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Supplementary Note11

Genotyping and quality controls12

We downloaded the imputed genetic variants data from UKB and HCP data resources, respec-13

tively. Genotype imputation was performed locally on the PNC datasets via MACH-Admix (Liu14
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et al., 2013). A full description of the imputation procedures in PNC datasets was detailed sup-15

plementary information of Zhao et al. (2019). For the genotype imputation on the ABCD study,16

we first carried out the following quality control procedures before imputation: 1) exclude sub-17

jects with more than 10% missing genotypes; 2) exclude variants with minor allele frequency less18

than 0.001; 3) exclude variants with missing genotype rate larger than 5%; 4) exclude variants19

that failed the Hardy-Weinberg test at 1× 10−9 level using only self-identified non-Hispanic white20

population. We then carried out genotype imputation using the Michigan Imputation Server21

(https://imputationserver.sph.umich.edu/; Das et al. (2016)) and 1000 Genomes Phase 322

(Version 5) reference panel (1000-Genomes-Project-Consortium et al., 2015). Imputed SNPs with23

a r2-value smaller than 0.3 were removed from the imputation output.24

We further performed the following genetic variants data quality controls on each dataset: 1)25

exclude subjects with more than 10% missing genotypes; 2) exclude variants with minor allele26

frequency less than 0.01; 3) exclude variants with missing genotype rate larger than 10%; 4)27

exclude variants that failed the Hardy-Weinberg test at 1 × 10−7 level; and 5) remove variants28

with imputation INFO score less than 0.8.29

Image acquisition and preprocessing30

This work made use of resting-state functional magnetic resonance imaging (rsfMRI) data from31

four different data resources, which in general had different imaging protocols. Specifically, the32

image acquisition and preprocessing procedures were detailed in UK Biobank Brain Imaging Docu-33

mentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf) for the34

UK Biobank (UKB) study, Casey et al. (2018) for ABCD study, Satterthwaite et al. (2014) for35

PNC study, and Sotiropoulos et al. (2013) for HCP study. Below we briefly introduce the image36

acquisition and preprocessing procedures used in each study.37

UKB image acquisition The rsfMRI data of the UK Biobank were acquired at 490 time points38

and a duration of 6 minutes, each with a 2.4×2.4×2.4 mm spatial resolution at a dimension of39

88×88×64. For image acquisition, the gradient-echo echo-planar imaging (GE-EPI) was adopted40

with a multiband factor of 8, no iPAT, flip angle 52◦, and fat saturation. The echo time (TE)41

and repetition time (TR) were 39 ms and 735 ms, respectively. As implemented in the CMRR42

multiband acquisition (Moeller et al., 2010), a separate “single-band reference scan” was also43

acquired. This had the same geometry (including EPI distortion) as the time series data, but44

had higher between-tissue contrast to noise, and was used as the reference scan in head motion45

correction and alignment to other modalities (Alfaro-Almagro et al., 2018).46

UKB image preprocessing The UKB restfMRI data of about 38,000 subjects (released in47

2020) were preprocessed by the UK Biobank brain imaging team (Alfaro-Almagro et al., 2018). The48

full pipeline can be found in Section 3 of https://biobank.ctsu.ox.ac.uk/crystal/crystal/49

docs/brain_mri.pdf, referred to as UKB preprocessing pipeline in this note. The pipeline gen-50

erally includes three parts: image cleaning, image registration, and representative time series51

generation. The source codes have been shared by the UK Biobank team at https://git.fmrib.52

ox.ac.uk/falmagro/UK_biobank_pipeline_v_1.53
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The image cleaning workflow in the UKB preprocessing pipeline includes the following steps:54

motion correction using MCFLIRT (Jenkinson et al., 2002); grand-mean intensity normalisation55

of the entire 4D dataset by a single multiplicative factor; highpass temporal filtering (Gaussian-56

weighted least-squares straight line fitting, with sigma=50.0s); EPI unwarping; GDC unwarping.57

Finally, structured artefacts were removed by ICA+FIX processing (i.e., independent component58

analysis (ICA) followed by FMRIB’s ICA-based X-noiseifier (Beckmann and Smith, 2004; Salimi-59

Khorshidi et al., 2014; Griffanti et al., 2014). FIX was hand-trained on 40 UK Biobank rsfMRI60

subjects by the UK Biobank team.61

The image registration part has the following steps. First, we aligned the GDC unwarped62

rsfMRI data from the previous step with the high-resolution T1 MRI image. The EPI unwarping63

in the last step already included an alignment to the T1, though the unwarped data was written64

out in native (unwarped) fMRI space (and the transform to T1 space written out separately).65

This T1 alignment was carried out by FLIRT, with a final BBR cost function (Greve and Fischl,66

2009). After the fMRI GDC unwarping, a final FLIRT realignment to T1 was applied, which toke67

into account any shifts resulting from the GDC unwarping. Second, we registered the T1 MR68

image for each individual to the standard MNI152 2×2×2 mm space. Third, we combined the69

two image warping together, conducted transformation from the GDC unwarped fMRI space to70

the MNI standard space, and registered the cleaned fMRI data from the previous step to the MNI71

standard space by applying the combined image warping. The above three steps were completed72

in the FMRI expert analysis tool (FEAT) from the software FSL.73

Finally, the UKB-derived group-ICA maps including 21 ICA and 55 ICA components were74

mapped onto the registered cleaned fMRI data to derive the representative time series. These ICA75

components are publicly available at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=76

9028 and http://www.fmrib.ox.ac.uk/ukbiobank. The sets of ICA maps can be considered as77

“parcellations” of cortical and sub-cortical grey matter, though they lacked some properties often78

assumed for parcellation. For example, ICA maps were not binary masks but contained a contin-79

uous range of values; they can overlap each other; and a given map may include multiple spatially80

separated peaks/regions. Specifically, these group-ICA maps were obtained by the UK Biobank81

team using 4,100 subjects through the following procedure: 1) each timeseries dataset was tempo-82

rally demeaned and had variance normalisation applied according to Beckmann and Smith (2004);83

2) group-PCA output was generated by MIGP (MELODIC’s Incremental Group-PCA) from all84

subjects. This comprises the top 1,200 weighted spatial eigenvectors from a group-averaged PCA85

(a very close approximation to concatenating all subjects’ time series and then applying PCA)86

(Smith et al., 2014); 3) The MIGP output was fed into group-ICA using FSL’s MELODIC tool87

(Hyvärinen, 1999; Beckmann and Smith, 2004), applying spatial-ICA at two different dimension-88

alities (25 and 100); and 4) 21 out of 25 and 55 out of 100 group-ICA components that were clearly89

identifiable as artefactual were discarded.90

UKB phenotype generation The node time series were used to estimate subject-specific91

network-matrices, which generally included the node amplitude, the Gaussianised full correlation,92

and partial correlation matrices between node pairs. The correlation-based traits between pairs of93

brain regions captured the presence of spontaneous co-fluctuations in signal (i.e., the appearance94

5

http://biobank.ctsu.ox.ac.uk/ crystal/refer.cgi?id=9028
http://biobank.ctsu.ox.ac.uk/ crystal/refer.cgi?id=9028
http://biobank.ctsu.ox.ac.uk/ crystal/refer.cgi?id=9028
http://www.fmrib.ox.ac.uk/ukbiobank


of a connection based on co-activity), while the node amplitude traits reflected the amplitude of95

spontaneous fluctuation within each region. For each subject, the 21 out of 25 and 55 out of96

100 node-timeseries were fed into network modelling. This results in a 21×21 (or 55×55) ma-97

trix of connectivity estimates. Network modelling was carried out using the FSLNets toolbox98

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets. The full correlation matrices were derived99

using fully normalized temporal correlation between every node time series and every other. This100

was a common and simple approach, but had various practical and interpretational disadvan-101

tages, including an inability to differentiate between directly connected nodes and nodes that only102

connected via an intermediate node (Smith, 2012). Partial temporal correlation IDPs were also103

calculated between nodes’ timeseries, which aimed to estimate direct connection strengths better104

than the total connection strengths achieved by full correlation. To slightly improve the estimates105

of partial correlation coefficients, L2 regularization is applied (setting rho=0.5 in the ridge Re-106

gression netmats option in FSLNets). Netmat values were Gaussianised from Pearson correlation107

scores (r-values) into z-statistics, including empirical correction for temporal autocorrelation.108

In total 1,695 network-edge functional connectivity traits between many distinct pairs of109

brain regions were produced in the above step. Next, using the same method of Elliott et al.110

(2018), we mapped an ICA-based weights matrix to the 1695 IDPs to derive additional 6 ICA111

features for each individual. The ICA-based weights matrix was online available at https:112

//www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/. Specifically, the 6 ICA features were gener-113

ated by extracting 14 eigenvecters out of the 1695 dimensional IDP matrix using the single value114

decomposition, followed by the extraction of 6 ICA components out of the 14 eigenvectors using115

the ICA approach. Robustness of the extracted ICA components were evaluated by the split-half116

reproducibility approach detailed in Elliott et al. (2018). The resulting six ICA features repre-117

sented six independent sets (or, more accurately, linear combinations) of the original functional118

connectivity traits. The selected 21 and 55 nodes as well as matlab code for the above ICA feature119

generation can be found at https://www.fmrib.ox.ac.uk/ukbiobank/gwaspaper/.120

By definition of the ICA, the sign of components from ICA are arbitrary. However, the UKB121

pipeline adopted MELODIC toolbox to calculate the ICA components, which, for convenience of122

interpretation, applied a simple “skew-related” rule and inverted the signs of the components with123

negative skewness such that the spatial maps would be dominantly positive.124

Image preprocessing and phenotype generation in other datasets The ABCD imaging125

protocol was harmonized for three 3T scanner platforms: Siemens (Prisma VE11B-C), Philips126

(Achieva dStream, Ingenia), and GE (MR750, DV25-26). This protocol had multi-channel coils127

that were capable of multiband echo planar imaging (EPI) acquisitions using a standard adult-size128

coil. The resting-state fMRI data were acquired at 383 time points within a duration of twenty129

minutes, including eyes open and passive viewing of a cross hair, each with a 2.4×2.4×2.4 mm130

spatial resolution at a dimension of 90×90×60. The scanning parameters included multiband131

acceleration factor of 6, flip angle 52◦, and the TE and TR being 30 ms and 800 ms, respectively132

(Casey et al., 2018).133

For preprocessing, we downloaded the minimally processed restfMRI dataset, which already134

went through the following procedure performed by the ABCD team: 1) head motion corrected135
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by registering each frame to the first using AFNI’s 3dvolreg; 2) B0 distortions were corrected136

using the reversing gradient method; 3) displacement field estimated from spin-echo field map137

scans; 4) applied to gradient-echo images after adjustment for between-scan head motion; 5)138

corrected for gradient nonlinearity distortions; 5) between scan motion correction across all fMRI139

scans in imaging event; 6) and registration between T2-weighted, spin-echo B0 calibration scans,140

and T1-weighted structural images performed using mutual information. Detailes of the above141

preprocessing steps can be found at the Chapter 15 of the ABCD fix release notes 2.0.1—the NDA142

2.0 Resting-State Functional Magnetic Resonance Imaging.143

After removal of 8 initial volumes, additional steps were performed on the minimally processed144

ABCD rsfMRI dataset as follows. First, the ICA+FIX processing was performed to remove145

structured artefacts to generate the cleaned rsfMRI data. The training subjects for FIX used146

in the ABCD data were the same as in the UK Biobank data. Similar to the steps of the UK147

Biobank preprocessing, the cleaned rsfMRI data were then aligned with its corresponding T1148

high-resolutional MRI data onto the MNI152 2×2×2 mm space. Next, each time series data149

were temporally demeaned and had variance normalisation applied. The UKB-derived group-150

ICA maps including 21 ICA and 55 ICA components were mapped onto the registered ABCD151

cleaned fMRI data to derive the representative time series on the 76 nodes. Imaging phenotypes152

including the node amplitude, Gaussianised full-correlation, partial-correlation matrices, as well153

as the additional 6 ICA features were then generated as we did in the UKB study.154

For HCP data, all subjects were scanned on a customized Siemens 3T “Connectome Skyra”155

scanner housed at Washington University in St. Louis, using a standard 32-channel Siemens156

receive head coil and a “body” transmission coil designed by Siemens specifically for the smaller157

space available, as well as the special gradients of the WU-Minn and MGH-UCLA Connectome158

scanners. The HCP rsfMRI data were acquired in four runs of 14 minutes and 33 seconds each,159

two runs in one session and two in another session, with eyes open with relaxed fixation on a160

projected bright cross-hair on a dark background (and presented in a darkened room). Within161

each session, oblique axial acquisitions alternated between phase encoding in a right-to-left (RL)162

direction in one run and phase encoding in a left-to-right (LR) direction in the other run. The163

data were acquired at 1200 time points, each with a 2×2×2 mm isotropic spatial resolution at a164

dimension of 104×90×72. The gradient-echo echo-planar imaging (GE-EPI) was adopted, with a165

multiband factor of 8, no iPAT, and flip angle 52◦. The echo time and repetition time were 33.1166

ms and 720 ms, respectively. The receiver bandwidth was 2290 Hz/Px and the echo spacing was167

0.58ms.168

The input images of our preprocessing stream were preprocessed HCP rsfMRI images down-169

loaded from the HCP website for the first (RL) and second run (LR) only. Those were both170

minimally-preprocessed (MPP) and FIX-denoised rsfMRI data, processed by the standard pipeline171

described in Glasser et al. (2013) and Burgess et al. (2016), and aligned with the corresponding172

high-resolutional T1 MR images at the MNI152 2×2×2 mm space. Time series data were then173

temporally demeaned and had variance normalisation applied, and the UKB-derived group-ICA174

maps including 21 ICA and 55 ICA components were mapped onto the registered ABCD cleaned175

fMRI data to derive the representative time series on the 76 nodes. Imaging phenotypes including176

the node amplitude, Gaussianised full-correlation, partial-correlation matrices, as well as the ad-177
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ditional 6 ICA features were then generated as we did in the UKB study for the first and second178

run, respectively. We took the average of the two runs in our downstream analyses.179

For PNC dataset, all MRI scans were acquired on a single 3T Siemens TIM Trio whole-body180

scanner located in the Hospital of the University of Pennsylvania. The system operated under181

the VB17 revision of the Siemens software. Signal excitation and reception was obtained using a182

quadrature body coil for transmit and a 32-channel head coil for receive. Gradient performance183

was 45mT/m, with a maximum slew rate of 200 T/ms. The rsfMRI data were acquired at 124184

timepoints within a duration of 6 minutes and 18 seconds, each with a 3×3×3 mm spatial resolution185

at a dimension of 64×64×46. During the resting-state scan, a fixation cross was displayed as186

images were acquired. Subjects were instructed to stay awake, keep their eyes open, fixate on187

the displayed crosshair, and remain still. The scanning parameters included the flip angle 90◦,188

the TE and TR 32 ms and 3000 ms, respectively, and the bandwidth was 2056 HZ per pixel189

(Satterthwaite et al., 2014). For the preprocessing of PNC dataset, the same pipeline as in the190

UK Biobank preprocessing, including imaging cleaning, registration, representative time series191

generation and the IDP generation (except the EPI and GDC unwarping) were applied. The192

training subjects for FIX used in the PNC data were the same as in the UK Biobank data. Then193

the imaging phenotypes were generated as we did in the above datasets.194

Node anatomical location and network classification195

The UKB derived group ICA maps include 21 ICA and 55 ICA components (i.e., nodes) on the196

MNI152 2×2×2mm space after quality controls. The anatomical locations for those ICA maps197

were detected by the number of voxels with top absolute ICA weights in each region of the AAL198

atlas (Rolls et al., 2020). Specifically, we focused on the voxels whose nonzero absolute ICA199

weights were among the top 1%. For each component, we calculated the number of these voxels200

overlapping with the 170 regions of the AAL atlas. Regions with small overlaps (less than 10201

voxels) were removed. For bilateral brain regions, the number of the voxels in the left and right202

hemispheres were combined. The top ranked regions in each of the 76 ICA node are provided in203

Supplementary Table 24.204

Furthermore, the nodes were classified into 17 brain functional networks defined in Yeo et al.205

(2011). These networks were shown in Supplementary Figure 25, including two visual, two so-206

matomotor, two attention, two salience, two limibic, three central executive and four default mode207

networks. Specifically, we first split the 17 functional networks into 34 regions by separating the208

left and right parts of each network. Then, for the ith node, i = 1, 2, · · · , 76, we calculated Qi,j,0.95209

which was defined as the 95% quantile of the absolute value of its ICA weights within the jth210

region, j = 1, 2, · · · , 34. For each node index i, we ranked Qi,j,0.95, j ≤ 34 and picked the regions211

(as well as networks) with high Qi,j,0.95 values and mapped them into the corresponding networks.212

The 76 nodes were also classified into 8 networks defined by Finn et al. (2015). Those 8 net-213

works consisted of medial frontal, frontal parietal, default mode, subcortical-cerebellum, motor,214

visual association, and two visual networks (Supplementary Fig. 26). First, the 8 networks were215

mapped to 268 brain regions defined in Finn et al. (2015). We then calculated Qi,j,0.95 for the216

ith node within the jth region, i = 1, 2, · · · , 76, j = 1, 2, · · · , 268. For each node index i, we217

ranked Qi,j,0.95, j ≤ 268. We picked the regions with high Qi,j,0.95 values and mapped them into218
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the corresponding networks.219

One of the major differences between the two sets of networks was that Finn et al. (2015)220

additionally considered the subcortical-cerebellum network. We found that the ICA nodes which221

had low weights in the 17 networks of Yeo et al. (2011) typically belonged to the subcortical-222

cerebellum network defined in Finn et al. (2015). Thus, we mainly considered the 17 brain networks223

from Yeo et al. (2011) and the subcortical-cerebellum network from Finn et al. (2015) in our224

reported results. The assigned AAL regions and functional networks of the 76 ICA nodes are225

summarized in Supplementary Table 25.226

More genetic correlation results227

Amplitude traits and regional brain volumes228

We observed significant genetic correlations between amplitude traits and brain volumes (|gc|229

range = (0.23, 0.44), P range = (5.2× 10−12, 1.4× 10−5), Supplementary Fig. 16). For example,230

8 amplitude traits across multiple networks had significant genetic correlations with total brain231

volume (|gc| range = (0.24, 0.41), P ≤ 1.4 × 10−5). It is well known that brain size/volume is232

phenotypically associated with intrinsic amplitude (Qing and Gong, 2016). Moreover, the am-233

plitude of the putamen and caudate regions in subcortical-cerebellum network was genetically234

correlated with ventricular volumes. Ventricular volumes are known to be related to subcortical235

volumes (Okada et al., 2016; Levitt et al., 2002). For the amplitude of precuneus region in default236

mode and central executive networks, we observed significant genetic correlations with cuneus and237

lingual volumes. In addition, the amplitude of visual regions (calcarine, lingual, and cuneus) in238

visual network had significant genetic correlations with the pericalcarine volume. Pericalcarine is239

involved in the early stage of visual processing (Gomez et al., 2019; Bedny et al., 2012).240

Amplitude traits and white matter tracts241

We detected significant genetic associations between amplitude traits and white matter tracts (|gc|242

range = (0.27, 0.37), P range = (1.5 × 10−8, 1.5 × 10−5), Supplementary Fig.. 17). Particularly,243

our results show that fornix was genetically associated with the amplitude of the middle and244

inferior temporal regions in the visual and attension networks. Fornix is a critical component245

of the limbic system and is important in the function of memory (Thomas et al., 2011). For246

example, the association between the reduced fractional anisotropy in the fornix and performance247

on visual and spatial memory tests has been found among schizophrenia patients (Fitzsimmons248

et al., 2009). In addition, we also observed significant genetic correlations between the superior249

longitudinal fasciculus (SLF) and amplitude in multiple brain regions including the precuneus,250

inferior parietal, angular, middle temporal, inferior frontal, and precentral. The SLF is involved251

in a wide variety of brain functions (Klarborg et al., 2012; Hamilton et al., 2008; Rizio and Diaz,252

2016; Madhavan et al., 2014; Vestergaard et al., 2011) and is broadly connecting brain regions in253

temporal, parietal, and frontal lobes (Urger et al., 2015).254
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Functional connectivity traits and schizophrenia255

For schizophrenia, we observed significant genetic correlations with connection strengths of cen-256

tral executive, salience, default mode, motor, attention networks, including precentral, postcentral,257

precuneus, inferior, superior, and middle frontal, and superior parietal regions (|gc| range = (0.18,258

0.3), P range = (3.2 × 10−7, 1.2 × 10−4), Fig. 5a, Supplementary Fig. 18). Hypoconnectivities259

have been observed over the auditory network (left insula), core network (right superior temporal260

cortex), default mode network (right medial prefrontal cortex, left precuneus, and anterior cingu-261

late cortices), self-referential network (right superior temporal cortex), and somatomotor network262

(right precentral gyrus) in schizophrenia patients (Li et al., 2019). The reduced connectivity of263

postcentral gyrus may play a central role in early-onset schizophrenia (Li et al., 2015). In addition,264

it has been reported that negative connectivity between language and executive control networks265

are impaired in schizophrenia patients as well as their first-degree relatives. This decreased con-266

nectivity was correlated with performance in language processing (Li et al., 2017).267

Functional connectivity traits and major depression disorder268

For major depression disorder (MDD), significant genetic correlations existed in the middle and269

superior frontal, angular, and middle temporal regions of the central executive, salience, and270

default mode networks (|gc| range = (0.26, 0.27), P range = (1.15 × 10−4, 1.2 × 10−4), Fig. 5a,271

Supplementary Fig. 18). The temporal and angular gyrus are language-related regions (Ettinger-272

Veenstra et al., 2016; Dronkers et al., 2011). It has been found that late-onset depression may273

impair language functions, especially those related to linguistic production (da Silva Novaretti274

et al., 2011). In addition, altered connectivity strengths in the right angular and the middle275

temporal have been observed among the treatment-resistant depression and treatment-responsive276

depression patients (Ma et al., 2012).277

Functional connectivity traits and subjective well-being278

The functional connectivity strength among the calcarine, cuneus, lingual, angular. and middle279

temporal had strong genetic correlation with subjective well-being (|gc| = 0.48, P = 2.28× 10−5,280

Supplementary Fig. 18). Subjective well-being is a scientific term for self-reported happiness and281

life satisfaction—thinking. The calcarine, cuneus and lingual are the primary visual regions and282

it has been reported that the primary visual cortex is involved in visual imagery (Kosslyn and283

Thompson, 2003). The angular is a multimodal convergence hub, which lies at the confluence of284

brain regions and supports attentional, episodic memory, language and semantic, numerical, and285

social cognitive processes (Seghier, 2013; Ramanan et al., 2018). Mounting evidence suggests that286

angular activity scales with subjective ratings of vividness and confidence in recollection, with287

further evidence pointing to its involvement during construction of detailed and coherent future288

simulations (Ramanan et al., 2018).289
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Functional connectivity traits and sleep duration290

Sleep duration had significant genetic correlations with connection strenghs over auditory (superior291

temporal), somatosensory (superior parietal, supramarginal), sensory-motor (precentral, postcen-292

tral, Rolandic operculum), visual (lingual, fusiform, inferior occipital, middle occipital), insula,293

and precuneus regions (|gc| range = (0.20, 0.29), P range = (7.3×10−6, 1.1×10−4), Supplementary294

Fig.. 18). Horovitz et al. (2008) have demonstrated that blood-oxygen-level-dependent (BOLD)295

signals increase particularly in visual, motor, and primary auditory cortices when human transits296

from wakefulness to sleep, which are replicated in other studies (Curtis et al., 2016; Davis et al.,297

2016; Larson-Prior et al., 2009; Tagliazucchi and Laufs, 2014).298

Functional connectivity traits and other traits299

For high blood pressure, we found genetic correlations with connectivity strengths over the middle300

occipital, superior occipital, precuneus, superior parietal, cuneus, middle frontal, inferior frontal,301

superior frontal, middle temporal, and supplementary motor area (|gc| range = (0.19, 0.25), P302

range = (2.2× 10−6, 8.5× 10−4), Supplementary Fig. 18). It has been reported that participants303

with hypertension have more activation bilaterally in multiple brain regions, such as the middle304

occipital, middle temporal, hippocampus, postcentral, insula, and middle frontal (Farcas, 2011).305

For risky behavior and automobile speeding, genetic associations mainly existed among motor,306

central executive, attention, and default mode networks, including the inferior parietal, cerebel-307

lum, angular, superior temporal, middle temporal superior frontal, precentral, postcentral, and308

supramarginal brain regions (|gc| range = (0.20, 0.27), P ≤ 1.5× 10−4), Supplementary Fig. 18)309

For manual occupation, the genetically correlated brain regions were similar to those associated310

with cognitive traits and education. Interesting, however, they largely have opposite directions311

(|gc| range = (0.15, 0.24), P ≤ 1.5× 10−4, Supplementary Fig. 18). Other genetically correlated312

traits included BMI (|gc| range = (0.2, 0.37), P ≤ 1.5 × 10−4) and behavioral factors (drinking313

and smoking), all of which had been linked to brain functional differences (Kullmann et al., 2012;314

Shokri-Kojori et al., 2017; Zhou et al., 2017).315

Amplitude traits and complex traits316

For amplitude traits, we detected significant genetic correlations with cognitive traits studied in317

previous GWAS, including cognitive performance, general cognitive function, intelligence, and318

numerical reasoning (|gc| range = (0.15, 0.21), P ≤ 1.8× 10−4, Supplementary Fig. 19). We also319

observed significant genetic correlations between the amplitude of visual area (calcarine, lingual,320

inferior occipital, middle occipital) with cross disorder (i.e., five major psychiatric disorders) (|gc|321

range = (0.32, 0.33), P ≤ 9.7 × 10−5), and between the regions in motor and suhbcortical-322

cerebellum networks with sleep (|gc| range = (0.15, 0.18), P ≤ 1.6 × 10−4). The association323

between intrinsic amplitude and cognition, sleep, and brain disorders had been previously reported324

(Fryer et al., 2015; Meng et al., 2020; Liu et al., 2018).325
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drug-näıve, first-episode, early-onset schizophrenia. Journal of Child Psychology and Psychiatry,413

56, 432–443.414

Li, P., Fan, T.-T., Zhao, R.-J., Han, Y., Shi, L., Sun, H.-Q., Chen, S.-J., Shi, J., Lin, X. and Lu,415

L. (2017) Altered brain network connectivity as a potential endophenotype of schizophrenia.416

Scientific reports, 7, 1–9.417

Li, S., Hu, N., Zhang, W., Tao, B., Dai, J., Gong, Y., Tan, Y., Cai, D. and Lui, S. (2019)418

Dysconnectivity of multiple brain networks in schizophrenia: a meta-analysis of resting-state419

functional connectivity. Frontiers in psychiatry, 10, 482.420

Liu, E. Y., Li, M., Wang, W. and Li, Y. (2013) Mach-admix: genotype imputation for admixed421

populations. Genetic epidemiology, 37, 25–37.422

Liu, X., Chen, J., Shen, B., Wang, G., Li, J., Hou, H., Chen, X., Guo, Z. and Mao, C. (2018) Al-423

tered intrinsic coupling between functional connectivity density and amplitude of low-frequency424

fluctuation in mild cognitive impairment with depressive symptoms. Neural plasticity, 2018.425

Ma, C., Ding, J., Li, J., Guo, W., Long, Z., Liu, F., Gao, Q., Zeng, L., Zhao, J. and Chen, H.426

(2012) Resting-state functional connectivity bias of middle temporal gyrus and caudate with427

altered gray matter volume in major depression. PloS one, 7, e45263.428

14



Madhavan, K., McQueeny, T., Howe, S., Shear, P. and Szaflarski, J. (2014) Superior longitudinal429

fasciculus and language functioning in healthy aging. Brain research, 1562, 11–22.430

Meng, X., Zheng, J., Liu, Y., Yin, Y., Hua, K., Fu, S., Wu, Y. and Jiang, G. (2020) Increased431

dynamic amplitude of low frequency fluctuation in primary insomnia. Frontiers in neurology,432

11, 609.433

Moeller, S., Yacoub, E., Olman, C., Auerbach, E., Strupp, J., Harel, N. and Uğurbil, K. (2010)434
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