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Artificial neural networks have recently achieved many

successes in solving sequential processing and planning tasks.

Their success is often ascribed to the emergence of the task’s

low-dimensional latent structure in the network activity – i.e.,

in the learned neural representations. Here, we investigate

the hypothesis that a means for generating representations

with easily accessed low-dimensional latent structure, possibly

reflecting an underlying semantic organization, is through

learning to predict observations about the world. Specifically,

we ask whether and when network mechanisms for sensory

prediction coincide with those for extracting the underlying

latent variables. Using a recurrent neural network model

trained to predict a sequence of observations we show that

network dynamics exhibit low-dimensional but nonlinearly

transformed representations of sensory inputs that map the

latent structure of the sensory environment. We quantify these

results using nonlinear measures of intrinsic dimensionality

and linear decodability of latent variables, and provide

mathematical arguments for why such useful predictive

representations emerge. We focus throughout on how our

results can aid the analysis and interpretation of experimental

data.

Introduction

Neural network representations are often described as

encoding latent information from a corpus of data (1–

9). Similarly, the brain forms representations to help it

overcome a formidable challenge: to organize episodes, tasks

and behavior according to a priori unkown latent variables

underlying the experienced sensory information. How does

such an organization of information emerge? In the context

of artificial neural networks, two related bodies of work have

shown that this can occur due to the process of prediction

– giving rise to predictive representations. First, neural

networks are able to extract latent semantic characteristics

from linguistic corpora when trained to predict the context

in which a given word appears (10–13). The resulting

neural representations of words (known as word embeddings)

have emergent geometric properties that reflect the semantic

meaning of the words they represent (14). Second, models

learning to encode for future sensory information give rise to

internal representations that encode task related maps useful

for goal-directed behavior (9, 15–17).

As predictive mechanisms have been conjectured to

be implemented across distinct neural circuits (18–20),

characterizing predictive representations can then shed light

on where and how the brain exploits such mechanisms

to organize sensory information. Our goal is to build

theoretical and data-analytic tools that explain why a

predictive learning process leads to low-dimensional maps

of the latent structure of the underlying tasks – and what

the general features of such maps in neural recordings might

be. This links predictive learning in neural networks with

existing mechanisms of extracting latent structure (21–23)

and low-dimensional representations from data (24).

We begin with an introductory example of how predictive

learning enables the extraction of latent variables

characterizing the regularity of transitions among a set

of discrete “states”, each of which generates a different

observation about the world. Then we focus on a model

where observations are generated from continuous latent

variables embedded in a low-dimensional manifold. We

focus on the special case of spatial exploration, in which

the latent variables are the position and orientation of an

agent in the spatial environment, and the observations are

high-dimensional sensory inputs specific to a given position

and orientation. The predictive learning task we study is to

predict future observations. Our central question is whether

a recurrent neural network (RNN) trained on this predictive

learning task will extract representations of the underlying

low-dimensional latent variables.

We develop analytical tools to reveal the low-dimensional

structure of representations created by predictive learning.

Crucial to this is the distinction between linear (25–29)

and nonlinear dimensionality (30, 31), which allows us to

uncover what we call latent space signal transfer, wherein

latent variables become increasingly linearly decodable from

the top principal components of the neural representation
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Fig. 1. Predictive network solving a card game task. a) Description of the latent space underlying the task. b) Illustration of the task and information flow diagram: the neural

representation receives state observations and actions and extracts the latent space structure by means of predicting upcoming observations. c) Diagram of the network’s

structure. The diagram highlights the layer studied here, although the network has a two layers, where the second layer serves as a decoder. d) The network’s neural

representation: activity in the hidden layer plotted versus Principal Components PCs 1 and 2 of hidden layer activity. For each observation-action pair (ot,at), the

corresponding activation is colored by the position of the state that the network predicts: x-coordinate (left plot, before and after learning) and y-coordinate (right plot). e)

Same as d in the absence of the action as a input to the network. f) Same as d for a 3 dimensional latent space.

as learning progresses. Latent space signal transfer is

accompanied by clear trends in the linear and nonlinear

dimensionality of the underlying representation manifold,

and potentially gives rise to the the formation of neurons with

localized activations on the nonlinear manifold, manifold

cells (32). Importantly, while each of these phenomena

could separately find its origin in a mechanism different

from predictive learning, they altogether provide a strong

measurable feature of predictive learning that expect further

testing in both neural and machine learning experiments. We

conclude by extending our framework to the analysis of both

neural data and a second task - arm-reaching movements.

Predictive learning and latent

representations: a simple example

In predictive learning a neural network learns to minimize

the errors between its output at the present time and a stream

of future observations. This is a predictive framework in the

temporal domain, where the prediction is along the time axis

(19). At each time t an agent observes the state of a system

ot and takes an action at out of a set of possible actions. The

agent is prompted to learn that, given (ot,at), it will next

observe ot+1.

We begin by illustrating our core idea – that predictive

learning leads neural networks to represent the latent spaces

underlying their inputs – in a simple setting. We study the

task shown in Fig. 1a, where the state of the system is in one

of Ns = 25 states. To each state is associated a unique set of

5 random cards that the agent observes whenever it is in that

state. The states are organized on a 2 dimensional lattice - the

latent space. Observations have no dependence on the lattice

structure, as they are randomly assigned to each state with

statistics that are completely independent from one state to

the next. On the other hand, actions are defined on the lattice:

at each time t the agent either randomly moves to one out of

the 4 neighboring states by selecting the corresponding action

or remains in the same state. Movements, when they occur

are thus along the 4 cardinal directions N,S,W,E used to

indicate the corresponding action. Meanwhile, 0 denotes the

action corresponding to no movement, for a total of Na = 5
possible actions.

The agent solves this predictive task when, prompted with a

pair (ot,at), it correctly predicts the upcoming observation

ot+1. A priori, this task does not require the agent to

extract information about the underlying lattice structure

of the state space. Indeed the agent could solve the task

with at least two possible strategies: (1) by associating

with each observation (set of cards) the next observation

via a collection of Ns × Na distinct relationships (ot,at) 7→
ot+1 (combinatorial solution), or (2) via a simple set of

relationships that exploit the underlying lattice structure of

the state space. In this second scenario the agent would

uncover the lattice structure while using it to map actions

to predictions. This solution thus presupposes an internal

representation of the latent space and we refer to it as

predictive representation solution. The critical difference

between the combinatorial and predictive representation

solutions is that the latter extracts a representation of the

latent space while the former doesn’t, cfr. Fig. 1b.

We train a simple two layer network on this card game

task: to predict the future observation given inputs of the

current observation and action, Fig. 1c. We focus on

the first layer that receives the joint input of actions and

observations. In this example observations are encoded with
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Fig. 2. Predictive network solving an exploration task. a) Information flow diagram of the task: an agent explores a two dimensional environment (latent space) through

actions and receives observations regarding it. The network’s task is to predict the next sensory observation. By learning to do so it recovers information regarding the

underlying hidden latent space. b) Illustration of the agent with sensors in the square environment where the walls have been colored (cfr. Methods). The sensors span a

90o degree angle and register the color and distance of the wall along their respective directions. c) Diagram of the predictive recurrent neural network: the network receives

actions and observations as inputs and is trained to output the upcoming sensory observation. d) Cost during training for the network (cf. Methods). e) Average activity of

100 neurons (each of the 100 neurons average activity is showed in one of the small 100 quadrants) against the x,y coordinates of the environment, showing place related

activity. f) Same as e for a RNN trained to autoencode its input observations.

a one-hot representation, formally turning the problem into

a classification task. Upon learning, by means of Stochastic

Gradient Descent (SGD), the network develops an internal

representation in the hidden layer for each of the 125 input

pairs (ot,at).

Visualizing these internal representations in the space of

principal components of neural activations, the underlying

latent structure of the state space appears (Fig. 1d.)

This lattice-like structure is a joint representation of

observations and actions. This representation emerges over

the course of learning: initially, the representation of each

observation-action pair (ot,at) does not reflect the underlying

latent space, see Fig. 1d. The development of the latent space

representation can be clearly visualized across stages of the

learning process (see Fig. S1).

Additionally, if we remove the actions from the input to the

network but still training it to perform prediction, the network

still learns a representation that partially reflects the latent

space, Fig. 1e, though this time it is distorted (cf. Fig. S2).

Below, we will demonstrate this phenomenon in other more

complex settings, but we first pause to build intuition for

why it occurs within neural networks. We start by noticing

that upon learning the 5 actions a ∈ {N,S,W,E,0} are

mapped to a fixed vector wa, which is added to the state

representation ws every time the corresponding action is

selected:

xs,a = tanh(ws +wa +b) , (1)

where b is a learned bias parameter. Specifically, consider

the representation x in the network for predicting a state s′

located immediately above (to the N) of the state s, in two

scenarios. In the first, s′ is arrived at from s, after the action

a = N . This gives the representation

xs,N = tanh(ws +wN +b) (2)

In the second, s′ is arrived at from s′, after the null action:

xs′,0 = tanh(w′

s +w0 +b) (3)

Both of these activations must be read out to return

the same prediction: s′. While this could occur in

principle if the readout operation learned to collapse different

representations to the same readout, the network learns a

simpler solution in which the representations (Eq. (2)) and

(Eq. (3)) are equal (cf. (33, 34)), so that xs′,0 = xs,N implies:

ws′ −ws = wN −w0 (4)

for any pair of states s,s′ linked by the action a = N . This

implies that (up to the hyperbolic tangent non-linearity), the

representation of the states is acted upon by the action in

a translational invariant way in the direction of the action

wN − w0. This is true for any of the actions N,S,W,E,

and for any starting state s. Thus, the representation inherits

an approximate translation invariance – the characteristic

property of a lattice structure. This invariance confers a

geometrical structure upon the learned neural representation

that reflects the latent space. This phenomenon directly

generalizes to lattices of higher dimension, as shown in

Fig. 1f.

We note that this analysis holds precisely when the learning

process enforces representations of the same decoded state to

be nearly identical – which occurs in all of our simulations
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Fig. 3. Learning the predictive representation. a) Predictive error (L2 norm) in blue between the network’s output and the observation as a function of the lag (Delta t). In

red average L2 norm between the observation at time 0 and at a lag Delta t. b) Linear decoding of latent variables. RMS measure of the linear decoding of (x,y,θ) at time

Delta t from the neural representation at time 0. The dotted line highlights the axis of symmetry of the curves. c) Signal transfer analysis: Canonical Correlation Analysis

between PCs of the neural representation and the latent space. The lines correspond to the average of the canonical correlations between the highlighted variables. d)

Same as panel c) but for the observation space. e) Participation Ratio of the representation during learning. f) Intrinsic Dimensionality (ID) of the representation during

learning. Five different intrinsic dimensionality estimators are used (cfr. Methods).

and is predicted by other numerical and theoretical studies

(33, 34) – and holds approximately when it tends to cluster

these together. By contrast, in a general combinatorial

solution of Eq. (4) each observation action pair could be

linked to the upcoming state independently, xs,N 6= xs′,0.

We can apply related ideas to begin to understand more

challenging case in which the prediction task is performed

without knowledge of the action, so that only observations

are passed as input to the network. As we showed in figure

(Fig. 1e) above, in this case the internal representation still

partially reflects the latent space. This is not because the set

of observations as a whole carries any information about the

latent space, but because the effect of the actions - to bind

nearby states together - is reflected in the statistics of the

sequence of observations. Thus, through making predictions

about future observations, the network still learns to bind

states that occur nearby in time together, extracting the latent

space (cf. Suppl.Mat. Sec. 2.4).

We next generalize the predictive learning framework to two

different, more complex benchmark tasks of neuroscientific

interest: spatial exploration and arm-reaching movements.

Predictive learning extracts latent space

representations in a spatial exploration task

We focus on predictive learning in a spatial exploration

task in order to generalize the previous example to show

how predictive learning extracts the low-dimensional latent

structure from a high-dimensional sensory stream (Fig. 2a)

and to introduce novel metrics which quantify such process.

In the spatial exploration task an agent traverses a square

open arena. Traversing the environment, the actions taken

determine a trajectory in three spaces: the latent space which

defines the agent’s (or animal’s) state in the environment,

the observation space of the agent’s sensory experience, and

the neural activation space of its neural representation. We

introduce the task defining these three spaces.

The latent space, similarly to the card-game example, is the
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set of spatial coordinates that identifies the agent’s state,

(x,y,θ), where x and y are position and θ is its direction. The

observation space is defined in terms of the agent’s ability

to sense the surrounding environment. To model this we

consider the case where the agent senses both visual and

distal information from the environment’s walls - the agent is

equipped with sensors that span a 90o visual cone centered

on its current direction θ reporting distance and color of

the environment’s wall along their directions, Fig. 2b. The

environment the agent navigates is a discrete grid of 64 × 64
locations. Each wall tile, one at each wall location, is first

colored randomly and then a narrow spatial autocorrelation

is applied, see Fig. 2b. The number of sensors Ns is chosen

so that observations across sensors are independent Ns = 5.

We consider the case where the agent’s actions are correlated

in time but do not depend on the observations – random

exploration. At each step the agent’s direction θ is updated by

a small random angle dθ drawn from a Gaussian distribution

centered at zero and with a variance of 30o. The agent then

moves to the discrete grid location most aligned with the

updated direction θ + dθ (unless it is occupied by a wall;

cfr. Methods for details). Actions are performed by the

agent with respect to its allocentric framework, so that there

are nine possible choices: for each location there are eight

neighboring ones plus the possibility of remaining in the

same location. While the agent moves in the environment

it collects a stream of observations.

In predictive learning, the agent learns to predict the

upcoming sensory observation, Fig. 2c. It achieves this by

minimizing the difference between its prediction yt at time t

and the upcoming observation ot+1 : C =
∑

t ||yt − ot+1||2,

Fig. 2d. We refer to the activations of the units of the

trained RNN as its internal predictive representation. The

RNN can be thought as a model of the agent’s brain area

carrying out the task. As the agent learns to predict the

next observation, its representation is influenced both by the

observation space (since the task is defined purely in terms

of observations) and by the latent space (since the actions

are defined on it); a priori, it is not obvious which space’s

influence will be stronger. In this example we used a more

general recurrent network rather than the simplest-possible

feedforward setup in the first example of Fig. 1; this allows

information from the stream of sensory observations to be

integrated over time, a feature especially important in more

challenging settings when instantaneous sensory information

may be only partially informative of the current state.

A first indication that, by the end of learning, neurons encode

the latent space is given by the fact that individual neurons

develop spatial tuning Fig. 2e. The neural representation

has extracted information about the latent space from the

observations, without any explicit prompt to do so. In the

Suppl.Mat. (Figs. S7-S12), we show how this phenomenon is

robust to alterations of the sensory observations and network

architecture.

However, when the same network learns, based on the

same input sequence, to reproduce the current observation

(autoencoding framework corresponding to a cost C =

∑

t ||yt − ot||
2) rather than predict the upcoming one,

individual neurons do not appear to develop spatial tuning,

Fig. 2f and Suppl.Mat. (Figs. S10-11).

Metrics for predictive learning and latent

representations

How – and to what extent – does the neural population as

a whole represent the latent space? This question demands

quantitative answers. To this end we develop novel methods

for analyzing neural representation manifolds, and three

metrics that capture the dynamical and geometrical properties

of the representation manifold. These are predictive error,

latent signal transfer and dimensionality gain. While the first

of these is specific to predictive frameworks, the other two

could be interpreted as general metrics to quantify the process

of extraction of a low dimensional latent space from data.

Below we illustrate these metrics in the context of the spatial

exploration task (cf. Figs. S3-5 for a detailed analysis and

more examples of such metrics).

Predictive error. The network’s task is to predict future

observations. Due to correlations in the sensory input itself

from one timestep to the next, to verify that the network

is actually making predictions we first ask whether the

network’s output is most similar to the upcoming observation

rather than current or previous ones (35). This can be

captured by the absolute difference between the current

output of the network and the stream of observations at any

time, which we refer to as predictive error. If this is skewed

towards the upcoming observation (see Fig. 3a blue line)

it suggests that the network predicts elements of upcoming

observations. This measure relies on knowledge of the

network’s output and of the stream of observations. An allied

measure of this effect relies on the ability to decode past vs

future latent states from the current neural representation.

If the decoding error is skewed for future (vs past) latent

states, this also suggests that the network predicts future

states. Fig. 3b shows that this is the case for the spatial

exploration network: it codes for future latent variables as

well as current and past ones, with the axis of symmetry

for decoding the spatial coordinates x,y located close to the

future value ∆t = 1 (cf. Fig. S13 for a comparison with

neural data). Similarly the axis of symmetry for the angle θ is

located closer to ∆t = 1, although in this case the analysis is

confounded by the fact that actions carry partial information

regarding θ.

Latent signal transfer. We next introduce a feature of

predictive learning that tracks how the neural representation

reflects the latent space over the course of learning. This

quantifies the phenomenon visible by eye in the introductory

example of Fig. 1d. To define the latent signal transfer

metric, at each stage of learning we compute the average

of the canonical correlation (CC) coefficients between the

representation projected into its PCs, and latent space

variables x,y,θ. The blue line in Fig. 3c shows the average

of the CC coefficients between the representation in PCs 1 to

3 and the position x,y of the agent in latent space. When the
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Fig. 4. Comparison between predictive and non-predictive learning. We train 50 networks of 100 neurons in each of the predictive and non-predictive conditions and

equalize the learning axis between the two to highlight the trends of the different measures. a) Predictive error. The position of the predictive error symmetry axis plotted

throughout learning for the predictive and non-predictive network ensembles. The symmetry axis position is the one that minimizes a L2 norm between the predictive error

curve (cf. Fig. 3a) and its reflection through the symmetry axis. b) Latent Signal Transfer analysis. A Canonical Correlation Analysis is performed between the latent space

and the top PCs of the neural representation at every epoch, and the average of the two canonical correlations (for coordinates x and y) is shown. c) Observation Signal

Transfer analysis. The Canonical Correlation Analysis, same as panel b, is performed between the top PCs of the observations and the top PCs of the network’s

representation. d) Linear Dimensionality (PR) throughout learning. e) Non-linear Dimensionality (ID) throughout learning. f) Dimensionality Gain (DG) throughout learning.

average CC coefficient is 1, all the signal regarding x,y has

been transferred onto PCs 1 to 3 in a linear fashion. A similar

interpretation holds for the other curves: in sum, they track

the formation of explicit representations of latent variables

that are accessible via linear decoding .

Fig. 3c shows that, between epoch 50 and 150, most of

the information regarding the latent space moves onto the

first few PC modes of the neural representation. The same

analysis can be carried out with respect to observation space

variables. This is shown in Fig. 3d, where the decreasing

trend indicates that the observation space signal flows out of

the first few PC components as learning progresses. Together

Figs. 3c and 3d show that the representation, as interpreted

through PC components, encodes more information about the

latent space as opposed to the observation space as learning

progresses (blue and red lines).

Dimensionality Gain. Finally, motivated by the fact that the

latent spaces of interest are lower-dimensional, we introduce

metrics that allow us to quantify the extent to which the

learned neural representations have a similar dimension.

We begin by noting that the latent signal transfer analysis

(Figs. 3c to 3d) suggests that predictive learning might

have formed a low-D neural representation. However,

when we measure the dimensionality of the neural

representation with a linear dimensionality metric, the

Participation Ratio (PR), we observe that dimensionality

actually increases over the course of learning Fig. 3e. Instead,

measuring the dimensionality of the neural representaion

with nonlinear techniques sensitive to the local curvature

of the representation manifold – yielding the Intrinsic

Dimensionality (ID) – shows that the dimensionality rather

than increasing at most decreases through learning.

This dichotomy can be interpreted by means of two different

demands that shape network representations. On one hand,

the representation is prompted to encode high-dimensional

observations; on the other, it extracts the regularity of a

low-dimensional latent space. While the high dimensionality

of the observations is a global property, referring to the

collection of many observations, the regularity of the latent

space is induced on a local scale, as neural representations

relate to their possible neighbors via the action. These

demands lead the linear dimensionality PR, measuring

a global property of the representation manifold, and

the non-linear dimensionality ID, measuring more local

properties, to have opposite trends. This interpretation is

supported by further experiments and the next example we

study, that arm-reaching movements, in which the network

is prompted to predict a lower dimensional observation

6 | Nature Communications Submission Recanatesi et al. |

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2020. ; https://doi.org/10.1101/471987doi: bioRxiv preprint 

https://doi.org/10.1101/471987
http://creativecommons.org/licenses/by-nc-nd/4.0/


a PCs 1,2,3 and Latent space

PC1

PC3

P
C
2

distance color R color G color B
PC and observation spacec

PC1

PC3

P
C
2

PC4

PC5

Single neuron activities in PC spaced

PC2

PC1

b
θ

θx,y

x     y

x     y

x,y

PCs 4,5 and Latent space

Fig. 5. Features of the learned predictive representation. a) 100000 points of the neural network representation, corresponding to an equal number of steps for the agent’s

exploration, are shown projected into the space spanned by by PCs 1 to 3 of the learned representation, and colored respectively according to x,y latent variables (cfr.

Fig. 1a for color code) and θ. b) Same as panel b but for PCs 4 and 5. c) Same as panel a but colored with respect to the mean distance or color activations of the agent’s

sensors. In this specific example the first five PC components explain respectively 13.7%, 11.4%, 10.2%, 5.5%, 5.4% of the total neural variance. d) Manifold cell

activations: average activity of 100 neurons on the manifold (here displayed for the first PCs 1 and 2.). The activity of each neuron (one per quadrant) is averaged as the

population activity is in a specific “location” on the neural manifold in the space spanned by PCs 1 and 2.

signal. To encapsulate this phenomenon we suggest the

metric of Dimensionality Gain (DG), which is the ratio

between the linear global dimensionality and the non-linear

local dimensionality of the representation manifold. Higher

values of DG thus capture the network’s ability to extract

a low-dimensional representation of a high-dimensional

stream of observations. In the example of Figs. 3e to 3f,

DG≈ 3.5 upon learning.

The role of prediction in extracting latent

representations

To show how the three metrics just described characterize

predictive learning, we compare representations learned in

the same networks but without the demand for prediction

(as in Fig. 2f). In Fig. 4 we show how predictive error,

latent signal transfer and dimensionality properties of the

network differ in these two cases. The comparison is carried

out by training 50 different networks of smaller size (100

neurons) on either the predictive task or a non-predictive

version in which the network outputs observations received

on the current timestep. In sum, comparing each of

the metrics introduced above for the predictive versus

non-protective cases shows that, while predictive learning

extracts a low-dimensional manifold encoding for the latent

variables, non-predictive learning in these networks does not.

One point here bears further discussion. While Fig. 4e

shows that ID is lower in the predictive versus non-predictive

case, this may seem surprising because there are grounds

to expect that ID would be equal in these cases. These

grounds are that the observations are produced as a map

from a low dimensional latent space in both cases, so that

if the network directly and encodes them, it should admit a

similar low-dimensional parametrization and hence similar

ID in both cases as well. The resolution comes from the

fact that ID, despite being a local measure, is based on

statistical properties of points sampled from a manifold (cf.

Methods). So if the manifold appears higher dimensional,

despite having a parametrization which is low-dimensional,

then ID would point to a higher dimension. In other terms ID

is sensitive to the manifold’s smoothness and can be taken

as a measure of it for manifolds parameterized by a fixed

number of variables. This problem is known in the literature

as multiscaling and different ID measures are more or less

robust to it (30).

Finally we note that, in Suppl.Mat. Figs. S7-12, we describe

a series of 12 other control networks that show how results on

the role of prediction are robust against a number of factors

such as noise.
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Visualizing the structure of learned neural

population manifolds: signal transfer and

neural manifold cells.

The metrics just introduced capture properties of the neural

representation at the population level via useful numbers that

can be plotted over the course of learning. Here, we pause

to visualize the underlying population representations in two

complementary ways.

The first visualization is directly related to the metric of latent

space signal transfer. In Fig. 5a the neural representation

projected into the space of its first three PCs, colored

according to each of the three latent variables x, y, and

θ. Each point in these plots corresponds to the neural

representation at a specific moment in time, and the color

of the point is determined by the position or orientation of

the agent in the latent environment at that moment. This

shows visually that, after learning, the agent’s location x,y

is systematically encoded in the first three PCs, while PCs

four and five encode the agent’s orientation θ, Fig. 5b.

This corresponds to the high values of latent space signal

transfer seen at the end of learning in Fig. 3c. We next turn

to visualize whether the observation variables are similarly

encoded in the network representation. Fig. 5c shows that,

while the first three PCs do encode distance, they do not

appear to encode the sensor-averaged color in any of the

three RGB channels. Intriguingly, this is a consequence of

learning: average color information is encoded in the first

PCs in the beginning of learning as suggested by the signal

transfer measure (cfr. Fig. 3c), but less in the end of it. Taken

together, the visualizations in Figs. 5a and 5b support the

conclusion from the signal transfer metrics that the network

allocates most of its internal variability to the encoding of

latent variables.

These visualizations of population level neural coding, as

well as plots of single neuron tuning as in Fig. 2e, require

foreign knowledge of the latent space variables. But in many

settings, neither the values or nature of these variables maybe

known in advance. How can we proceed in these cases?

We now introduce a second strategy for visualizing neural

activity, via an emerging concept that we refer to as neural

manifold cells, (32, 36).

Fig. 5d shows the activity of the same 100 neurons in

Fig. 2e averaged over “locations" in the space spanned by

the first two PCs of the neural population activity itself. This

shows tuning of individual neurons, but not with respect to

motor, stimulus, or environmental variables as is typically

studied – but rather with respect to population level neural

activity. The approach reveals a similarity between the well

known phenomenon of place cells tuned to a location in the

environment and neural manifold cells tuned to a "location"

on the principal components of their neural population

manifold. (We make this relationship made more explicit in

the context of hippocampal data in Fig. S13.) Overall, this

shows that receptive fields localized not just in the latent, but

also in the principle component, spaces can arise naturally

through predictive learning.

Predictive learning extracts latent

representations of arm-reaching movements

While the spatial exploration task studied above is a useful

proving ground, given the clear role played by latent spatial

variables, we wished to illustrate the broader scope of the

effects of predictive learning. Thus, we next apply this

framework to a different task, that of predicting arm-reaching

movements. We model arm movements as a dynamical

system with forward and inverse kinematics according to

the mitrovic model (37, 38). In this model, movements in

the 2d sagittal plane of the upper right limb are modeled

as a function of 6 muscles, Fig. 6a. The muscles control,

by means of dynamical equations, two angles: the angle in

between the upperarm and the line of the shoulders, and the

angle in between the forearm and upperarm. The position

of the elbow and wrist is then a nonlinear trigonometric

function of these angles and of the lengths of the upperarm

and forearm.

We cast this system into predictive learning by generating

randomly correlated binary input pulses which signal the

contraction of one of the 6 muscles through the forward

kinematics equations, resulting in exploratory movements of

the arm.

We train the predictive recurrent network to predict future

(x,y) locations of both the elbow and the wrist given their

current locations and the input to the 6 muscles. This

replicates the spatial exploration task description in terms of

observations and actions, where observations are in this case

thought to be the current locations of the elbow and wrist

with respect to the shoulder Fig. 6b and actions are muscular

contraction signals.

Upon learning, the network successfully predicts future

observations and extracts in its neural representation the

values of the underlying latent variables that ultimately

regulate the movements: the two angles, see Figs. 6c to 6e.

Due to the low dimensionality of the observations compared

with the spatial exploration task, and the fact that they are

partially colinear with the latent variables, latent space signal

transfer increases over the course of learning as before, but

observation space signal transfer does not decay.

For the same reason, the linear dimensionality (PR), as it

increases through learning, achieves a lower final value. The

latent variable extraction is accompanied by the localization

of neural activations on the neural population manifold and

on the latent space as shown in Figs. 6f to 6g replicating the

results shown for the spatial exploration task.

Network mechanisms that create low-D

representations through prediction

In our introductory example of the card game we gave

some mathematical reasoning for how simple feedforward

networks trained to predict their future inputs (observations)

can extract the structure of the latent space underlying those

observations. Here we formalize this idea and extend it to

recurrent networks, as used for the more general spatial and

motor exploration settings studied above. Here the RNN is
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Fig. 6. Predictive representations of arm-reaching movements. a) Plane transverse to the dynamic of arm-reaching movements. The muscle model is shown and the two

latent angular variables α and β. b) Recurrent Network model c) Predictive error upon training. The symmetry axis is around lag +1 indicating that the network is carrying

out the prediction correctly. d) Latent signal transfer and observation signal transfer. e) Dimensionality trends across learning for both linear (PR) and non-linear (ID)

dimensionality measures. f) Top: Principal Components space (PCs 1-2) colored by the average angles α,β for each location. Bottom: average activity of neurons in the

space spanned by the top 2 PCs. Each subplot represents the average activity of a single neurons. Neurons are ranked according to their average firing rates. The most

active neuron is in the top left corner, the second in the first column second row and so on for all the neurons. g) Average activity of neurons in latent space α,β. Each

subplot corresponds to the neuron in panel f.

governed by the equations:

rt = g (W rt−1 +W oot +W aat)

yt = g (W outrt)
(5)

where W ,W o,W a,W out are the weight matrices and y is

the output exploited to minimize the predictive cost Cpred =
∑

t |yt − ot+1|2. Following the same logic as for the card

game task, we consider two independent network updates,

denoted by A and B respectively, which lead up to the same

observation ot+1, read out from identical representations

rA
t = rB

t . Again, up to nonlinear corrections, this gives the

condition:

rA
t−1 −rB

t−1 = W −1
(

W o(oA
t −oB

t )+W a(aA
t −aB

t )
)

(6)

which is an analogous to Eq. (4). From here, we consider two

different scenarios.

In the first, the action term dominates. This gives an

identical case to the one already analyzed in the introductory

section Eq. (4): the action acts on the neural representation

in a translationally invariant way. As before, this results

in representations corresponding to different observations

being translated with respect to one another similarly to how

the action translates among them in the underlying latent

space. For the spatial exploration task this corresponds to

the product of a 2D lattice and a circle (angle); for the

arm-reaching task this corresponds to the product of two

angles.

In the second scenario, the observation term dominates.

Observations at the current time define a set of possible

observations at the next timestep, those related to the current

observation via one of the possible actions from the current

point in the latent space. Extending the reasoning above

suggests that representations rA and rB of latent states

A and B should be similar according to the overlap in

this set of possible next-timestep observations. This again

suggests that the structure of latent space will be inherited

by representations, as it is only states that are related by one

action that can map to the same next-timestep observation.

This is indeed what we find: Fig. 1e and Figs. S7-10 (case

without actions) show how the latent space emerges in neural

representations in predictive networks even in the absence

of action inputs. However the supplemental Sec. S1.2 does
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show that these representations carry latent information in

a less regular way when actions are not provided to the

networks.

Taken together, these results show that the network’s

representation is shaped by the latent space by means of

learning to predict future inputs. This connects to novel

approached that have recently led to important progress in

the theory of deep learning (39–41) by applying group theory

to analyze neural networks (42, 43). Through this emerging

perspective predictive networks, when prompted with the

current observation of the state of a system (o) can be

analyzed as if they were asked to output the transformed

observation upon applying the action of a group element ga:

o 7→ ga(o). In our setup we use the generators of the group

instead of all possible group elements. As the network learns

to apply group actions ga to its representation, it transforms,

through its layers, the given observation o into a neural

representation onto which the action acts as a group element.

At this stage the network’s representation inherits the

geometry of what is called the group’s representation. For

example, in the spatial exploration example, the states

in which the agent can be found are defined by the

Special Euclidean group of rotations and translations in two

dimensions SE(2). In our framework the actions of the

agent correspond to the group generators for translations -

reflecting minimal translational movements of the agent (the

angle, corresponding to the rotation degree, is not directly

provided). Thus the action passed to the network is formally

the one relative to the translation subgroup, and it is provided

in vectorial form. As these group generators act as vectorial

translations on the neural representations, a definite geometry

is inherited by the network representation: the translation

subgroup of SE(2) is encoded as a two dimensional lattice

(44). This is a more general way to arrive at the conclusions

of the direct calculations taken above.

The analysis above shows how the structure of the latent

space shapes the structure of neural representations. This

structure can be clearly visualized in many of the plots

presented above. Moreover, it is reflected in the metrics we

introduce in at least two ways. First, we expect that states

being represented in a transitionally invariant way will lead

to the ability to decode states from neural representations;

how this plays out for the principal components of neural

activity that are used for plotting neural activity above and

for the metric of latent space signal transfer is described

using results from the linear algebra of Toeplitz matrices

in Supplemental Secs. S2.1-2.3. Second, states being

represented in a transitionally invariant way leads to an

approximate parameterization of neural activity via terms of

the latent space, corresponding to the lower values of intrinsic

dimensionality also measured above.

By contrast, as an autoencoder does not compute the

action of a group element on its input, is not generally

expected to build a representation with structure induced

by that group. Nonetheless a group theoretic approach to

autoencoders still enables insights into why autoencoders

develop activations reminiscent of receptive fields (45). In

the Suppl. Mat. Sec. 2.5 we provide further considerations

on the locality of receptive fields mainly inspired by (36).

Discussion

How the brain extracts information about the latent structures

of the external world, given only its sensory observations,

is a long-standing question. Here we show that the

computation of predicting future inputs can contribute to

this process, giving rise to to low dimensional neural

representation of the underlying latent spaces in artificial

neural networks. We demonstrate this phenomenon in a

sequence of gradually more complex simulations and by

providing basic mathematical arguments that indicate its

generality.

Features of predictive learning in neural representations

What features of neural responses, or representations,

characterize predictive learning? When the observations to

be predicted arise from an environment with an underlying

low-dimensional latent structure, e.g. in the case of spatial

exploration or arm-reaching movements, our work suggests

several distinct features. First, the predictive error shows

that neural representations are biased towards encoding

upcoming observations or latent variables. Second the latent

structure underlying the observations is transferred onto the

representation progressively through learning (Latent Signal

Transfer, cf. Fig. 5). Finally, the dimensionality of the set of

neural responses will likely appear high when assessed with

standard linear measures, such as Participation Ratio (27, 28).

However, when assessed through nonlinear metrics sensitive

to the dimensionality of curved manifolds, the dimensionality

will be lower, in the ideal case tending to the number of

independent latent variables.

This last feature is the result of neural responses being

strongly tuned to the variables which parameterize the neural

representation manifold (cfr. Fig. 5d). An established

example of such strong coding is the locality of neural

receptive fields in latent space (e.g. place fields). Here, we

observe an allied phenomenon, that of manifold cells with

local receptive fields on the manifold of population-wide

neural responses. This is a feature that can be explored in

artificial network studies of complex data, or in experimental

settings (cf. proof-of-concept data analysis in Suppl.Mat.

Fig. S13) where the underlying latent variables do not need to

be known in advance. This feature connects to recent work

on understanding neuronal representations through the lens

of dimensionality (26–28, 36, 46). Overall, these features

provide a quantitative framework to compare representations

across conditions that can be applied both in machine

learning (e.g. to compare learning schemes and overall

mechanisms of extracting latent signals from data) and in

brain circuits (e.g. to compare coding in distinct brain areas).

Predictive learning in brain areas Our findings should not

be taken as a theory of a specific brain area but rather as

a formulation of a general connection between predictive

coding and the extraction of latent information from sensory

data. For example, our model falls short in explaining
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mechanistically key elements of spatial maps individuated

in hippocampal recordings, such as the emergence of place

cells and their relation to direction or grid cells. However,

it does suggest that predictive learning is a mechanism

that enables the binding of sensory information beyond

spatial exploration and towards the more general notion of

semantically related episodes. While traditionally distinct

theories of hippocampus involve declarative memory (47))

and spatial exploration (48), considerable effort has been

devoted to reconciling these apparently contrasting views

(49–52). In particular, Eichenbaum (51) proposed that the

hippocampus supports a semantic relational network that

organizes related episodes to subserve sequential planning

(7, 9, 53). Here we posit that prediction – with its ability to

extract latent information – may serve as such a mechanism

to generate semantic relational networks. In particular, we

speculate that relevant semantic relations are encoded by

neural representations of low intrinsic dimensionality which

are constructed by predictive learning to reflect the relevant

latent variables in a task. Our results substantiate and build

on the importance of allied frameworks in constructing such

relational networks (14, 15, 54). Overall the predictive

learning framework provides a potential alternative of

generating hippocampal representations which differs from

both attractor (55, 56) and path-integration models (57,

58), while maintaining elements of both these models.

Discerning the underlying differences and similarities will

require careful future investigations.

Related frameworks and findings in machine learning

From an algorithmic and computational perspective, our

proposal is motivated by the recent success of predictive

models in machine learning tasks that require vector

representations reflecting semantic relationships in the data.

Information retrieval and computational linguistics have

benefited enormously from the geometric properties of

word embeddings learned by predictive models (10–12, 59).

Furthermore, prediction over observations has been used

as an auxiliary task in reinforcement learning to acquire

representations favoring goal-directed learning (9, 15–17).

Alongside these studies there are other emerging frameworks

that are related to the predictive learning networks we

analyze: contrastive predictive coding (60, 61), information

theoretic approaches (62, 63) and world models (64).

Furthermore our contribution shall also be seen in light

of computational models studying neurons with optic flow

selectivity (65, 66).

Open questions Predictive learning is a general framework

that goes beyond the examples analyzed here, and

future work can expand in other directions (text, visual

processing, behavioral tasks, etc.) that may open new

theoretical advances and new implications for learning and

generalization. It will also be exciting to adapt and

test these ideas for the analysis of large-scale population

recordings of in-vivo neural data – ideally longitudinally,

so that the evolution of learned neural representations

can be tracked with metrics such as the emergence of a

low-D neural representation manifold, predictive error, latent

signal transfer and dimensionality gain. A very interesting

possibility is that this might uncover the presence of latent

variables in tasks where they were previously unsuspected or

unidentified. Our techniques require no advance knowledge

of the latent variables. The consequence is that both the

number and identity of latent variables can be discovered by

analysis of a learned neural response manifold, as studied in

other settings (59, 67–69).

Methods

Card game network. We generate a two dimensional 5x5

grid of states which is the latent space. To each state we

randomly assign a random set of 5 cards from a deck of

40, sampled with no repetition. This serves as an example

of observations associated to states which are fully random,

independent, and of arbitrary complexity. In particular

the dimensionality of the observation is not tied to the

dimensionality of the latent space. We generate 106 state

transitions following the five actions as defined in the main

text. Upon generating such sequence of states we train

a feedforward network to predict upcoming obeservations

given current ones. The network is a 2 layer network with

100 neurons in both layers, the first with sigmoidal transfer

function and the second with hyperbolic tangent followed

by a binary cross-entropy cost function. Both actions

and observations have a one-hot encoding. All weights

are initialized with random normal matrices. Training is

performed on 80% of the sequence and validated on the

remaining 20% utilizing a RMSprop optimizer (parameters:

learning constant = 0.0001, α = 0.95, ǫ regularizer = 1 ·
10−7). The learning rate was reduced of a factor 0.5 if

the validation loss didn’t decrease for 8 consecutive epochs

(reducing on plateau scheme). Training was stopped after 25

epochs with no improvement in the validation loss (min delta

of variation 5e-5). The neural network used for Fig. 2e is

identical to the one just described, except that the output is

read out at the second layer (the hyperbolic tangent layer)

with mean squared error. This is to account for the fact that

the prediction, when actions are not passed to the network,

is probabilistic towards neighboring states. All simulations

were performed in Keras.

Neural network model for the spatial exploration task. We

study a Recurrent Neural Network (RNN) that generates

predictive neural representations during the exploration of

partially observable environments. RNNs are suited to

processing sequence-to-sequence tasks (70) and the state of

a recurrent network is a function of the history of previous

inputs and can thus be exploited to learn contextually

appropriate responses to a new given input (71–73).

Figure 2c illustrates the RNN model: at a given time t the

RNN receives as input an observation vector ~o and a vector

representation of the action ~a. The internal state ~rt of the

network is updated and used to generate the network’s output
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through the following set of equations:

rt = g (W rt−1 +W oot +W aat)

yt = g (W outrt)
(7)

The RNN is trained to predict the observation at the next time

step by minimizing the first cost function, or alternatively to

autoencode its input, via the predictive and non-predictive

cost functions, respectively:

Cpred =
1

T

T −1
∑

t=0

||ot+1 −yt||
2 ,

Cnon−pred =
1

T

T −1
∑

t=0

||ot −yt||
2 .

(8)

Networks were trained by minimizing the cost function in

Eq. (8) via backpropagation through time (74). While RNNs

are known to be difficult to train in many cases (75), a

simple vanilla RNN model with hyperbolic tangent activation

function was able to learn our task, Fig. 2d.

The connectivity matrix of the recurrent network was

initialized to the identity (76, 77), while input and output

connectivity matrices were initialized to be random matrices.

Individual weights were sampled from a normal distribution

with mean zero and standard deviation 0.02. The network had

500 recurrent units (with the exception noted below), while

the input and output size depended on the task as defined

by the environment. Each epoch of training corresponded

to T = 106 time steps.

All other training details were the same as reported for the

card game example. For the simulations of Fig. 5 we trained

100 networks of 100 neurons: 50 networks in the predictive

case and 50 networks in the non-predictive case (cf. Eq. (8)

with equal instantiation of the rest of parameters.

Description of the spatial environment. We modeled the

spatial exploration task in two dimensions. We simulated

the exploration of the agent in a square maze tessellated by

a grid of evenly spaced cells (64x64=4096 locations). At

every time t the agent was in a given location in the maze

and headed in a direction ϕ ∈ [0,2π). The agent executed a

random walk in the maze which was simulated as follows.

At every step in the simulation an action was selected by

updating the direction variable θ stochastically with dθ

(i.i.d. sampled from a Gaussian distribution with variance

σ2
theta = 0.5 rad). The agent then attempted a move to the

cell, among the 8 adjacent ones, that was best aligned to

θ. The move occurred unless the target cell was occupied

by a wall, in which case the agent remained in the current

position.

The chosen action was encoded in a one-hot vector that

indexed the movement. The actions were discrete choices

at ∈ [0..8] correlating with the head direction but distinct

from it. This was indeed a continuous variable θt ∈ [0,2π).

Moreover, knowledge of the action didn’t provide direct

information about the agent’s direction and observation; in

other words, there was no direct correspondance between

the action taken and the observation collected as for each

location and action there were many possible directions

the agent could point towards and consequently as many

possible observations.

As the agent explored the environment it collected, through a

set of Ns = 5 sensors, observations of the distance and color

of the walls along 5 different directions equally spaced in a

90 degree visual cone centered at ϕ. Thus it recorded, for

each sensor, four variables at every time step: the distance

from the wall and the RGB components of the color of the

wall. This information was represented by a vector ot of size

5x4=20. Such a vector, together with the action represented

as a one-hot representation, was fed as input into the network

and used for the training procedure. The walls were initially

colored so that each tile corresponding to a wall carried

a random color (i.e. three uniformly randomly generated

numbers in the interval [0,1]). A Gaussian filter of variance

2 tiles was then used, for each color channel, to make the

color representations smooth. Fig. 2b shows an example of

such an environment.

Predictive error. The predictive error is a direct

generalization of Eq. (8) as a function of a time lag

variable:

Cpred(lag) =
1

T

T −1
∑

t=0

||ot+lag −yt||
2 , (9)

so that it is possible to verify that the output of the network

y is most similar, on average, to the upcoming observation

rather than the current observation.

Latent Signal transfer. The latent signal transfer measure

was obtained by performing a Canonical Correlation

Analysis (CCA) between two spaces: the top 3 PC

components of the network’s representation and other

variables as specified in the text, e.g. latent variables (x,y).

CCA extracts the directions of maximal correlation between

the two spaces returning a set of canonical correlations.

Latent Signal Transfer is then taken to be the average of these

canonical correlations which are as many as the minimum

between the ranks of the two spaces.

Nonlinear dimensionality: Intrinsic Dimensionality. While

research on estimating intrinsic dimensionality (ID) is

advancing, there is still no single decisive algorithm to do

so; rather, we adopt the recommended practice of computing

and reporting several (here, five) different estimates of ID

based on distinct ideas (30, 31). The set of techniques we

use include: MiNDML (78), MLE (79), DancoFit (80),

CorrDim (81) and GMST (82, 83). These techniques

follow the selection criteria illustrated in (30), emphasizing

the ability to handle high-dimensional data (in our case

hundreds of dimensions) and being robust, efficient and

reliable; we refer the reader to (24) for a useful comparison.

We implement these techniques using the code from the the

authors available online (30, 79, 80), “out of the box" without

modifying hyperparameters.
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A simple intuition regarding for some of the selected

techniques builds on the notion of correlation dimension

which derives from the following idea. Consider a manifold

M of dimensionality d embedded in IRN and a set of points

uniformly sampled from the manifold. For each point build

a ball of radius r (denoted as Br), then the number of points

within Br (denoted as Br) can be analyzed as a function of

r and be found to scale as Br ∼ rd at least for small r. This

scaling can be exploited to estimate d.

Description of arm-reaching movements model. To model

arm-reaching movements we used a kinematic model of the

arm muscles (84, 85). The arm kinematics were modeled

in the transverse plane by analyzing the effect of 6 muscles

on the arm dynamics, cf.Fig. 6a. The activation signals for

the muscles were used as actions in our model. For each

of the 6 muscles we used a pulsed binary signal where at

each instant in time the pulse can be turned on or off. These

activation signals are filtered and passed to the equations of

inverse kinematics of the muscles which regulate muscular

contraction. Such muscle dynamics drives the arm dynamics

according to the Mitrovic model (37, 86, 87). All the details

regarding the implementations of this model can be found

on the Github repository we adopted for the simulations

https://github.com/jeremiedecock/pyarm and in the code we

provide. The most relevant feature of this model for our

study is the fact that the 6 dimensional muscle activity drives

non-linear dynamics in the two dimensional latent space

described by the two angles α,β in Fig. 6a.
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