approximating the posterior distribution over latent state variables through
variational methods. In variational Bayesian inference the true posterior distribution,
p(z|x), is approximated by a distribution qφ(z|x) from a simpler distribution family
parameterised by φ. Once such a distribution family is chosen, the goal is to minimise
the dissimilarity between the true posterior and the approximate posterior:

argminφ KL(qφ(z|x) || p(z|x)),

where KL is the Kullback-Leibler divergence, which quantifies the dissimilarity between
two probability distributions. While this term cannot be computed directly, it can be
shown that maximising the evidence lower bound (ELBO),

L(θ, φ, x) = Ez∼qφ(z|x)(log pθ(x|z))−KL(qφ(z|x)||pθ(z)),

also minimises the KL divergence. In addition to learning to perform accurate inference
through optimising the parameters φ, the generative model is also learned through
optimising the ELBO over the parameters θ. The generative model consists of the
likelihood, pθ(x|z), describing how the observed variables depend on the latents, and the
prior distribution over latents pθ(z). The first term of the ELBO is often called the
reconstruction term, alluding to the fact that it penalises inaccurate reconstruction of
the observation. The second term is usually viewed as a regularisation term, as it

September 17, 2020 5/30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.05.06.080838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080838


penalises deviations from a simple posterior. In VAEs the approximate posterior is
typically of a simple form, such as a Gaussian, which is parameterised by its mean and
covariance structure. VAEs also utilise amortised inference, where the computation of
the approximate posterior is amortised by training a neural network to output the
parameters of the approximate posterior on the training set. The output of this encoder
then produces the parameters of the approximate posterior over z in later observations.
An extension of VAEs, β-VAE, is particularly relevant for establishing a formal
connection between generative models and RDT. β-VAE introduces a scalar multiplier,
β, that scales the regularisation term and can effectively trade-off the two terms with
the motivation that individual latent variables of the learned latent representation
correspond to independent and interpretable sources of variation in the observed data,
i.e. encouraging more disentangled representations [35].

To understand the relationship between β-VAE and RDT, we turn to a specific
formulation of compression called the information bottleneck (IB) method [36]. The IB
method extends RDT such that it guides the choice of the distortion function. The IB
method introduces the term relevant information, the information that we intend to
retain after compression. If the goal of compression is to lose information such that
estimation of the relevant quantity, y, is minimally affected then we can formulate the
relevant information as the information in the compressed representation z with respect
to the relevant quantity y, that is the mutual information I(z, y). Consequently, in the
loss function of IB the goal of maximising relevant information is traded off with
compressing observations through the latent representation, and the loss to be
minimised becomes:

LIB = −I(z, y) + βI(x, z)

It can be shown that minimising the IB loss function corresponds to a distortion
measure that prioritises information that contributes to the prediction of relevant
quantity y [36]. Although the IB method provides an algorithm for optimising the loss
function, it is not feasible to apply to high dimensional naturalistic data. Alemi et
al. [32] have shown that the IB objective can be efficiently approximated through
variational methods. Importantly, the IB method formally defines a supervised
objective since optimisation of the compression is achieved with the objective of
optimising for a particular ‘output’ variable y, but an unsupervised version of the IB
method can be constructed which gives rise to the same objective as the β-VAE. In this
sense, β-VAE can be seen both as a generative model and a lossy compression
algorithm: the reconstruction term in the ELBO can be interpreted as the distortion, D,
and the information limiting regularisation term as the rate, R.

The correspondence between RDT and β-VAEs highlights the relation of latent
variable models to lossy compression. Inferring a posterior over latent variables z upon
the observation of stimulus x amounts to only retaining the statistics of stimuli
captured in variations in z but discarding those beyond the sufficient statistics of the
latent variables.

In summary, we use the framework of VAEs to learn the kind of generative model
hypothesised to be maintained by the human brain and we link approximate inference
over the latent variables of β-VAE to inferences made by humans. We then analyse this
model from the point of view of lossy compression, allowing us to model and provide a
normative explanation for a large variety of memory experiments.

September 17, 2020 6/30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.05.06.080838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080838


Results

Domain expertise

According to semantic compression, efficient compression hinges upon accurate
knowledge of environmental statistics. Since in the case of the brain these statistics are
estimated based on experience collected over time, the accuracy of the estimate is
expected to increase with the amount of experience within a cognitive domain. As the
estimate becomes more accurate, compression becomes closer to optimal and
consequently recall errors are expected to decrease. However, this enhancement in recall
accuracy is only expected to occur for observations congruent with the statistics of the
domain, as a compression algorithm optimised for one distribution will be poorer at
encoding observations coming from a different distribution. Assuming semantic
compression, constructing artificial stimuli of the same domain but exhibiting statistical
structure incongruent with that of earlier experience will increase recall errors.

Chess is an ideal domain for computational analysis of expertise on memory
performance due to a number of factors. i) The data is rich, possible configurations are
astronomical; ii) chess games trace out a complex subspace of possible configurations;
iii) ‘natural’ game statistics is well documented; iv) expertise is graded among
individuals, allowing for a more fine-grained analysis of the relationship between
expertise and recall performance. We capitalise on these properties of chess to test how
expertise relates to memory performance in different conditions.

In a widely studied paradigm in memory research using chess [37], a chess board
configuration is presented for less than 10 seconds, after which pieces are removed and
subjects are required to reconstruct the observed configuration by placing the pieces on
an empty board. Subjects are classified into four skill levels on the basis of their Elo
points. Recall performance is measured in two conditions: In the case of ‘game’ (or
‘meaningful’) configurations chess pieces are placed according to states taken from
actual games, while in the case of ‘random’ (or ‘meaningless’) configurations positions of
chess pieces of game states were randomly shuffled.

We trained a β-VAE to learn the distribution of chess pieces during standard chess
games downloaded from the FICS games database1 (chess-VAE). Briefly, a board
configuration was represented as a 64 by 13 element matrix corresponding to the 64
positions and the 13 possible pieces, with an element of the matrix taking one if a
particular chess piece appeared on a given position. This input was encoded with the
β-VAE in a 64-dimensional latent space (for additional details please refer to the
Materials and Methods section). In order to capture the varying amounts of experience
that subjects have with these statistics, we trained the generative model on varying
amounts of chess games,using 0.1% (unskilled) to 90% (most skilled) of the entire
training set consisting of approximately 250000 board configurations. In addition to the
chess games, in order to mitigate overfitting to a low number of observations for the
unskilled model, we augmented the training data with 10000 uniformly random board
configurations at each skill level. This data augmentation can be seen as a hand-crafted
inductive bias which optimises for a uniform distribution in the low data regime.
Optimising for an uniform input distribution means that the algorithm maintains an
ability to reconstruct any possible board configuration equally well, however since
overall capacity is limited, this means that no configurations can be reconstructed
accurately. In the case of more skilled models the observations overwhelm the prior and
consequently the prior has negligible effect. Note that we are taking a conservative
approach in training the model, with no explicit instructions regarding the rules of chess
or intent to win the game. Explicit knowledge of the rules makes certain configurations

1https://www.ficsgames.org
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Fig 1. Effect of domain expertise on memorising positions in chess. A: Top,
Chess board configurations from real game settings (game configurations). Bottom,
reconstructions of the configurations from memory. These configurations are individual
samples generated by the expert model based on the encoding of the presented
configurations. Green frames indicate correctly reconstructed pieces, red frames
indicate positions where a piece is missing or erroneously appears in the reconstructed
game; purple frames indicate pieces whose identity is switched in the reconstruction. B:
Same as A but instead of game configurations randomly shuffled pieces are presented
(random configurations) and reconstructed. C: Reconstruction accuracy of the model for
game and random configurations as a function of the training size. D: Reconstruction
accuracy of human participants as a function of chess skill. Data reproduced from [37].

impossible or exceedingly unlikely, which can be utilised to aid recall. Nevertheless,
reconstructions and unconditional samples show that the model captures an
approximate version of these rules. To model the experimental recall setting, we used
the inference network of the learned generative model to encode either game or random
boards into a latent representation. Then, conditioning on the stored latent state we
used the generative model to decode the memory trace into a reconstruction of the chess
board configuration (Fig. 1A,B). Reconstructions by the model show the monotonic
increase in accuracy for ‘game’ boards as a function of increasing chess skill (Fig. 1C). A
similar monotonic increase in recall performance was found in humans (Fig. 1D), where
recall performance ranged from around five pieces for amateur players to near perfect
reconstruction for grandmasters.

In the ‘random’ condition, artificial stimuli obtained by randomisation destroys a
significant portion of the statistical structure present in the configuration. In the case of
‘random’ boards the chess-VAE displays more errors both in omitted pieces and in
exchanged piece identities (Fig. 1B). As a function of expertise, a monotonic increase in
accuracy can be observed but with a distinctly smaller slope than in ‘game’ positions
(Fig. 1C). In contrast to the ‘game’ stimuli case, for these artificial stimuli the accuracy
advantage of skilled human players also shrinks substantially (Fig 1D), meaning that the
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accuracy advantage of skilled players originates in the statistical structure of the stimuli.
Naively, one might expect that it would be easier to recall boards with only a few

pieces, with the underlying assumption that storing the location and identity of each
additional piece requires additional memory resources. However, board configurations
containing most of the pieces are usually from early in the game, with the configuration
strongly constrained by the initial state, whereas boards containing only a few pieces
are typically from late in the game less constrained by the starting game setting.
Intuitively, differences in compressibility can be understood to arise from the relatively
short description length of an early game configuration where one only needs to define
the movements of a few pieces relative to the initial state. In summary, increased
expertise in the statistics of a particular stimulus set specifically contributes to the
enhancement of recall performance, which can be explained by recruiting knowledge
stored in semantic memory for efficient compression of data.

Gist-based distortions

Semantic compression assumes that the statistics of stimuli is learned through a
generative model and the latent variables of this generative model determine what
features of experience are retained in lossy compression. Ideally, the latent
representation that a generative model learns captures factors that explain a large
amount of variance in earlier observations, are strongly predictive of future observations
and rewards or allow for efficient manipulation of the environment. These latent
variables are hypothesised to include lower level acoustic or visual features such as
phonemes, or objects as well as abstract concepts such as what constitutes a good chess
move or melody. These more abstract latent variables provide a high level, ‘gist’-like
description of the experience. By conditioning the generative model on the latent
representation, observations that are consistent with the high level description can be
generated. While precise details of the episodes will be lost during the encoding and
decoding process, lost information can be supplemented by the generative model during
decoding. More specifically, the generative model can be used to generate likely values
of features for which the observed value was discarded during compression.

One consequence of reconstruction through a generative model is that memory will
be sensitive to changes in the observations that affect the latent variables but allow for
distortions that do not. At sufficient levels of compression this will result in falsely
recognising or recalling items that were not themselves presented, but are conceptually
related to items that were.

A second consequence of compression using latent variables of a generative model is
that factors that influence the interpretation of the observation, that is the inference of
values of latent variables, will also be reflected in the reconstruction. Specifically, in the
case of ambiguous stimuli, contextual information influences the inferred latent
representation, and consequently distorts the compressed memory by shaping lower-level
details in ways that better conform to the shifted latent representation.

We demonstrate these effects in two experimental domains, the delayed recall of lists
of words and recall of hand drawn sketches of objects. Note, that it is currently a
challenge in machine learning to identify the computational principles that give rise to
generative models that decompose observations into latent variables resembling the
representations in human semantic memory. A particular advantage of using β-VAEs is
that one of the main ingredients to achieve learning such a representation is thought to
be the principle of encouraging disentangled features. β-VAEs have been shown to be
able to discover disentangled latent representations from complex data in diverse
domains and are therefore a good candidate for investigating the forms of memory
distortions that result from the manipulations of latent representations in a
domain-general way.
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Intrusion of semantically related items during recall

One of the most extensively studied paradigms for reliably inducing strong false
memories is the Deese–Roediger–McDermott paradigm (DRM) paradigm, where
subjects have to recall lists of words. Language is a rich and computationally difficult
domain, however recent successes in generative modelling of language suggest that the
available size of corpuses makes it amenable to learning in an unsupervised way [38]. An
inherent advantage of the DRM experimental setting is that since the recall order of
word lists is not constrained, simpler, so called ‘bag of words’ models can be used which
are significantly easier to train than text models that can also capture sequential
dependencies between words.

In the DRM paradigm [39], subjects are presented with a list of semantically related
words. The lists are created by collecting first associates of a particular common word,
the lure word, from human subjects. In the experiment word lists are created from
associates and presented to participants but the lure word is never shown during the
memorisation phase. After a given delay that ranges from minutes to days, subjects
have to either recall or recognise the studied words.

a b

Fig 2. Memory distortions for lists of words. A: Frequency of recall from 100
samples for individual words in the text model trained on Wikipedia for the word list
associated with ‘music’ from the DRM paper [39]. The lure word (red) is characterised
by a recall probability comparable to the studied words (green). B: Comparison of recall
probabilities for studied and lure words in the text-VAE model for 10 word lists (left,
see Methods), and experiment (right) Roediger et al. [39].

In order to learn an approximate generative model for language, we have used
Wikipedia excerpts subsampled to 40 words for training a simple VAE architecture
(text-VAE). The architecture was similar to the chess-VAE except that the noise model
and input representation was adapted to text observations. This architecture has also
been analysed previously in the machine learning literature as the Neural Variational
Document Model (NVDM) [40]. The model takes text snippets as input to the β-VAE
in bag of words representation, i.e. each occurrence of a word in a document is counted
in a vector of dimension equal to the size of the entire vocabulary. This representation of
the input disregards the sequential structure of text. The encoder mapping a document
to a latent representation z of 100 dimensions consists of two dense layers of 2000 hidden
units. The generative model is similarly structured and generates words independently
(for additional details, see the Materials and Methods section). Wikipedia was chosen as
a large and reasonably comprehensive corpus. After training the text-VAE model, for
any presented list of words, a posterior can be inferred, which corresponds to the latent
variables that might underlie the observed word list. Nearest associates of the lure
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words show that the learned representation captures similar statistical relationship
between words as the methods used in the original experiments to generate associate
word lists (25% of corresponding DRM list words appear in 50 closest associates to lure
word in model, for examples see Methods). However, since the statistics of words in an
encyclopedia is different from that encountered by a human during his lifetime, the
model’s interpretation of certain words can be biased (e.g ‘chair’ is strongly related to
‘organization’ in Wikipedia dataset but not in the DRM word lists).

Generative models of text such as topic models often make the assumption that
natural text is concentrated on a low dimensional manifold in the space of all possible
text data. If compression is optimised for reconstructing samples from a distribution
with such manifold structure, then for observations that lie near the manifold the
reconstruction will be drawn towards the manifold to an extent determined by available
capacity. Furthermore, these generative models often contain an inductive bias, also
characteristic of our text-VAE, that text is generated by independent latent factors of
variation. Combined with natural text statistics this inductive bias results in the
emergence of latent topics, which constitute clusters of semantically related words. Any
given text excerpt is represented as a specific mixture of possible topics. When such an
algorithm is used to encode word lists from the DRM paradigm, the underlying implicit
assumption of the model is that the list was generated by some mixture of a few latent
topics. As capacity is decreased, the reconstructed observation will become an
increasingly prototypical exemplar of the activated topics, leading to the intrusion of
semantically related lure words. We used the trained model to test this hypothesis on
the DRM paradigm. For this, word lists of the original paradigm were taken as the set
of words coming from a document and we inferred a posterior representation associated
with this document. This posterior was subsequently sampled and the synthesised word
list was taken as the reconstruction of the original word list (Fig 2A). As expected, since
semantically related words are likely to occur together in natural text, the model
improved recall accuracy of such word lists relative to lists of randomly selected words,
however the price is the intrusion of non-studied but semantically related words into the
reconstructed list (Fig 2A). The intrusions indicate that while there is a loss of
information, the encoding and decoding process keeps the reconstructed observation
consistent with a stored gist level interpretation of the original observation. Importantly,
the frequency of the recall of lure words is similar to the average frequency of the recall
of studied words, reminiscent of human performance in the DRM task (Fig 2B).

Effect of varying contextual information on recall

We have argued that a second consequence of using the latent variables of a generative
model for compression is that context influences both the degree and structure of
distortions in recall. Hand drawn sketches of common objects have been used as
complex naturalistic stimuli for exploring memory distortions, allowing the
incorporation of contextual information by providing verbal labels or textual
descriptions. The continuous nature of sketches allows us to explore graded and
structured distortions of the observation along with the context dependence of encoding
and recall. A dataset of millions of labelled sketch drawings created by a large and
diverse set of human users of a browser-based game became available recently, and
VAEs capable of handling these high dimensional data have been developed [41].

A well-known and robust example of the effect of contextual information is the
experiment of Carmichael et al. [6]. In the classical experiment, intentionally ambiguous
hand drawn sketches of objects from common categories were presented to subjects who
were asked to reproduce these images after a delay. Two separate groups of participants
were required to reproduce the sketches, with each group in one of two contexts.
Context was established by providing a category name preceding the presentation of the
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drawings, with each name being consistent with one possible interpretation of the
drawing. The authors found that, depending on the contextual cues, systematic biases
were introduced in reproduced images that made the drawing more consistent with the
provided label (Fig. 3B).
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Fig 3. Context effects on reconstruction of line drawing from memory. A:
Middle column, Ambiguous line drawings from the QuickDraw data set of eyeglasses and
dumbbells. Left and right columns, Reconstructions of the image from memory in the
dumbbell and eyeglasses contexts, respectively. Context is modelled by using a
sketch-VAE trained on sketches from a single category with beta = 2. B: Examples
ambiguous drawings (middle column) and their reconstructions (side columns) when
cues are provided to participants (shown as text labels). Data is reproduced from [6]. C:
Effect of contextual information on the visual features in recalled stimuli in the model.
Quantitative changes (top), qualitative changes (middle), and subtle changes in
characteristics (bottom) occur as a result of contextual recall. D: Quantitative changes
in visual features with changing context (proportion of the length of the line connecting
circular features in the eyeglasses and dumbbell contexts) in the Sketch-RNN model
(left) and experiment (right). Experimental data reproduced from [42]

In order to analyse contextual effects in reconstruction in semantic compression we
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trained a VAE on sketch drawings from the QuickDraw data set (sketch-VAE). As an
approximation of the semantic model for sketch drawings, we used the Sketch-RNN
architecture, which models sketches not as raster images but as a series of sequential
pen movements [41]. The model uses recurrent neural networks to make predictions on
each subsequent stroke conditioned on its hidden state and the previous one and
assumes Gaussian motor noise. We have selected ambiguous object-pairs from the
QuickDraw data set and trained the model on 75000 drawings of each category. In order
to model the effect of presenting a contextual cue, we have trained a conditional model
on sketches belonging to each label. Each of these models represents a label conditional
generative distribution p(x|z, y = labeli) and a label conditional approximate posterior
q(z|x, y = labeli). During inference, we use the corresponding distributions to
reconstruct the same ambiguous image. Consistent with human data presented (Fig.
3B), reconstructions from the conditional posterior resulted in systematic distortions of
the original image consistent with the provided label (Fig. 3A). Systematic distortions
introduced by the model were rich, spanning addition or deletion of features, rescaling
of features, or subtle but characteristic changes in the shapes of reconstructed drawings
(Fig. 3C). Systematic rescaling of features has been observed in humans [42], which is
qualitatively similar to the rescaling found in the sketch-VAE model (Fig. 3D).

Rate distortion trade-off

The value of retaining information from a given episode is likely to vary with respect to
a multitude of factors such as how surprising the episode is, its relevance for predicting
the near future or its emotional valence. As a consequence, we propose that memory
resources allocated to storing episodes are unlikely to be constant either at the time of
encoding or as a function of time. If memory resources are to be distributed rationally,
this memory decay should not result in random forgetting as information theory
provides a principled way of discarding information so that memories degrade gracefully.

Formally, optimal forgetting entails moving along the line of optimal encodings in
the rate distortion plane in the direction of decreasing rate (Fig. 4A). At one extreme,
where the rate distortion function intercepts the rate axis, resources are sufficient for
lossless compression, meaning that verbatim recall is possible. At the other intercept, no
information is retained relating to the individual episode and reconstruction is based
purely on knowledge of environmental statistics. Starting from the point corresponding
to verbatim compression, the memory trace becomes increasingly gist-like, until a point
where even a very high level gist of the episode is lost. This way, the trade-off between
rate and distortion results in the emergence of a continuum between gist and verbatim
representations.

Temporal reduction of memory resources

In cognitive processes, such as prediction, time delay between storage of information
and its retrieval is a factor that fundamentally affects its relevance and therefore the
resources that should be dedicated to the particular piece of information. Anderson et
al. [12, 43] proposed that it is a property of the natural environment that there is a
decreasing need for information contained in individual traces as time progresses. For
example, information contained in an email is more likely to be needed within a day of
receiving a message than after a month. By studying library borrowings, access times of
digital files, email sources and word appearances in the headlines of newspaper articles
they concluded that forgetting curves demonstrate that human memory is adapted to
this decreasing demand. These results have been corroborated by forgetting curves of
US presidents in multiple generations of college students [44]. This argument motivates
the idea that different rate-distortion trade-offs can be studied by controlling the time
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Fig 4. Rate distortion trade-off in memory for sketch drawings. A:
Illustration of stimulus reconstructions as changes in β result in different points on the
rate distortion curve for the sketch-VAE model. Inset image is used as input and is
reconstructed with various levels of compression. Optimal forgetting implies moving
along the curve in the direction of increasing β corresponding to increasingly
prototypical reconstructions of the original drawing. B: Proportion of recalled sketches
judged to show category specific distortions in humans due to the context presented
during learning at different delays between stimulus presentation and recall. Distortions
were evaluated by two of the experimenters and one judge naive to the purpose of the
experiment. Figure reproduced from [42]. C: Proportion of sketches reconstructed by
the model showing category specific distortion as a function of increasing compression.
Quantitative changes in visual features are assessed, similar to Fig. 3D.

between stimulus presentation and recall or recognition. The effect of retention interval
has been studied both in the recall of hand-drawn sketches and even more extensively in
the DRM literature, allowing us to contrast it with our model’s predictions on targeting
various points of the rate distortion trade-off.

In order to model the effect of delay, we have optimised models for increasing levels
of compression by training them with increasingly larger βs. Since stronger compression
implies more gist-like reconstructions, the high level context has a stronger effect on the
recalled drawing as memory resources are decreased in the sketch-VAE model (Fig. 4A).
We assessed the scaling of features for the ambiguous eyeglasses-dumbbell stimulus in
the two contexts as a function of available memory resources. The analysis
demonstrated more frequent category-related distortions for βs associated with longer
delays. (Fig. 4C). Similarly, higher levels of context related distortions were found for
the same pair when recollection was tested with increasing amounts of delay with
human participants [42] (Fig. 4B).

Several studies have examined the effect of delay on recall performance in the DRM
paradigm [45–47]. Toglia et al. [45] has performed the experiment with recall
immediately after presentation of the lists or after delays of one or three weeks. In
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contrast with most of the prior work on the subject, retention intervals were varied
between subjects, avoiding artefacts due to retesting the same subject. They have found
that while recall for studied words had fallen sharply, recall of lure words was relatively
unaffected even after three weeks. In a variation of the original paradigm, for some of
the subjects they have presented lists in a ‘random’ condition, pooling the words from
six lists and presenting them in shuffled order. Interestingly, in the random condition
recall probability of lure words had increased as compared to shorter delays at week 3.
An even longer delay of two months has been studied by Seamon et al. [46], where they
have found that eventually the recall of lure words also approaches zero. Thapar &
McDermott [47] have looked at a similar design with a maximum delay of one week
while also modulating depth of processing at the time of encoding. Many other studies
besides these have examined the effect of various manipulations on accuracy for delayed
recall but it has been a robust finding that memory for lure words, that is false
memories, are more persistent in time than memory for studied words (Fig 5D).

We have investigated the dependence of recall on memory constraints in the word
list recall paradigm using our text-VAE model. We have trained separate models for
each memory constraint, corresponding to various levels of the rate distortion trade-off
parameter β. We then used these models to reconstruct each word list at each setting of
the memory constraint and subsequently evaluate recall accuracy for studied and lure
words separately. Reflecting a transition from a verbatim-like to a more gist-like latent
representation, recall performance on studied words decreased monotonically with
increased level of compression. The decrease in accurate recall was paralleled by an
increase in gist-based intrusions of related lure words starting from a negligible level as
the latent representation incrementally came to resemble a topic model. This was
followed by a reversion of false recall rates to negligible levels, reflecting a loss of even
gist information due to extremely limited capacity (Fig. 5A). Note that we have
restricted our analysis to the main effect of length of delay in the delayed recall DRM
experiments and thus our text-VAE does not explain the effects of manipulating depth
of processing or word order effects. In order to control for the mismatch between
Wikipedia and natural text statistics, in addition to the text-VAE trained on Wikipedia
articles, we also tested model performance on synthetic data. We generated a synthetic
corpus with controlled statistics from a Latent Dirichlet Allocation (LDA) topic model,
which models statistical structure in text by assuming the presence of latent topics that
are present in each document. In order to construct DRM lists for the synthetic model,
we have used nearest neighbours according to word embeddings learned from the
synthetic corpus (see Methods for further details). The synthetic data trained text-VAE
shows a transient increase in lure recall, similar to the one observed with the
Wikipedia-trained model (Fig. 5B).

We have argued that a decreasing need for information contained in a memory trace
over time implies that memory resources assigned to the trace should be decreased.
Therefore, according to RDT, the delay between encoding and recall corresponds to a
change in the RD trade-off, controlled by the β parameter. However, the exact mapping
between length of delay and the numerical value of β can’t be derived from the theory
but has to be calibrated based on measurements. In the standard DRM experiments,
recall probabilities of studied and critical non-studied words are similar (Fig 2D), and
consequently we set β corresponding to immediate recall to be the same as in our model
of the original experiment (β = 0.1 for the Wikipedia trained model and β = 0.5 for the
model trained on synthetic data). Increasing the rate from this level (decreasing β)
results in increasing accuracy and thus the gradual disappearance of false memories.
Since time delays are necessarily positive, the predictions of the model in this regime
describe a hypothetical situation where memory resources available to the subjects were
increased above what is typically measured in this paradigm. On the other hand,
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Fig 5. Rate distortion trade-off in forgetting over time. A,B: Using the
text-VAE model, we modelled the dependence of memory representations on time by
gradually increasing the compression rate, β. Recall probabilities averaged over multiple
word lists of studied and lure words was measured on a text-VAE trained on Wikipedia
entries (top) and on a synthetic vocabulary (bottom). Increasing the compression rate
results in a monotonically decreasing recall performance for studied words. In contrast,
increased delay of recall leads to an increase in false memories. For critical NS (lure)
words the recall probability initially increases with larger compression rates but very
high compression rates result in losing gist-like recall as well. Asymptotically the
performance on semantically related S words will approach the performance on random
word lists as less and less of the structure of the data is used. C,D: Difference between
recall probabilities for lure words and studied words as a function of the delay between
recall and study for the model (top) and experiments (bottom). Both Wikipedia-trained
and synthetic vocabulary trained models predict persistence of false recall of non-studied
lure words as compared to studied words, visible as an increase in the difference between
lure and studied word recall rates as a function of time. For even longer delays, the gist
information is progressively forgotten as well and consequently recall rates for both lure
and studied words approach zero. The same pattern of increasing rate up to a delay of
three weeks and a subsequent decrease can be observed in experimental data. Data is
reproduced from Toglia et al. [45], Seamon et al. [46] and Thapar & McDermott [47].

modelling memory decay in time by decreasing the rate results in a decrease in the
recall of studied words, and an initial increase (for the models trained on Wikipedia) or
much less pronounced decrease (for synthetic data) in false memories, resulting in a
similar pattern of relative advantage of lure words over studied words after
medium-length delays as the one seen in human experiments (Fig 5C). At very high
levels of compression (high β), recall for all word types is poor, as even the broad theme
of the list becomes forgotten and the model samples lists of related words that occur
together frequently in natural text.
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Discussion

In this paper we demonstrated that the principle of lossy compression provides the basis
for a unifying normative account of a wide variety of systematic memory errors. Central
to our approach was that we related inference in probabilistic generative models to rate
distortion theory: inferring the latent variables underlying observations amounted to
selectively discarding information not represented in the latent variables, thus
establishing a lossy compression method. We used a recently developed machine
learning framework to train a probabilistic generative model on a variety of naturalistic,
high dimensional data sets (chess games, line drawings, and natural text). We showed
that the effect of domain expertise on recall accuracy in remembering chess board
positions and gist-based distortions in remembering semantically related word lists arise
as straightforward consequences of optimising the rate distortion objective.
Furthermore, we demonstrated the emergence of varying degrees of ‘gistness’, resulting
from the rate distortion trade-off.

Interpreting memory distortions as lossy compression

The experiments discussed in the study demonstrate key consequences of semantic
compression in a single computational framework. The primary appeal of this
framework is that it can integrate a large variety of experimental observations under a
simple computational principle. The demonstrated effects, however, are more general
than the experiments discussed here. For instance, the effect of domain expertise has
widespread support in the memory literature not just in the domain of chess but also
memory for sports trivia, software code, medical images, and other games [48]. In
addition to the effect of varying levels of expertise on recall accuracy, a similar effect
arises if the congruence of stimuli to the statistical structure of the domain is varied
along a spectrum, for example the order to which letter statistics of words conform to
that of the English language [49]. The encoding of the observation into a posterior over
latent variables can be understood as compressing sensory experience into sufficient
statistics for the latents, which in addition to the gist-based distortion experiments
analysed here explains seemingly paradoxical results that discrimination performance of
sound textures decreases with increasing stimulus duration when stimulus samples come
from the same texture family [50]. Such a process also implies that the level of difficulty
of inference affects the accuracy of the recalled memory trace. Similar to the Carmichael
effect, classical memory experiments have shown that providing a concise context which
aids the interpretation of otherwise strongly ambiguous stimuli can greatly increase
retention accuracy [5, 7]. Beyond the effect of expertise on reconstruction accuracy, the
Chase and Simon experiments (1973) also display effects that are related to representing
latent variables. In particular, temporal dependencies in placements of chess pieces were
suggested to reflect chunking mechanisms. The proposed variational autoencoder
framework naturally generalises to these domains as well.

The delayed DRM paradigm has been extensively studied [45–47]. In this study we
only have addressed the effect of delay alone but effects such as divided attention, order
effects and depth of processing were not discussed. Some of these could be addressed by
natural extensions of this model, for example order effects would require extending the
model to non-iid observations. Others, such as the effect of varying depth of processing
during encoding or recall we do not see as direct corollaries of the RD framework and
therefore would require further assumptions.

We have modelled forgetting as the effect of decreasing capacity allocated to a
memory trace over time by training separate models for different levels of compression.
A limitation of this approach is that there is no guarantee that a slightly compressed
representation taken from a model with low β can be converted into the strongly

September 17, 2020 17/30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.05.06.080838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080838


compressed representation of the model given by a high β, as it is possible that the high
β representation utilises information that is present in the original observation but not
in the low β representation (although in toy settings this seems not to be the case as the
introduction of further capacity leads to capturing additional data generative
factors [51]). Furthermore, taken as a process model this approach would require storing
a separate semantic model for each available level of compression. Approaches where a
single model is trained for compression at multiple rates have been proposed in the
machine learning literature [52,53]. In addition, hierarchical generative models have
been introduced that are capable of generating observations at progressively increasing
level of detail by conditioning on variables at more and more levels of the
hierarchy [54–56]. Such hierarchical generative models define a straightforward process
for converting a memory trace into one requiring lower capacity by selectively discarding
information. The lowest level of compression is achieved by storing all levels of latent
variables, then as time progresses, the states of successive levels of variables are
discarded beginning with the one closest to the input layer. Some of these models show
semantically meaningful partition of information between the layers in limited domains.
For example in Maaloe et al. (2019), the compression process outlined above applied to
portraits initially retains information about wearing glasses but discarding the specific
information that those are sunglasses, and at later stages of compression it forgets about
the glasses while keeping a large portion of facial features still intact. One way in which
such a compression could be implemented is if semantic compression utilises the
hierarchical representations in sensory cortices as have earlier been argued in [57–59].

Theoretical considerations

Application of RDT to lossy compression in the brain seems to be a natural choice. A
closer inspection of the problem, however, reveals that from the perspective of
compression and specifically its formal theory, RDT, a fundamental challenge arises. In
memory systems, the data set used to learn the model is inherently incomplete, that is
only a subset of the data that specifies the model had been observed. This setting defies
a critical assumption of RDT that the data statistics are known. The brain tackles the
issue of incomplete data by updating the model continuously when new data is observed.
However, the constraint that the statistics of observations is being learned concurrently
with using it for compression places unique demands on a memory system. We have
previously argued that if the overall structure of the model describing the environment
is known then the parameters of the model can be updated once new observations are
made and the only information that needs to be maintained is the sufficient statistics of
model parameters. Consequently, other features that are not part of the sufficient
statistics can be discarded without harm. However, if there is uncertainty over model
structure and it is not a priori known which features are relevant for the model, then
the ability to reconstruct the data becomes critical [31]. The need for such
reconstructive ability motivates our use of unsupervised learning, which attempts to
capture all of the variance in the data when resources are not bounded, constituting a
perfect episodic memory. In case that relevance has to be sensitive to predictive
ability [60,61], rewards or a supervision signal, the framework can be straightforwardly
extended through the same deep variational information bottleneck objective [32,62].
Task variables can potentially also be accommodated in a generative perspective in
which task variables are part of a generative model. Such models have been introduced
in machine learning [63].

The variational approximation that we have used here provides a useful tool for
integrating principles of RDT and probabilistic generative models, which can be tested
under conditions where data complexity is close to that of the natural environment.
Since this is the data set that human memory systems are adapted for, we believe that
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these are relevant stimuli to contrast capacity constraints of the model and that of
human memory systems. Application of the framework, however, also comes with
specific choices and alternative formulations are possible. In RDT and the IB method,
the rate term is defined as the mutual information between the observation and the
latent code which the variational method provides an upper bound on. This is an
abstract constraint, and the specific influences on the latent representation depend on
model architecture. For example changing the Gaussian prior to a Laplace distribution
would result in a constraint on the sparsity of latent activations. Furthermore, it has
been argued that memory resource constraints for the brain would be better captured
by restricting the representational cost of storing the encoding, corresponding to
minimising the entropy of the code instead of the mutual information [64]. This choice
leads to the Deterministic Information Bottleneck (DIB) method, which can lead to
qualitative differences such as the optimal reconstructions being deterministic.
Variational approximations also exist for the DIB, and it has been argued that a
discrete latent space variant of variational autoencoders called Vector Quantised
Variational Autoencoder can be viewed as an approximation to the variational DIB
principle. Furthermore, the correspondence between RDT and generative models can be
drawn in alternative ways: Balle et al. [34] show a correspondence where the posterior is
of fixed variance and the multiplication factor beta arises from the variance of the
observation noise. We see the information theoretical form of the bottleneck constraint
as an approximation to multiple constraint terms, possibly arising from the demands of
cognitive functions other than memory, each having a contribution to shaping the latent
representation. The question of which variant of the computational framework and what
combination of constraints would correspond most closely to representations and
memory distortions measured in human experiments is a subject for further
investigation.

Related work

RDT has recently been proposed as a framework to investigate distortions of memory
by Bates and Jacobs (2020) [65]. While the computational principles they apply and
those in this and our previous work [66] have strong parallels, the differences highlight
different aspects of using generative models for compressing complex data. While VAEs
constitute state-of-the-art in machine learning for learning generative models of high
dimensional data, even these models struggle to capture the full richness of natural
stimuli. In particular, learning highly structured noise models has proven difficult,
leading to issues such as blurred reconstructions [67]. In order to mitigate this problem,
instead of using pixel image data, we have opted to use data represented in low level
features such as chess board locations or pen stroke endpoints. This choice essentially
circumvents the problem of learning the low level noise model for the network. Bates
and Jacobs [65] take the alternative approach of working directly with pixel data and
thus provide an end-to-end learned model. The choice of training the model end-to-end
versus learning over low level abstract features has complementary benefits: while using
pixel data to study memory effects is certainly appealing since the perceptual process is
more completely integrated, it has the disadvantage that the generative model needs to
cope with limitations of VAEs on natural images, such as blurry reconstructions. Blau
et al [68] proposed that the issue of perceptual quality of reconstructions could be
mitigated by introducing an additional term to the RD trade-off, which could be
optimised utilising the framework of the other prominent form of deep generative
models besides VAEs, Generative Adversarial Networks [69].

We have argued that while we rely on the unsupervised version of the information
bottleneck to make the connection between RDT and latent variable models, the
information bottleneck is originally framed as a supervised method targeting the
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relevant information regarding a task variable and the beta-VAE extends naturally to
this setting through the same variational objective [32]. Consequently, RDT enables
incorporating the effects of task demands on the learned representation in a principled
way through the specification of the distortion function. While introducing such
demands into the distortion would allow an exploration of further aspects of memory
distortions, we left these for future work, restricting ourselves to the unsupervised
version in our study. Bates and Jacobs propose another method for incorporating
task-variables in their model by extending the unsupervised component with a decision
network, allowing task-variables to affect the latent representation. Among other
applications, they use these task variables to model category bias, however they point
out that such bias can also appear due solely to categorical structure present in the data
distribution. This latter explanation is what we appeal to in our study, although we
agree that the latent representations in semantic memory are presumably also shaped
by task objectives. We believe that further progress in machine learning in the area of
learning generative models will allow lifting current limitations and will provide the
background for a fully consistent model of memory.

Compression, and more specifically RDT has been proposed as a framework for an
ideal observer analysis in visual working memory and perception tasks [70–72] In Sims
et al. [70] they experimentally demonstrate RDT’s prediction that if memory is
optimised for the statistics of stimuli learned in the course of the experiment, recall
should be less accurate in case the distribution of stimuli has high variance as opposed
to a low variance condition. In Sims et al. [71] they infer the distortion function in a
bottom-up fashion from behavioural data. One major point of contrast between this
approach and ours is that instead of inferring the distortion function from behaviour, in
our study the distortion function is implicitly defined by the inductive biases inherent in
using latent variable generative model used for compression. A second point of contrast
is that in all of these works, the authors apply RDT to low dimensional perceptual tasks
with simple statistics, where optimal encodings are feasible to compute directly. In our
approach it is the complex, high-dimensional and strongly structured nature of input
statistics that necessitates the use of generative models which in turn define the
distortion function. In [72] they analyse colour perception and memory and in addition
to a low-level distortion term measured in pixel space they introduce an additional term
which penalises distortions that result in the reconstruction crossing colour category
boundaries. The additional term in the distortion introduces a category dependence of
reconstruction similarly to the category related distortions we have modelled with the
sketch-VAE, however they did not explore contextual effects in reconstruction. We
argue that these perceptually simple tasks, while allowing for quantitative comparison of
predictions with experimental data, are less capable of inducing the kinds of distortions
that we are concerned with here, as the need for generative models is most crucial when
the input distribution is complex, high-dimensional and strongly structured.

Our work is closely related to Bayesian account of reconstructive memory approach
of Hemmer et al. [17] where they provide a normative method for combining episodic
and gist information available in memory through an optimal Bayesian decoder. They
assume that stored values for features in the memory trace are noisy versions of the
observed values. These noisy values are then combined with feature priors through
Bayes’ rule, which reduces noise in the memory through exploiting prior knowledge.
This decoding step is similar to reconstructing the observation in a generative model
conditioned on inferred latents in our approach, however they do not consider the
encoding step as part of the same process which should be optimised. In semantic
compression, features are prioritised according to the distortion function and the
optimisation also concerns what information should be kept as part of the trace. As a
result, the amount of memory noise can vary as a function of how important each
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feature is in relation to others and the memory constraints, which is a fundamental
difference from the setting considered in Hemmer et al. [17] (e.g. the sketch-VAE
automatically chooses a trade-off in accuracy between features such as the presented
glasses’ shape, the angle of the rims and the length of the bridge connecting the rims).
Hemmer & Steyvers [30] use a dual-route generative model to explain the effect of
semantic memory in a scene recall task, but they do not relate their method to
compression. Their topic model of semantic memory is very similar to our text-VAE for
certain settings of beta, and they have a parameter corresponding to capacity. However,
this capacity parameter only affects the episodic route and does not affect the
representation of the semantic model. A crucial contribution of the RD perspective is
that it provides a principled way of changing the representation as a function of
available capacity. As a result, in our treatment dual routes are not required, since RDT
provides a continuous trade-off between episodic-like and semantic-like memory traces.
Furthermore, as the reconstructive ability of the semantic route is not affected by
capacity in their model, we believe that explaining delayed recall results of very long
delays such as in Seamon et al. [46] would require even further assumptions. A trade-off
similar to that implied by RDT but without establishing a formal link to the theory of
lossy compression has been formulated in the context of communicative interaction and
leads to the emergence of semantic categories [73].

Human memory has a remarkable capacity to adaptively support decisions in a
versatile environment but it also displays a rich array of distortions [13,74]. These
systematic errors have the potential to shed light on the design principles of our
memory systems [12]. Performing complex tasks by agents suggests that various
computations can be supported by episodic and semantic memory systems [75–78].
Accordingly, memory distortions have also been linked to different computational
processes. In particular, besides diminishing resources, other normative arguments have
been made to understand various aspects of time-dependent deterioration of memories.
Interference of memories from novel experiences has been linked to the flexibility of the
represented model [79,80] and regularisation was proposed as a normative principle,
which could help preventing overfitting [81]. Dynamics of the environment has been
linked to adaptive forgetting rates [82,83] and destabilisation of earlier memories after
their reactivation has been linked to model update [84]. Normative models of memory
distortions fall into two broad categories. One family of studies explored how the usage
of latent variables to encode experiences, i.e. performing inference in the internal model,
introduces systematic distortions [30,85,86]. Another family of studies explored how
updating this internal model of the environment, i.e. learning the internal model, leads
to various forms of memory distortions [31, 87,88]. Common in all these models is that
an internal model of the environment is assumed to underlie learning and inference and
these internal models are described in terms of a generative model of the environment.
This indicates that capitalising on more complex generative models capable of learning
representations of more naturalistic data in multiple domains can contribute to a deeper
understanding of memory dynamics in natural environments.

Materials and Methods

Chess-VAE

We have trained a beta-VAE on games downloaded from the FICS (Free Internet Chess
Server) Games Database, containing hundreds of thousands of recorded online games.
Chess configurations were represented as a one-hot vector for each one of 64 squares on
the chessboard, with each 13 dimensional one-hot vector specifying the chess piece or
the lack of a chess piece in that square. The decoder output was a categorical
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distribution for each square, which represented the probabilities of possible chess pieces
on the particular position. Both the encoder and decoder of the chess-VAE consisted of
two dense layers with 3000 units and sigmoid nonlinearity, followed by a linear
transformation. The prior over the continuous 64 dimensional latent space was a
Normal distribution with an identity covariance matrix. Reconstruction was modelled
by conditioning the model on a chess configuration, inferring the latent representation,
then taking the MAP reconstruction of the decoder.

Since the goal was to demonstrate robust qualitative effects resulting from the
theoretical framework, hyperparameters of the model were chosen so that
reconstructions would fall in a regime comparable to the experimental data as opposed
to fine tuning them for an accurate match. Beta is a central free hyperparameter for the
model, which was chosen to be 0.0001 so that the ‘expert’ model could reproduce the
state of around 90% of squares correctly in the MAP estimate. Decreasing beta further
did not result in flawless recall, presumably due to capacity limitations in the encoding
and decoding transformations. Patterns in the presented results were relatively robust to
changes in parameter β but increasing it by orders of magnitude causes both the overall
accuracy and difference between the random and game conditions to decrease. Varying
the size of latent space had similar effect to varying β as it modulates the capacity of
the latent space. Decreasing the hidden layer widths from 3000led to qualitatively
similar results but with performance in the game board condition saturating at a lower
level of around 15 successfully reconstructed pieces in the case of 1000 units and 10 in
the case of 500 units. Doubling the number of training steps did not noticeably change
the resulting reconstruction accuracies. . Separate training and test sets were formed
from all the board positions from 3000 games of the FICS Games Database. Different
levels of skill were modelled by using different sized training sets: game positions were
subsampled to 0.1%, 1%, 10%, and 90% of the full dataset. Training set sizes
corresponding to various skill levels were also not precisely calibrated to experimental
data but set to what we determined to be sensible values so that amateur players would
only observe a few games and expert players would see a sufficient amount to
reconstruct with comparable accuracy to the experiments. Remaining set sizes were
chosen to span orders of magnitude between these two extremes. For training we have
used Adam with a learning rate of 10−4 and a batch size of 65.

The test configurations were constructed as in Chase et al. [89]. ‘Game’
configurations were taken after either the 41st move in games from a separate test set.
‘Random’ configurations were produced by shuffling the pieces across occupied board
positions of a game setting. The number of pieces on the board were not fixed in the
dataset and could vary across trials. We have followed the accuracy evaluation method
proposed in the Gobet and Simon paper, where the number of correct pieces on a
reconstructed board is counted.

Text-VAE

The beta-VAE constructed to learn the statistics of natural text was similar to the
chess-VAE: we used an encoder and a decoder with two dense layers with 2000 hidden
units per layer followed by sigmoid nonlinearities. Activations, z, in the last hidden
layer of the decoder are used to generate words, X independently through a linear
transformation and a softmax nonlinearity according to

ei = exp(−zTRxi + bxi)

pθ(xi|z) =
ei∑|V |
j ej
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p(X|z) =
N∏
i

pθ(xi|z),

where R is a |z| × |V | matrix that acts as a semantic word embedding, organising words
into a low dimensional continuous vector space such that similarity in this space reflects
semantic similarity between the words. The model had a continuous latent space with a
diagonal Gaussian prior in 100 dimensions. This architecture (with minor differences)
has appeared in the machine learning literature previously as the Neural Variational
Document Model (NVDM) [40]. The factorisation assumption, which formulates the
generation of multiple-word text as an independent process, greatly simplifies training
but the consequence is that the same word can be generated multiple times in a
synthesised text. Since this is a purely computational simplification that is clearly
detrimental to performance in the world list recall task, we constrained reconstructions
such that distinct words had to be generated. For training on both Wikipedia and the
synthetic dataset described below, we have used Adam with a learning rate of 10−5 and
a batch size of 100. We have chosen these hyperparameters based on the Miao et al. [40]
paper, adjusting them for the fact that they have trained their model on significantly
smaller datasets (vocabulary sizes of around 2000 and 5000 as opposed to 50000). The
large dataset was required so that we have a sufficiently good approximation of
language statistics, which we assessed through testing whether the associations that the
original DRM lists rely on are reliably represented in the model. Consequently we have
increased the training set to the extent that was computationally feasible for us to train.
Beyond these considerations no further adjustment of the model parameters was
required and results are presented without fine tuning of the parameters. Due to the
computational cost of training the model, we have not explored perturbations of
hyperparameters extensively. We have calibrated β values such that the reconstruction
probabilities for studied and critical lure words were approximately the same, which is
what was observed in the original DRM experiment.

To control for the mismatch between the statistics of the training corpus and the
natural vocabulary humans experience over a lifetime, we only used the word lists from
the original DRM article which fulfilled the criterion that the lure word had at least
2000 occurrences in the training set. Words that appeared less than 100 times in the
training set were deleted from the lists, and if these manipulations resulted in a list that
was shorter than 12 words then the entire list was removed. According to these criteria
we included 10 of the original word lists in the analysis (high, rough, mountain, music,
black, man, foot, king, river, soft). As an illustration of the similarity of associations
between the model and human data, 15 closest associates of the word ’music’ in the
model are ’musical, album, arts, songs, sounds, pop, art, instrument, sound, musicians,
progressive, disambiguation, label, composers, string’ whereas the corresponding DRM
list is: ’jazz, horn, concert, orchestra, rhythm, sing, piano, band, note, instrument, art,
sound, symphony, radio, melody’.

In order to mitigate variability in the averages due to i) the low number of word lists
and ii) mismatch between the statistics of the Wikipedia training set and natural text,
we also built a synthetic dataset so that the performance of the text-VAE can be
explored under well controlled statistics. We generated synthetic text using an artificial
vocabulary and a Latent Dirichlet Allocation (LDA) topic model. The LDA generative
model used a synthetic vocabulary of 1000 words with a word concentration parameter
0.1, and 10 topics with concentration parameter 0.1. These parameters were chosen
such that a t-SNE embedding would largely be able to separate the main topics in each
document but not perfectly. We sampled 20000 documents from the LDA models to use
as a training set. In the original memory experiment, word lists were generated by
asking subjects to list their first associates to the presented lure word. Analogously, for
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the artificial vocabulary we trained a separate model on synthetic data generated from
the LDA model and computed the 15 most similar associates based on the learned
embedding matrix R. We generated such DRM-like word lists for each word in the
vocabulary that occurred at least 500 times in the training set, but discarded lists that
became shorter than 12 after removing infrequent (less than 500 occurrences) words.
Note that this method can also be used to construct new DRM word lists based on the
model trained on Wikipedia.

Sketch-VAE

To obtain a generative model for hand-drawn sketches we used the sketch-RNN VAE
architecture [41] that was developed specifically as a generative model for sketches and
is able to capture sequential dependencies in the data. Sketch-RNN represents sketches
as sequences of pen strokes, which are encoded into the latent representation through a
bidirectional RNN. The output of this network then parametrises a Normal distribution
over the latent space. The decoder consists of an RNN conditioned on the latent vector
and preceding strokes, outputting the parameters of a mixture of Gaussians which
generates the next pen movement.

In order to be able to relate our analysis to the distortions observed in the
Carmichael experiment, we have used hand drawn sketches from the QuickDraw dataset
Ha & Eck [41], consisting of a rich set of labelled drawings depicting 345 common object
categories. The experiment used ambiguous drawings that could plausibly belong to
multiple categories; hence we selected category-pairs that contained a substantial
number of visually similar exemplars. Although the QuickDraw dataset contains rich
naturalistic samples from every category, characteristics of recording the doodles
preclude a large number of object pairs from the analysis. The QuickDraw data was
recorded as part of a web browser game, where subjects had 20 seconds to draw an
exemplar of a given category. However, if the drawing gets to a stage where an object
classifier is able to recognise it as belonging to the provided category, a new trial is
initiated. As a result, the data set contains a large number of unfinished drawings.
Another limitation of the data set is that participants tend to draw prototypical
exemplars of the category thus limiting the variance of the samples compared to all
possible ways of drawing the object that would still be easily recognisable by human
observers. This means that some of the designs appearing in the Carmichael experiment
are not present in the data set and thus the model is oblivious to their interpretation.
In total we have selected five object pairs (eyeglass-dumbbell, chair-bed, wheel-fan,
moon-banana, pizza-wheel) and the model was trained separately for each object
category, on a training set of 75000 samples per category. The reconstructions were
based on samples from a separate test set. We have modelled the effect of presenting
the label by conditioning the category specific generative model on the ambiguous
image and using it to generate a reconstruction.

Most parameters of the sketch-rnn model are determined by the data statistics and
only a small subset of the parameters is available for fine tuning. These parameters
have been explored in the original publication of the paper [41]. We have only explored
the rate distortion parameter β. The value of β for different time delays were chosen so
that the variance in reconstructed images was roughly comparable to that observed for
humans in the experimental literature, as judged by the authors.

In the quantitative analysis of feature rescaling, following Hanawalt et al. [42], we
have measured the proportion of the length of the drawing and the length of the
connecting line for conditional reconstructions for 50 randomly selected samples of the
test set. The length of the drawing was measured between the widest extent, excluding
any stems in the case of glasses. The connecting line was defined as the distance
between the two circular features at the points of intersection with the connecting line.
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We have only included samples where both the circular features and the connecting line
was recognisable for all reconstructions.
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59. Bányai M, Nagy DG, Orbán G. Hierarchical semantic compression predicts
texture selectivity in early vision. In: Proceedings of the Conference on Cognitive
Computational Neuroscience; 2019.

60. Bialek W, Tishby N. Predictive Information. Arxiv. 1999;.

61. Gershman SJ. Predicting the past, remembering the future; 2017.

62. Alemi AA. Variational Predictive Information Bottleneck. arXiv preprint. 2019;
p. 1–6.

63. Nguyen CV, Li Y, Bui TD, Turner RE. Variational continual learning. In: 6th
International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings; 2018.

64. Strouse D, Schwab DJ. The deterministic information bottleneck. Arxiv.
2016;(1991):15.

65. Bates CJ, Jacobs RA. Efficient Data Compression in Perception and Perceptual
Memory. Psychological Review. 2020;doi:10.1037/rev0000197.

66. Nagy DG, Török B, Orbán G. Semantic Compression of Episodic Memories.
Proceedings of the 40th Annual Meeting of the Cognitive Science Society. 2018;.

67. Rezende DJ, Viola F. Taming VAEs. Arxiv. 2018;.

68. Blau Y, Michaeli T. Rethinking lossy compression: The
rate-distortion-perception tradeoff. 36th International Conference on Machine
Learning, ICML 2019. 2019;2019-June:1081–1091.

69. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative Adversarial Nets. Advances in Neural Information Processing Systems
27. 2014; p. 2672–2680.

70. Sims CR, Jacobs RA, Knill DC. Supplementary Material to: An ideal observer
analysis of visual working memory. Psychological review. 2012;119(4):807–30.
doi:10.1037/a0029856.

71. Sims CR. The cost of misremembering: Inferring the loss function in visual
working memory. Journal of Vision. 2015;15(3):1–27. doi:10.1167/15.3.2.doi.

72. Sims CR, Ma Z, Allred SR, Lerch RA, Flombaum JI. Exploring the Cost
Function in Color Perception and Memory: An Information-Theoretic Model of
Categorical Effects in Color Matching. CogSci. 2016; p. 2273–2278.

73. Carr JW, Smith K, Culbertson J, Kirby S. Simplicity and informativeness in
semantic category systems. Cognition. 2020;202(July 2018):104289.
doi:10.1016/j.cognition.2020.104289.

74. Sadeh T, Ozubko JD, Winocur G, Moscovitch M. How we forget may depend on
how we remember. Trends in Cognitive Sciences. 2014;18(1):26–36.
doi:10.1016/j.tics.2013.10.008.

75. Kumaran D, Hassabis D, McClelland JL. What learning systems do intelligent
agents need? Complementary Learning Systems Theory Updated. Trends in
Cognitive Sciences. 2016;20(7):512–534. doi:10.1016/j.tics.2016.05.004.

76. Wayne G, Hung CC, Amos D, Mirza M, Ahuja A, Grabska-Barwiska A, et al.
Unsupervised Predictive Memory in a Goal-Directed Agent. arXiv preprint. 2018;.

September 17, 2020 29/30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.05.06.080838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080838


77. Lengyel M, Dayan P. Hippocampal contributions to control: The third way.
Advances in neural information processing systems. 2009; p. 1–8.

78. Pritzel A, Uria B. Neural Episodic Control. Proceedings of the 34th International
Conference on Machine Learning. 2017;.

79. McCloskey M, Cohen NJ. Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. Psychology of Learning and Motivation -
Advances in Research and Theory. 1989;24(C):109–165.
doi:10.1016/S0079-7421(08)60536-8.

80. Abraham WC, Robins A. Memory retention - The synaptic stability versus
plasticity dilemma. Trends in Neurosciences. 2005;28(2):73–78.
doi:10.1016/j.tins.2004.12.003.

81. Richards BA, Frankland PW. The Persistence and Transience of Memory.
Neuron. 2017;94(6):1071–1084. doi:10.1016/j.neuron.2017.04.037.

82. Santoro A, Frankland PW, Richards BA. Memory transformation enhances
reinforcement learning in dynamic environments. Journal of Neuroscience.
2016;36(48):12228–12242. doi:10.1523/JNEUROSCI.0763-16.2016.

83. Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a
consequence of optimal adaptation to a changing body. Nature Neuroscience.
2007;10(6):779–786. doi:10.1038/nn1901.

84. Hardt O, Einarsson EO, Nader K. A Bridge Over Troubled Water:
Reconsolidation as a Link Between Cognitive and Neuroscientific Memory
Research Traditions. Annual Review of Psychology. 2010;61(1):141–167.
doi:10.1146/annurev.psych.093008.100455.

85. Steyvers M, Griffiths TL. Rational analysis as a link between human memory
and information retrieval. The Probabilistic Mind. 2008;.

86. Nagy DG, Török B, Orbán G. Semantic Compression of Episodic Memories. Proc
of Conference on Cognitive Computational Neuroscience.
2019;doi:10.32470/ccn.2018.1050-0.

87. Gershman SJ, Daw ND. Reinforcement Learning and Episodic Memory in
Humans and Animals: An Integrative Framework. Annu Rev Psychol.
2017;68(5):1–528. doi:10.1146/annurev-psych-122414-033625.

88. Gershman SJ, Radulescu A, Norman Ka, Niv Y. Statistical Computations
Underlying the Dynamics of Memory Updating. PLoS Computational Biology.
2014;10(11):e1003939. doi:10.1371/journal.pcbi.1003939.

89. Chase WG, Simon HA. Perception in chess. Cognitive Psychology.
1973;4(1):55–81. doi:10.1016/0010-0285(73)90004-2.

September 17, 2020 30/30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.05.06.080838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080838

